
Cambridge University Press
978-1-108-49798-5 — Communication Complexity
Anup Rao , Amir Yehudayoff 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

TH E C O N C E P T O F A C O N V E R S AT I O N is universal. In this book,

we develop methods to determine the most efficient conversations for

specific tasks. We start by exploring some examples that illustrate how

such conversations arise, and why they are worthy of study.

We begin the story with one of the earliest applications of communi-

cation complexity: proving lower bounds on the area required for digital

chips.1 A chip design specifies how to compute a function f (x1, . . . , xn) 1 Thompson, 1979.

by laying out the components of the chip on a flat grid, as in Figure I.1.

Each component either stores one of the inputs to the function, or per-

forms some computation on the values coming from adjacent compo-

nents. It is vital to minimize the area used in the design because this

affects the cost, power consumption, reliability, and speed of the chip.

x1 C

x2

x3C

x3C

x5

x4

C C

C

f

C CC

x6CCC

x7C

x9

C

C

C

C

C

x10

C

C

x11

x12

CC C

Figure I.1 Any chip can be

broken into two pieces while

cutting few wires.

Because there are n inputs, we need area of at least n to compute

functions that depend on all of their inputs. Can we always find chip

designs with area proportional to n? The framework of communication

complexity can be used to show that many functions require area pro-

portional to n2, no matter what chip design is used!

The crucial insight is that the layout of the chip yields a conversation

whose outcome is the value of f . If a chip design has area A, one can

argue that there must be a way to cut the chip into two parts, each

containing a similar number of the inputs, so that only ≈
√

A wires are

cut. Imagine that each part of the chip represents a person. The chip

design describes how f can be computed by two people, each of whom

knows roughly half of the input to f , with a conversation whose length

is proportional to the number of wires that were cut. So, if we can show

that computing f requires a conversation of length t, we can conclude

that area A must be at least ≈ t2, no matter how the components of

the chip are laid out. In this book, we will develop a wide variety of

tools for proving that functions require conversations whose length is

proportional to n. The area of any chip for such a function must be

proportional to n2.

A second example comes from a classical result about Turing

machines. Turing machines are widely regarded as a universal model

of computation – the extended Church-Turing thesis says that anything

1

www.cambridge.org/9781108497985
www.cambridge.org


Cambridge University Press
978-1-108-49798-5 — Communication Complexity
Anup Rao , Amir Yehudayoff 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

that is efficiently computable is efficiently computable by a Turing

machine. A Turing machine can be thought of as a program written for

a computer that has access to one or more tapes. Each tape has a head

that points at a location on the tape. In each step of computation, the

machine can read or write a single symbol at the location corresponding

to a head, or move the head to an adjacent location. A Turing machine

with more tapes is more powerful than a Turing machine with fewer

tapes, but how much more powerful?

A classic result2 shows that one can simulate a Turing machine that2 Hartmanis and Stearns, 1965.

has access to two tapes with a Turing machine that has access to just

one tape. However, the simulation may increase the number of steps

of the computation by a factor of t, where t is the running-time of the

machine. One can use communication complexity to show that this lossStrictly speaking, the

simulation increases by a

factor of max{n, t }, where n

is the length of the input.

However, for any computation

that depends on the whole

input, this maximum is t.

is unavoidable.3

3 Hennie, 1965.

To see why this is the case, we use the communication complexity of

the disjointness function. Imagine that Alice knows a set X ⊆ [n], and

Bob knows a set Y ⊆ [n]. Their common goal is to compute whether or

not the sets are disjoint – namely whether or not there is an element that

is in both sets (see Figure I.2). Later in the book, we prove that Alice

and Bob must communicate Ω(n) bits in order to achieve this goal.

Now, a Turing machine with access to two tapes can compute disjoint-

ness in O(n) steps. If the sets are represented by their indicator vectors

x, y ∈ {0, 1}n, then the machine can copy y to the second tape and scan

both x and y, searching for an index i with xi = 1 = yi . All of these

operations can be carried out in O(n) steps.Figure I.2 looks very similar to

the famous Sierpinski gasket,

which is a well-known fractal

in the plane. The gasket’s area

is zero, and its Hausdorff

dimension is ≈ 1.585. The

properties of disjointness we

establish in this text imply

analogous statements for the

Sierpinski gasket.

However, one can use communication complexity to prove that a

Turing machine with one tape must take at least Ω(n2) steps to compute

disjointness. The idea is that a machine that computes disjointness in

T steps can be used by Alice and Bob to compute disjointness using

≈ T

n
bits of communication. Intuitively, Alice and Bob can write down

the input (x, y) on the single tape of the machine and try to simulate the

execution of the machine. Neither of them knows the contents of the

whole tape, but they can still simulate the execution of the machine with

a small amount of communication. Every time the machine transitions

from Alice’s part of the tape to Bob’s part, she sends him a short

message to indicate the line of code that should be executed next. Bob

then continues the execution. One can show that this simulation can

be carried out in such a way that each message sent between Alice

and Bob corresponds to Ω(n) steps of the Turing machine. So, if we

start with a one-tape machine that runs in time ≪ n2, we end up

with a protocol of length ≪ n bits that computes disjointness. This is

impossible.

The two examples we have discussed give some feel for commu-

nication problems and why we are interested in studying them. Next,

we continue this informal introduction with several other interesting

examples of communication problems and protocols.

www.cambridge.org/9781108497985
www.cambridge.org


Cambridge University Press
978-1-108-49798-5 — Communication Complexity
Anup Rao , Amir Yehudayoff 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 3

Figure I.2 Disjointness when

n = 8. Each row corresponds

to a set X ⊆ [8], and each

column corresponds to a set

Y ⊆ [8]. The X,Y entry is

black if and only if X and Y

are disjoint.

Some Protocols

A communication protocol specifies a way for a set of people to have a

conversation. Each person has access to a different source of informa-

tion, which is modeled as an input to the protocol. The protocol itself

is assumed to be known to all the people that are involved in executing

it. Their goal is to learn some feature of all the information that they

collectively know.

Equality Suppose Alice and Bob are given two n-bit strings. Alice is

given x and Bob is given y, and they want to know if x = y. There is

a trivial solution: Alice can send her input x to Bob, and Bob can

let her know if x = y. This is a deterministic protocol that takes The terms deterministic and

randomized will be formally

defined later in the book.
n + 1 bits of communication. Interestingly, we shall prove that no

deterministic protocol is more efficient. On the other hand, for every

See Chapter 3.number k, there is a randomized protocol that uses only k + 1 bits of

communication and errs with probability at most 2−k – the parties can

use randomness to hash their inputs and compare the hashes. More on

this in Chapter 3.

Median Suppose Alice is given a list of numbers from [n] and Bob is

given a different list of numbers from [n]. They want to compute the

median element of the list that is obtained by combining these lists.

If t is the total number of elements in their lists, this is the ⌈t/2⌉th
element after the lists are combined and sorted. There is a simple

For example, the median of

(1, 2, 3) and (2, 3, 4) is 2, the

third element in the list

(1, 2, 2, 3, 3, 4).

protocol that takes O(log n · log t) bits of communication. In the first

step, Alice and Bob each announce the number of their elements that

are at most n/2. This takes O(log t) bits of communication. If there

www.cambridge.org/9781108497985
www.cambridge.org


Cambridge University Press
978-1-108-49798-5 — Communication Complexity
Anup Rao , Amir Yehudayoff 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

are k elements that are at most n/2 and k ≥ ⌈t/2⌉, then Alice and

Bob can safely discard all the elements that are larger than n/2 and

recurse on the numbers that remain. If k < ⌈t/2⌉, then Alice and

Bob can recurse after throwing out all the numbers that are at most

n/2, and replacing ⌈t/2⌉ by ⌈t/2⌉ − k. There can be at most O(log n)

steps before all of their elements must come from a set of size 1. This

single number is the median.

Cliques and Independent Sets Here Alice and Bob are given a graph

G on n vertices. In addition, Alice knows a clique C in the graph, and

Bob knows an independent set I in the graph. They want to knowA clique is a set of vertices

that are all connected to each

other. An independent set is a

set of vertices that contains no

edges. The degree of a vertex

is the number of its neighbors.

whether C and I share a common vertex or not, and they want to

determine this using a short conversation. Describing C or I takes

about n bits, because in general the graph may have 2n cliques or 2n

independent sets. So, if Alice and Bob try to tell each other what C or

I is, that will lead to a very long conversation.

C

I

C

I

v

Figure I.3 The vertices that

are not neighbors of v cannot

be involved in any intersection

between C and I .

Here we discuss a clever interactive protocol allowing Alice and Bob

to have an extremely short conversation for this task. They will send

at most O(log2
n) bits. If C contains a vertex v with degree less

than n/2, Alice sends Bob the name of v. This takes just O(log n)

bits of communication. See Figure I.3 for an illustration. Now, either

v ∈ I, or Alice and Bob can safely discard all the nonneighbors of

v because these cannot be a part of C. This eliminates at least n/2

vertices from the graph. Similarly, if I contains a vertex v of degree

at least n/2, Bob sends Alice the name of v. Again, either v ∈ C,

or Alice and Bob can safely delete all the neighbors of v from the

graph, which eliminates about n/2 vertices. If all the vertices in C

have degree more than n/2, and all the vertices in I have degree

less than n/2, then C and I do not share a vertex. The conversation

can safely terminate. So, in each round of communication, either the

parties know that C ∩ I = Ø, or the number of vertices is reduced by

a factor of 2. After k rounds, the number of vertices is at most n/2k .

If k exceeds log n, the number of vertices left will be less than 1, and

Alice and Bob will know if C and I share a vertex or not. This means

that at most log n vertices can be announced before the protocol ends,

proving that at most O(log2
n) bits will be exchanged before Alice

and Bob learn what they wanted to know.

One can show that if the conversation involves only one message

from each party, then at leastΩ(n) bits must be revealed for the parties

to discover what they want to know. So, interaction is vital to bringing

down the length of the conversation.

Disjointness with Sets of Size k Alice and Bob are given two sets

A, B ⊆ [n], each of size k ≪ n, and want to know if the sets share

a common element. Alice can send her set to Bob, which takes

log
(

n

k

)

≈ k log(n/k) bits of communication. There is a randomizedSee Chapter 2.

www.cambridge.org/9781108497985
www.cambridge.org


Cambridge University Press
978-1-108-49798-5 — Communication Complexity
Anup Rao , Amir Yehudayoff 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 5

protocol that uses only O(k) bits of communication. Alice and

Bob sample a random sequence of sets in the universe and Alice

announces the name of the first set that contains A. If A and B

are disjoint, this eliminates half of B. In Chapter 3, we prove

that repeating this procedure gives a protocol with O(k) bits of

communication.

Disjointness with k Parties The input is k sets A1, . . . , Ak ⊆ [n], and

there are k parties. The ith party knows all the sets except for the ith

one. The parties want to know if there is a common element in all sets.

We know of a clever deterministic protocol with O(n/2k ) bits of com-

munication, and we know that Ω(n/4k ) bits of communication are See Chapters 4 and 5. In

Chapter 4, we prove that when

k > log n, it is enough for

each party to announce the

number of elements in [n] that

are in i of the sets visible to

her for i = 0, 1, . . . , k.

required. We do not know of any randomized protocol with commu-

nication better than the deterministic protocol discussed eariler, but

we do know every randomized protocol must have communication at

least Ω(
√

n/2k ).

Summing Three Numbers The input is three numbers x, y, z ∈ [n].
Alice knows (x, y), Bob knows (y, z), and Charlie knows (x, z). The

parties want to know whether or not x + y + z = n. Alice can tell

Bob x, which would allow Bob to announce the answer. This takes

O(log n) bits of communication. There is a clever deterministic proto- See Chapter 4.

col that communicates
√

log n bits, and one can show that the length

of any deterministic conversation must increase with n. In contrast,

there is a randomized protocol that solves the problem with a conver-

sation whose length is a constant.

Pointer Chasing The input consists of two functions f , g : [n] → [n],
where Alice knows f and Bob knows g. Let a0, a1, . . . , ak ∈ [n]
be defined by setting a0 = 1, and ai = f (g(ai−1)). The goal is to

compute ak . There is a simple k round protocol with communication See Chapter 6.

O(k log n) that solves this problem, but any protocol with fewer than

k rounds requires Ω(n) bits of communication.

www.cambridge.org/9781108497985
www.cambridge.org

