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Stochastic Simulation of Chemical Reactions

In this chapter we will introduce stochastic methods for modelling spatially

homogeneous systems of chemical reactions, including the chemical mas-

ter equation and the Gillespie SSA, where the acronym SSA stands for the

term “stochastic simulation algorithm” in this book. We will also discuss the

connection between stochastic and deterministic modelling approaches.

1.1 Stochastic Simulation of Degradation

We start with the simplest possible example, which is the single chemical

reaction

A
k
−→ ∅, (1.1)

where A is the chemical species of interest and k is the rate constant of the

reaction. The symbol ∅ denotes chemical species that are of no further interest.

The rate constant k in (1.1) is defined so that k dt gives the probability that

a randomly chosen molecule of the chemical species A reacts (is degraded)

during the time interval [t, t + dt) where t is time and dt an (infinitesimally)

small time step.

Let us denote the number of molecules of chemical species A at time t by

A(t) (a convention that will be used throughout the book). Then, in the time

interval [t, t + dt), a number of things may happen: none of the molecules may

react, exactly one may react, or more than one may react. Assuming that each

molecule acts independently, we may combine the individual probabilities of

reaction to deduce that

no reactions occur with probability 1 − A(t)k dt + O(dt2),

exactly one reaction occurs with probability A(t)k dt + O(dt2),

two or more reactions occur with probability O(dt2),
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2 Stochastic Simulation of Chemical Reactions

where O(dt2) signifies terms proportional to dt2. If dt is small enough then the

quadratic terms in dt are much smaller than the linear terms, and they may be

safely neglected. Thus, in a small enough time interval, the chance of two or

more reactions happening is negligible.

Let us assume that we have n0 molecules of A in the system at time t = 0,

i.e. A(0) = n0. Our first goal is to compute the number of molecules A(t) for

times t > 0. The mathematical definition of the chemical reaction (1.1) can

be directly used to design a “naive" stochastic simulation algorithm (SSA) for

simulating it. We choose a small time step ∆t, and compute the number of

molecules A(t) at times t = i∆t, i = 1, 2, 3, . . . , by testing to see if a reaction

occurs in each time interval and updating A(t) accordingly.

To do that, we need a computer routine generating random numbers. Most

modern programming languages contain a routine for generating random num-

bers uniformly distributed in the interval (0, 1) (e.g. the function rand in

Matlab). The routine will generate a number r ∈ (0, 1), such that the probabil-

ity that r is in a subinterval (a, b) ⊂ (0, 1) is equal to b − a for any a, b ∈ (0, 1)

with a < b. Using this routine we compute the number of molecules of A(t) as

follows. Starting with t = 0 and A(0) = n0, we perform two steps at time t:

(a1) Generate a random number r uniformly distributed in the interval

(0, 1).

(b1) If r < A(t)k∆t, then put A(t + ∆t) = A(t) − 1;

otherwise, put A(t + ∆t) = A(t).

Then continue with step (a1) for time t + ∆t.

Since r is a random number uniformly distributed in the interval (0, 1), the

probability that r < A(t)k∆t is equal to A(t)k∆t. Consequently, step (b1) says

that the probability that the chemical reaction (1.1) occurs in the time interval

[t, t+∆t) is equal to A(t)k∆t. Thus step (b1) correctly implements the definition

of (1.1) provided that ∆t is small. The time evolution of A obtained by the

“naive” SSA (a1)–(b1) is given in Figure 1.1(a) for∗ k = 0.1 sec−1, A(0) =

20 and ∆t = 0.005 sec. We repeated the stochastic simulation twice and we

plotted two realizations of the SSA (a1)–(b1). We see in Figure 1.1(a) that

these two realizations of the SSA (a1)–(b1) give two different evolutions. Each

time we run the algorithm, we obtain different results. This is generally true for

any SSA. Therefore, one might reasonably ask what useful and reproducible

∗ We use “sec” rather than “s” to denote seconds throughout the whole book. This is to avoid
possible confusion with the use of lower case letter s to denote speed or other variables in later
chapters of this book.
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1.1 Stochastic Simulation of Degradation 3

Figure 1.1 Stochastic simulation of chemical reaction (1.1) for k = 0.1 sec−1 and

A(0) = 20. (a) Number of molecules of A as a function of time for two realizations

of the “naive" SSA (a1)–(b1) for ∆t = 0.005 sec. (b) Results of ten realizations of

the SSA (a2)–(c2) (solid lines; different colours show different realizations) and

stochastic mean (1.8) plotted by the dashed line.

information can be obtained from stochastic simulations? We will come back

to this question later in this section.

The probability that exactly one reaction (1.1) occurs during the infinitesi-

mal time interval [t, t+dt) is equal to A(t)k dt. To design the SSA (a1)–(b1), we

replaced dt by the finite time step∆t. In order to get reasonably accurate results,

we must ensure that A(t)k∆t ≪ 1. For our simulations we used k = 0.1 sec−1

and ∆t = 0.005 sec. Since A(t) ≤ A(0) = 20 for any t ≥ 0, this gives

A(t)k∆t ∈ [0, 0.01] for any t ≥ 0. Consequently, the condition A(t)k∆t ≪ 1 is

reasonably satisfied during the simulation. We might further increase the accu-

racy of the SSA (a1)–(b1) by decreasing ∆t. However, decreasing ∆t increases

the computational intensity of the algorithm. The probability that the reaction

(1.1) occurs during the time interval [t, t+∆t) is less than or equal to 1% for our

parameter values. Thus during most time steps we generate a random number

r in step (a1) only to find out that no reaction occurs in step (b1): we need to

generate a lot of random numbers before the reaction takes place. This naive

SSA is extremely inefficient: we can do a lot better.

The key to improving the algorithm is a change in viewpoint. Instead of

focusing on time we focus on events: rather than stepping forward in time and

asking did a reaction take place, we ask at what time will the next reaction

occur?

If the time is t now, our goal is to compute the time t + τ when the next

reaction (1.1) takes place. Of course, τ is a random variable, so that what

we need to calculate is its probability distribution function. Let us denote by
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4 Stochastic Simulation of Chemical Reactions

f (A(t), s) ds the probability that, given A(t) molecules at time t in the system,

the next reaction occurs during the time interval [t + s, t + s + ds) where ds

is an (infinitesimally) small time step. In order for this to happen, there must

have been no reaction during the interval [t, t + s), and then a reaction must

have occurred during the interval [t + s, t + s + ds). Thus, if we let g(A(t), s)

be the probability that no reaction occurs in interval [t, t + s), the probability

f (A(t), s) ds can be computed as a product of g(A(t), s) and A(t + s)k ds:

f (A(t), s) ds = g(A(t), s)A(t + s)k ds.

Since no reaction occurs in [t, t + s), we have A(t + s) = A(t), so that in fact

f (A(t), s) ds = g(A(t), s)A(t)k ds. (1.2)

It remains for us to calculate g(A(t), s). For any σ > 0, the probability that no

reaction occurs in the interval [t, t + σ + dσ) can be computed as the prod-

uct of the probability that no reaction occurs in the interval [t, t + σ) and the

probability that no reaction occurs in the interval [t + σ, t + σ + dσ). Hence

g(A(t), σ + dσ) = g(A(t), σ)[1 − A(t + σ)k dσ].

Since no reaction occurs in the interval [t, t + σ), we have A(t + σ) = A(t).

Consequently, after some rearrangement,

g(A(t), σ + dσ) − g(A(t), σ)

dσ
= −A(t)k g(A(t), σ).

Passing to the limit dσ → 0, we obtain the ordinary differential equation (in

the σ variable)

dg(A(t), σ)

dσ
= −A(t)k g(A(t), σ).

Solving this equation with initial condition g(A(t), 0) = 1, we obtain

g(A(t), σ) = exp[−A(t)kσ].

Now (1.2) can be written as

f (A(t), s) ds = A(t)k exp[−A(t)ks] ds. (1.3)

Thus we have found that the time interval to the next reaction, τ, is dis-

tributed according to the exponential distribution with mean (A(t)k)−1. The

exponential distribution is, together with other useful distributions, defined in

the Appendix.

To use this in our simulation algorithm we need to generate random numbers

τ distributed according to (1.3). The easiest way to accomplish this is to use

the following auxiliary function:
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1.1 Stochastic Simulation of Degradation 5

F(τ) = exp[−A(t)kτ] =

∫ ∞

τ

f (A(t), s) ds. (1.4)

The function F(τ) represents the probability that the time to the next reaction

is greater than τ, and is monotone decreasing for A(t) > 0. For our present

purposes what is important is that, if τ is a random number in the interval

(0,∞), then F(τ) is a random number in the interval (0, 1). Moreover, if τ

is a random number distributed according to the probability density function

(1.3), then F(τ) is a random number uniformly distributed in the interval (0, 1).

To show this let 0 < a < b < 1 be chosen arbitrarily. The probability that

F(τ) ∈ (a, b) is equal to the probability that τ ∈ (F−1(b), F−1(a)), which is

given by the integral of f (A(t), s) over s from F−1(b) to F−1(a). Using (1.3)

and (1.4) we obtain

∫ F−1(a)

F−1(b)

f (A(t), s) ds =

∫ F−1(a)

F−1(b)

A(t)k exp[−A(t)ks] ds

= −

∫ F−1(a)

F−1(b)

dF

ds
ds = −F[F−1(a)] + F[F−1(b)] = b − a.

Thus, if we have an algorithm that generates a random number r uniformly

distributed on (0, 1), we can generate the time of the next reaction by setting

r = F(τ) = exp[−A(t)kτ].

Solving for τ, we obtain the formula

τ =
1

A(t)k
ln

[

1

r

]

. (1.5)

Consequently, the improved SSA for the chemical reaction (1.1) can be written

as follows. Starting with t = 0 and A(0) = n0, we perform three steps at time t:

(a2) Generate a random number r uniformly distributed in the interval

(0, 1).

(b2) Compute the time when the next reaction (1.1) occurs as t + τ where

τ is given by (1.5).

(c2) Compute the number of molecules at time t+ τ by A(t+ τ) = A(t)− 1.

Then continue with step (a2) for time t + τ.

Steps (a2)–(c2) are repeated until we reach the time when there is no molecule

of A in the system, i.e. A = 0. The SSA (a2)–(c2) computes the time of the next

reaction t+τ using formula (1.5) in step (b2) with the help of one random num-

ber only. Then the reaction is performed in step (c2) by decreasing the number

of molecules of chemical species A by 1. The time evolution of A obtained
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6 Stochastic Simulation of Chemical Reactions

by the SSA (a2)–(c2) is given in Figure 1.1(b). We plot ten realizations of the

SSA (a2)–(c2) for k = 0.1 sec−1 and A(0) = 20. Since the function A(t) has

only integer values {0, 1, 2, . . . , 20}, it is not surprising that some of the com-

puted curves A(t) partially overlap. On the other hand, all ten realizations yield

different functions A(t). Even if we made millions of stochastic realizations, it

would be very unlikely (with probability zero) that there would be two realiza-

tions giving exactly the same results. Therefore, the details of one realization

A(t) are of no special interest (they depend on the sequence of random numbers

obtained from the random number generator). However, averaging values of A

at time t over many realizations (that is, computing the stochastic mean of A),

we obtain a reproducible characteristic of the system – see the dashed line in

Figure 1.1(b). The mean of A(t) over (infinitely) many realizations can be also

computed theoretically as follows.

Let us denote by pn(t) the probability that there are n molecules of A at time

t in the system, i.e. A(t) = n. Let us consider an (infinitesimally) small time

step dt chosen such that the probability that two molecules are degraded during

[t, t + dt) is negligible compared to the probability that only one molecule is

degraded during [t, t+dt). Then there are two possible ways for A(t+dt) to take

the value n: either A(t) = n and no reaction occurred in [t, t+dt), or A(t) = n+1

and one molecule was degraded in [t, t + dt), i.e.

pn(t + dt) = pn(t) × (1 − kn dt) + pn+1(t) × k(n + 1) dt.

A simple algebraic manipulation yields

pn(t + dt) − pn(t)

dt
= k(n + 1) pn+1(t) − kn pn(t).

Passing to the limit dt → 0, we obtain the so-called chemical master equation

in the form
dpn

dt
= k(n + 1) pn+1 − kn pn. (1.6)

Equation (1.6) looks like an infinite system of ordinary differential equations

(ODEs) for pn, n = 0, 1, 2, 3, . . . . However, our initial condition A(0) = n0

implies that there are never more than n0 molecules in the system, so that

pn ≡ 0 for n > n0 and the system (1.6) reduces to a system of (n0 + 1) ODEs

for p0, p1, . . . , pn0
. The equation for n = n0 reads

dpn0

dt
= −kn0 pn0

.

Solving this equation with the initial condition pn0
(0) = 1 (since we know with

certainty that there are n0 molecules of A at time t = 0), we find

pn0
(t) = exp[−kn0t].
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1.1 Stochastic Simulation of Degradation 7

Using this formula in the chemical master equation (1.6) for pn0−1(t), we obtain

d

dt
pn0−1(t) = kn0 exp[−kn0t] − k(n0 − 1) pn0−1(t).

Solving this equation with initial condition pn0−1(0) = 0, we obtain

pn0−1(t) = exp[−k(n0 − 1)t] n0 (1 − exp[−kt]).

Using mathematical induction, it is possible to show that in general

pn(t) = exp[−knt]

(

n0

n

)

{

1 − exp[−kt]
}n0−n
, (1.7)

where
(

n0

n

)

=
n0!

n!(n0 − n)!

is the binomial coefficient. Looking at the Appendix, we can observe that the

formula (1.7) is the probability mass function of the binomial distribution with

parameter exp[−kt]. It provides complete information about the stochastic pro-

cess defined by (1.1) with the initial condition A(0) = n0. We can never say for

sure that A(t) = n; we can only say that A(t) = n with probability pn(t). In

particular, we can use (1.7) to derive a formula for the mean value of A(t) over

(infinitely) many realizations, which is defined by

M(t) =

n0
∑

n=0

n pn(t).

Using (1.7), we deduce that

M(t) =

n0
∑

n=0

n pn(t)

=

n0
∑

n=0

n exp[−knt]

(

n0

n

)

{

1 − exp[−kt]
}n0−n

= n0 exp[−kt]

n0
∑

n=1

(

n0 − 1

n − 1

)

{

1 − exp[−kt]
}(n0−1)−(n−1) {

exp[−kt]
}n−1

= n0 exp[−kt] , (1.8)

where the last step follows from the binomial theorem applied to the iden-

tity ({1 − exp[−kt]} + exp[−kt])n0−1
= 1. The chemical master equation (1.6)

and its solution (1.7) can be also used to quantify the stochastic fluctuations

around the mean value (1.8), i.e. how much an individual realization of the SSA

(a2)–(c2) can differ from the mean value given by (1.8). We will present the

corresponding theory and results on a more complicated illustrative example
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8 Stochastic Simulation of Chemical Reactions

in Section 1.2. Finally, let us note that a classic deterministic description of the

chemical reaction (1.1) is given by the ODE (see the Appendix)

da

dt
= −ka,

where a(t) = A(t)/ν is the concentration of chemical species A in a container of

volume ν. Solving this equation with initial condition a(0) = n0/ν, we obtain

the function (1.8) divided by volume ν, i.e. a(t) = M(t)/ν. In other words, the

stochastic mean can be obtained by solving the corresponding deterministic

ODE. However, we should emphasize that this is not true for general systems

of chemical reactions, as we will see in Section 1.4, Section 1.5 and Chapter 2.

1.2 Stochastic Simulation of Production and Degradation

The reaction (1.1) eventually leads to the elimination of all molecules of A. We

now make it more interesting by adding also some production of A. Thus let us

suppose that we have a chemical species A in a container of volume ν which is

subject to the following two chemical reactions:

A
k1

−→ ∅, ∅
k2

−→ A. (1.9)

The first reaction describes the degradation of chemical A with the rate constant

k1 previously studied. We couple it with the second reaction, which represents

the production of chemical A with the rate constant k2 per unit volume. The

exact meaning of the second chemical reaction in (1.9) is that one molecule of

A is created during the time interval [t, t + dt) with probability k2ν dt where ν

is the system volume. As before, the symbol ∅ denotes chemical species that

are of no special interest to us, i.e. the second reaction does not mean that

chemical A would be produced from empty space. Indeed, in Section 2.4, we

revisit this example and present a slightly larger chemical system which has

similar dynamics as (1.9) without using notation ∅ in its production reaction.

In this section, the impact of other chemical species on the rate of production

of A is assumed to be time-independent and is already incorporated in the rate

constant k2.

The rate constants k1 and k2 have different physical units. The rate constant

k1 is expressed in the units of [sec−1]. The units of the rate constant k2 are

[m−3 sec−1]. It is the production rate per unit of volume and per unit of time, so

that the probability that one molecule of A is created during the time interval

[t, t+dt) is equal to k2ν dt. The scaling with the volume ν is natural: if we divide

the container into two equal parts, the production rate in each part will be half

of the production rate in the whole container. In this section, the scaling with
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1.2 Stochastic Simulation of Production and Degradation 9

the system volume ν is not crucial: to simulate the production of molecules in

a container of volume ν, we do not need to specify k2 and ν individually but

only the product k2ν, which is the global production rate (with units [sec−1]).

The scaling of the reaction rates with the volume ν will be more important in

later chapters, when we consider spatially inhomogeneous systems.

To simulate the system of chemical reactions (1.9) we want again to think in

terms of events by jumping forwards to the time that the next reaction happens.

We can do this by performing the following four steps at time t (starting with

A(0) = n0 at time t = 0):

(a3) Generate two random numbers r1, r2 uniformly distributed in (0, 1).

(b3) Compute α0 = A(t)k1 + k2ν.

(c3) Compute the time when the next chemical reaction takes place as

t + τ where

τ =
1

α0

ln

[

1

r1

]

. (1.10)

(d3) Compute the number of molecules at time t + τ by

A(t + τ) =

{

A(t) + 1 if r2 < k2ν/α0,

A(t) − 1 if r2 ≥ k2ν/α0.

Then continue with step (a3) for time t + τ.

Let us examine this algorithm, to see why it correctly simulates (1.9). First

we observe that the probability that both reactions in (1.9) occur in the time

interval [t, t+dt) is quadratic in dt, and so is negligible as before. Thus the prob-

ability that one of the reactions takes place in the time interval [t, t+dt) is equal

to the probability that the first reaction occurs, A(t)k1dt, plus the probability

that the second reaction occurs, k2ν dt. We label this combined probability of

some reaction occuring α0 dt, and calculate it in step (b3).

The formula (1.10) in step (c3) gives the time t + τ when the next reaction

takes place; it can be justified using the same arguments as for the formula

(1.5). Now that we know a reaction has taken place, the final step is to decide

which reaction it was. Whether a molecule is produced or degraded depends

on the relative probabilities of the two reactions: a molecule is produced with

probability k2ν/α0; if a molecule is not produced then one must have been

degraded. The decision as to which reaction takes place is given in step (d3)

with the help of the second uniformly distributed random number r2.

Five realizations of the SSA (a3)–(d3) are presented in Figure 1.2(a) as solid

lines. We plot the number of molecules of A as a function of time for A(0) = 0,

k1 = 0.1 sec−1 and k2ν = 1 sec−1. We see that, after an initial transient, the
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10 Stochastic Simulation of Chemical Reactions

Figure 1.2 Stochastic simulation of the system of chemical reactions (1.9) for

A(0) = 0, k1 = 0.1 sec−1 and k2ν = 1 sec−1. (a) A(t) given by five realizations

of the SSA (a3)–(d3) (solid lines) and stochastic mean (dashed line). (b) Station-

ary distribution φ(n) obtained by long-time simulation of the SSA (a3)–(d3) (grey

histogram) and by formulae (1.20)–(1.21) (red solid line).

number of molecules A(t) fluctuates around its mean value. To compute the

mean and quantify the stochastic fluctuations, we again use the chemical mas-

ter equation. As before, let pn(t) denote the probability that A(t) = n for

n = 0, 1, 2, 3, . . . . This time there are three ways we can arrive at n molecules

at time t + dt: there could have been n molecules at time t and no reactions

happened, or there could have been n + 1 molecules and one was degraded, or

there could have been n − 1 molecules and one was produced. Thus

pn(t + dt) = pn(t) × (1 − k1n dt − k2ν dt)

+ pn+1(t) × k1(n + 1) dt + pn−1(t) × k2ν dt.

Rearranging and passing to the limit dt → 0 gives

dpn

dt
= k1(n + 1) pn+1 − k1n pn + k2ν pn−1 − k2ν pn. (1.11)

Equation (1.11) needs to be slightly modified in the case n = 0: it is not possi-

ble to arrive at zero molecules at time t + dt by having −1 molecules at time t

and producing one molecule! This means that the third term on the right-hand

side of (1.11) is missing for n = 0. To save ourselves the bother of writing a

separate equation for the n = 0 case we can continue to use (1.11) if we adopt

the convention that p−1 ≡ 0.

Since one of the reactions (1.9) involves production of A, there is no max-

imum possible number of molecules of A, as there was in Section 1.1. Thus

chemical master equation (1.11) does this time describe an infinite set of ODEs
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