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Concepts and Conceptions

Class presented itself as a vague notion,
or, specifically, a mixture of notions.

Georg Kreisel (1967: 82)

This book, as its title indicates, is about conceptions of set. Conceptions of set
are advocated by mathematicians and philosophers with different, but often related
purposes in mind. In this chapter, we offer a preliminary discussion of what we
can take conceptions of set to be, what they are supposed to do, and the goals they
are supposed to achieve. In so doing, we will provide a map of the wider territory
within which the debate about conceptions of set takes place. Along the way, we
shall briefly encounter our first conception of set, namely the naive conception.

1.1 Theories

Before we get started, however, it will be helpful to remind the reader of a few
notions we will use throughout. This will also help to fix terminology.

Conceptions of set, as we shall see, are often invoked to justify theories of set.
At the most general level, a theory T in a given language consists of some sentences
of that language. But the theories that conceptions of set are invoked to justify are
typically axiomatic formal theories.

Axiomatic formal theories are axiomatic because they have (non-logical) axioms.
That is to say, some of their sentences are singled out as those sentences which are
not in need of proof and from which the theorems are derived. These derivations
are carried out using a particular logic. For the most part, we will be concerned
with classical first-order logic, but we will have occasion to look at theories that
are cast in logics which extend this logic or deviate from it. For instance, we
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2 Concepts and Conceptions

will look at theories that are cast in classical second-order logic, which we shall
distinguish by adding a ‘2’ as a subscript to their name, and at theories that are cast
in paraconsistent logic. Relevant details will be given in due course.

Axiomatic formal theories are formal because the language they are cast in is a
formalized language. A formalized language £ is such that there are precise rules
for determining which sequences of symbols constitute a well-formed formula of
L, and a sentence of L is simply a well-formed formula with no free variables. The
symbols of a formalized language can be divided into those that make up its logical
vocabulary —in our case, variables, bracketing devices and symbols for connectives,
quantifiers and identity — and those that make up its non-logical vocabulary — for
instance, individual constants and predicates.

Sometimes, when talking of a formalized language one is only referring to the
syntax of that language. Other times, however, one is referring to the language as
endowed with meaning, and, in the context of axiomatic formal theories, we will
be using the term ‘language’ in both ways. In the latter case, the idea is that the
language has a particular interpretation. Standardly, an interpretation for a given
language L is an ordered pair 2l = (D, 7Z) where D is the domain of interpretation —
usually thought of as a non-empty set — and Z is an interpretation function, i.e. a
function satisfying the following conditions:

e Z(c) is an element of D when c is a name of L;
o Z(E) is a set of n-tuples of D-elements when E is an n-place predicate.

A model of a theory is then an interpretation which makes every sentence of the
theory true.! Note that this means that, officially, an interpretation is a set-theoretic
entity. In Section 3.4, we will discuss an approach to model theory which is different
in this respect.

Finally, we will follow custom and will sometimes use T to refer solely to the
axioms of T rather than to the deductive closure of these axioms — that is, the
theorems that can be derived from T’s axioms in T’s logic. The context will make it
clear when this is the case.

1.2 The Concept of Set

Unsurprisingly, conceptions of set are best explained by reference to the concept of
set. On the face of it, English speakers possess this concept: if I say that the set of
books on my table has two elements, you understand what I am saying. Moreover,
English speakers with some knowledge of basic, secondary school mathematics

I' For more on the notions of model and truth in an interpretation, see Section 3.3.
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The Concept of Set 3

seem to understand sentences such as ‘the set of natural numbers is infinite’ and
‘every set of real numbers which has an upper bound has a least upper bound’. Thus,
not only do speakers seem to possess the concept of set as it occurs in everyday
parlance, but they also seem to have the concept of set as it occurs in elementary
mathematics.

Things, however, are not as simple as they may seem at first sight. Quite often,
when people talk of a set of things, what they say can easily be recast without any
mention of sets. So, for instance, when I said that the set of books on my table has
two elements, it would have been prima facie legitimate for someone to take me
simply to be saying that there are two books on my table. In other words, ‘set of
things’ is often used, in ordinary parlance, as synonymous for what philosophers
call a plurality of these things. A plurality, in this sense, is not something over and
above the things comprising it: it is just them.

Other terms used by philosophers and mathematicians to talk about the same sort
of entities are ‘totality’, ‘multiplicity’, ‘multitude’ and, sometimes, ‘class’. With
regard to the latter, Paul Finsler, as early as 1926, makes the point as follows:

It would surely be inconvenient if one always had to speak of many things in the plural; it
is much more convenient to use the singular and speak of them as a class. [...] A class of
things is understood as being the things themselves, while the set which contains them as
its elements is a single thing, in general distinct from the things comprising it. [...] Thus a
set is a genuine, individual entity. By contrast, a class is singular only by virtue of linguistic
usage; in actuality, it almost always signifies a plurality. (Finsler 1926: 106)

Depending on what stance one takes on whether there are pluralities consisting of
just one object or of no object at all, pluralities may be regarded as either a special
case of, or identified with, what Bertrand Russell (1903) calls classes as many. The
notion of a class as many is best understood by distinguishing between three cases
in which we seem to have the class as many of the things falling under a concept C.

First, there is the case in which nothing falls under C. In this case, there is no
class as many of the things falling under C. As Russell (1903: §69) puts it, ‘there is
no such thing as the null class, though there are null class-concepts’. Second, there
is the case in which exactly one thing falls under C. Letting [x: x is ®] denote
the concept under which the things that are ® fall (or the property had by the ®-
things), an example is provided by the concept [x: x is a current Chancellor of
Germany]. In this case, the class as many of the things falling under C is the thing
itself — Angela Merkel, in the case we are considering (as of 2019). Using Russell’s
(1903: §69) words: ‘a class having only one term is to be identified [...] with that
one term’. Third, there is the case in which more than one objects falls under the
concept whose class as many we are considering. In that case, the class as many is
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4 Concepts and Conceptions

just the plurality of the things falling under that concept. And, as Russell observes,
‘[i]n such cases, though terms may be said to belong to the class, the class must not
be treated as itself a single logical subject’ (Russell 1903: §70).

In general, then, a class as many is to be identified with the things falling under
a certain concept, be they none, one or many. Bearing this fact in mind, we can
now begin to say a bit more about the concept we are focusing on in this book, the
concept of set. For one central feature of sets is that they are single objects, they are
unities, even in the case in which there is more than one object comprising them.
A set is a ‘genuine, individual entity’, as Finsler put it in the quote above — it is
a class as one, to use Russell’s terminology (1903: §74). Thus, in at least certain
cases, some things yy will form a set, which is a single entity. Such a set will be
the set a of all x such that x is one of the yy, which we write {x|x is one of the yy}.
We say that each b among the yy is a member of (or element of) a, which we write
b € a. Similarly, we write b ¢ a to indicate that b is not a member of a.

Let us now return to the example of the set of the natural numbers. The idea
is that the plurality of my hands, which for the occasion we may call Left and
Right, just is my hands — just is Left and Right. The set {Left, Right}, on the other
hand, is a single object, whose members are Left and Right. Or consider again our
earlier example about the set of natural numbers. Although when we talk about
this set there is a reading according to which we are talking about the natural
numbers themselves, we will be concerned with the reading according to which
we are talking about the set, understood as a genuine entity over and above the
natural numbers.

This central aspect of the concept of set was emphasized time and again by the
founder of set theory, Georg Cantor. In an oft-quoted passage he writes:

By a ‘set’ we understand every collection to a whole M of definite, well-differentiated
objects m of our intuition or our thought. (Cantor 1895: 282)

Similar remarks appear elsewhere. For instance, two years earlier Cantor had
written:

By a ‘manifold’ or ‘set’ I understand in general any many [Viele] which can be thought of
as one [FEines], that is, every totality of definite elements which can be united to a whole
through a law. (Cantor 1883: 204, fn. 1)

And in a 1899 letter to Dedekind he tells us that

[i]f [...] the totality of the elements of a multiplicity can be thought of without contradic-
tion as ‘being together’, so that they can be gathered together into ‘one thing’, I call it a
consistent multiplicity or a ‘set’. (Cantor 1899: 114)
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The Concept of Set 5

The last characterization of the notion of set appeals to consistency, and we shall
return to this aspect of Cantor’s thought in Chapter 5. The second quotation appeals
to the idea that it is through a law that a plurality becomes a unity — an idea which is
absent in the other quotes. Finally, in all passages some mention is made of the role
that our thought has in determining whether a certain plurality forms a set, which is
something that — as we shall see in the next chapter — raises a number of issues. But
the feature of sets which is mentioned in all passages and which, following Cantor,
is now standardly taken to be part of the concept of set and distinguishes from the
concept of a plurality is that a set is one thing.

Cantor is also explicit that, as we emphasized, a set is an entity over and above
its members:

This set [the set of all natural numbers] is a thing in itself and constitutes, completely apart
from the natural sequence of numbers belonging to it, a firm in all its parts, determinate
quantum, an aporisménon. (Cantor 1887-88: 401, trans. in Jané 1995: 393)

We are now in a position to lay down one central feature of the concept of set:

Unity of Sets. A setis a unity, i.e. a single object, over and above
its members.

In particular, a set is a single object bearing a certain distinguished relation — the
containment relation (the converse of the membership relation) — to the objects a
class as many aa comprises. Note, however, that we are making no presumption
that to each class as many aa there corresponds the set of all the aa.

The fact that sets are unities helps distinguish between sets and pluralities. How-
ever, it fails to distinguish between sets and what philosophers call fusions. A fusion
of some entities, in the philosopher’s sense, is the same as the mereological sum of
those entities — that is, the sum of those entities considered as parts of the whole
that consists of them.? Thus, « is a fusion of b, ¢ and d if b, ¢ and d are parts of a
and every part of a shares a part with b, ¢ or d. Hence, a dog is the fusion of the
molecules which make it up, but it is also a fusion of the cells which make it up.

Now some philosophers claim that a fusion is nothing over and above its parts,
and is instead identical to them. On this view, known as composition as identity, a
fusion is identical to a plurality — namely the plurality of things that make it up — but
is nonetheless a genuine, individual entity.> We could try to rephrase Unity of Sets

2 Mereology, the study of the parthood relation, was initiated, in its contemporary form, by Le$niewski (1916).
For a historical introduction, see Simons 1991.

3 The modern debate on whether composition might be identity begins with Baxter 1988. For a contemporary
overview including some recent contributions, see Cotnoir and Baxter 2014.
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6 Concepts and Conceptions

Table 1.1 Comparing pluralities, fusions and sets

Unity Unique Decomposition
Plurality v
Fusion v
Set v v

so that it requires a set to be only an individual entity, so that it cannot be identical to
any plurality.* But even then, it would remain the case that most philosophers reject
composition as identity and take instead a fusion to be a single entity different from
its parts.

Thus, Unity of Sets cannot serve to distinguish sets from fusions. Instead, what
distinguishes sets from fusions is that fusions need not have a unique decomposi-
tion: as we pointed out, a dog can be decomposed into both molecules and cells.
Hence, there is more than one list of things such that they are parts of the dog
and their sum is the dog. By contrast, sets do have a unique ‘decomposition’ into
members: for any set a, there is one and only one list of things such that they
are members of a and their union is a. Thus, whilst fusions need not uniquely
decompose into parts, sets do uniquely decompose into members.

This gives rise to another central feature of the concept of set:

Unique Decomposition of Sets. A set has a wunique
decomposition.

Unlike fusions, therefore, sets have a unique decomposition. But pluralities do too:
given a plurality aa of objects, there is only one list of things that are among the
aa and such that their union is aa.’> The situation is summed up in Table 1.1. We
have thus located two features belonging to the concept of set: the fact that sets
are the result of collecting a plurality into a unity and the fact that this unity has
a unique decomposition into members. These features, however, do not suffice
to distinguish sets from other ways of collecting pluralities into unities. To deal
with such cases, we first need to say something more general about concepts and
introduce the notion of a criterion of identity.

I

Potter (2004) takes it to be part of the concept of a fusion that a fusion is nothing over and above its parts, and
cites Lewis (1991) to this effect. But note that Lewis is defending a specific view of what fusions are, namely
composition as identity.

At least, this is the received view on the matter. Ted Sider (2007) has argued that if a strong form of composition
as identity holds, then pluralities do not satisfy Unique Decomposition either.

W
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Criteria of Application and Criteria of Identity 7
1.3 Criteria of Application and Criteria of Identity

Thus far we have been talking in a rather unreflective manner about the concept
of set. What concepts are is a controversial matter, one on which we need not take
a particular stand in this book. It is typically agreed, however, that concepts are
associated, one way or another, with what Michael Dummett (1981: 73ff.) calls a
criterion of application.

Roughly speaking, a criterion of application for a concept C tells us what objects
fall under C — to which objects C applies. Consider [x: x is a bachelor]. This
concept seems to be associated with the following criterion of application:

‘bachelor’ applies to x iff x is unmarried and x is a man.° (1.1)

Thus, someone who possesses the concept of bachelor will, in normal circum-
stances, be willing to apply ‘bachelor’ to an object just in case they take that object
to be an unmarried man. (This account of concept possession would need to be
refined, but it will do for current purposes.)

Now there is a sense in which the criterion of application for a concept is con-
stitutive of that concept: the meaning of ‘bachelor’ seems to be determined, at least
in part, by (1.1). It is perhaps worth stressing that a criterion of application for a
concept need not be that in terms of which concepts are explained: someone might
accept that a concept has a criterion of application whilst explaining concepts in
terms of a variety of other notions such as, e.g., mental representation or inferential
role. What matters is that concepts are typically taken to be associated with criteria
of application, which are partly constitutive of that concept.

But what about the concept [x: x is a set]? If people do possess the concept of
set, then this concept must be associated with a criterion of application. We shall
shortly return to the question of what this criterion of application might be. For
the time being, we need to notice that besides a criterion of application, certain
concepts also have what Dummett calls a criterion of identity.

A criterion of identity specifies the conditions under which some thing x falling
under a concept C is the same as another thing y, also falling under C.” It was
Gottlob Frege who first pointed out in Die Grundlagen (1884: §54) that only certain
concepts are associated with a criterion of identity.

Consider the concept [x: x is red]. Someone who possesses this concept is, in
the majority of cases, able to tell whether ‘red’ applies or fails to apply to a certain

6 Here and throughout, I use ‘iff” as an abbreviation of ‘if and only if”.

7 Of course, each thing can only be identical to itself, so if that is the case it is not really another thing. Similarly,
often people ask whether two things are identical, where clearly, if they are, they are not really rwo things. I take
it to be clear enough what is meant when using locutions of this kind, and shall therefore indulge in them.
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8 Concepts and Conceptions

object: she will in general be able to determine when it is correct to say ‘That is
red’. But there seems to be nothing in the meaning of ‘red’ which enables one
to determine whether two red things are the same or not. Thus, [x: x is red] is
associated with a criterion of application but not with a criterion of identity. This
highlights a contrast with concepts such as [x: x is a table]: not only is someone
who possesses this concept capable of telling, in many situations, whether an object
is a table or not, but they are also able to tell whether a table x is the very same table
as the table y. [x: x is a table] is associated with a criterion of identity as well as a
criterion of application.

The discussion so far suggests that a criterion of identity should specify when
a thing x (falling under concept C) is identical to a thing y (also falling under C)
in terms of a relation ® holding between x and y. Formally, this gives rise to the
following:

VxVy(K(x) AK(y) = (x =y < @(x,y))), (CI)

where ‘K (x)’ expresses x falls under C. Note that since identity is an equivalence
relation, the embedded relation ® must be an equivalence too.

A notorious example is Donald Davidson’s (1969) criterion of identity for events,
according to which two events are the same just in case they have the same causes
and effects:

VxVy(Event(x) A Event(y) — (x = y <> (Vz(z is a cause of x <

z is a cause of y) A Vz(z is an effect of x <> z is an effect of y))). (CIE)

However, some philosophers have argued that not all criteria of identity conform
to (CI). Timothy Williamson (1990), for instance, distinguishes criteria of identity
of this kind — which he calls one-level criteria of identity — from criteria of identity
of the following form:

VEVO(§(5) = §(0) < D(L,0)), (FCI)

where § is an operator taking items of type ¢ and 6 to objects. As in the case of (CI),
@ must be an equivalence relation because identity is.

Williamson calls criteria of the form (FCI) fwo-level criteria, since they specify
when an object §(¢) is identical to an object §(0) in terms of a relation between
entities ¢ and € which are in principle distinct from §(¢) and §(6). Thus, whilst (CI)
provides a criterion of identity for the objects falling under a certain concept in
terms of a relation ® holding between these very same objects, (FCI) provides
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Criteria of Application and Criteria of Identity 9

a criterion of identity for objects of a certain kind in terms of a relation holding
between entities which may belong to another kind.

Two-level criteria are sometimes called Fregean, since in Die Grundlagen and
elsewhere Frege offered many examples of criteria of this kind. The first he consid-
ers has now become the paradigmatic example of a two-level criterion:

VaVy(D(x) = D(y) < x || y). (Dir)

(Dir) states that any two lines have the same direction if and only if they are parallel,
and is a criterion of identity for directions. But the relation || in terms of which (Dir)
1s formulated is a relation between lines, and this makes it clear that it is a two-level
criterion. Within the neo-Fregean programme in the philosophy of mathematics
(see, e.g., Wright 1983; Hale and Wright 2001), two-level criteria are also known
as abstraction principles.

Philosophers disagree over the status of the relation between one- and two-
level criteria. Williamson (1990; 1991), for instance, contends that neither type is
reducible to the other, whilst E. J. Lowe (1989; 1991) claims that two-level criteria
can be reduced to one-level criteria and, as a result, the latter are more fundamental.
We do not need to enter this debate here, but take the opportunity to note that we
will mostly be concerned with one-level criteria, although two-level criteria will
also be discussed (see, in particular, Section 1.7 and Chapter 5).

Philosophers also disagree over what kind of principles criteria of identity are
(see Horsten 2010 for an overview). On the face of it, identity criteria specify
what it is for two things falling under a certain concept to be identical. As such,
they appear to be metaphysical principles. However, it also seems to be the case
that, just like criteria of application, criteria of identity partly determine the mean-
ing of the term they are associated with. In this sense, one might regard them
as semantical principles. Finally, it seems possible to use criteria of identity to
find out whether two things falling under a certain concept are in fact one and
the same: according to (Dir), I can find out whether the direction of line a is the
same as b’s by finding out whether a and b are parallel. This aspect of identity
criteria — no doubt responsible for their name — seems to make them epistemic
principles.

The central disagreement, however, does not seem to concern so much whether
identity criteria have the aforementioned roles, but rather which role is the primary
one. Again, we do not need to adjudicate the matter here, since nothing we shall say
hinges on the outcome of this dispute: all we shall assume is that identity criteria
do have the roles in question.

© in this web service Cambridge University Press www.cambridge.org



www.cambridge.org/9781108497824
www.cambridge.org

Cambridge University Press

978-1-108-49782-4 — Conceptions of Set and the Foundations of Mathematics
Luca Incurvati

Excerpt

More Information

10 Concepts and Conceptions
1.4 Extensionality

Is [x: x is a set] associated with a criterion of identity? It is typically thought that it
is, and the reason offered is that we want to be able to count the members of a set:
since sets can themselves be members of some sets,® it follows that we should be
able to count sets themselves. And as Frege (1884: §54) observed, in order to count
the objects falling under a concept C we need to be able to tell when any two such
objects are in fact one and the same.

Frege’s point is well taken: if we want to count the objects falling under a certain
concept, it is crucial that we should count each object once, and only once. And
that is why if we want to count sets, [x: x is a set] needs to be associated with a
criterion of identity (see Dummett 1981: 546-549): such a criterion is required to
avoid double-counting.

So when is it that two sets are identical? The standard view on the matter is that
the identity conditions for sets are given by the Axiom of Extensionality, which
asserts that if two sets have the same members, they are identical:

VxVy(Set(x) ASet(y) > (Vz(z€ex <z €y) => x =)). (Ext)

We will sometimes be concerned with theories which only deal with sets. In that
case, the antecedent of (Ext) is unnecessary, and the Axiom of Extensionality takes
the following form:

VxVy(Vz(z ex <> 7€ y) > x =Y). (Ext*)
Now since
VxVy(x =y > Vz(z € x <> 2 € Y))

is a theorem of first-order logic with identity, Extensionality delivers the following
extensional criterion of identity for sets:

VxVy(Set(x) ASet(y) > x =y < (Vz(z € x < z € y))). (ECS)

We said earlier that criteria of identity are standardly taken to play various roles.
One role is that of expressing, more or less directly, aspects of the nature of the
objects falling under the concept with which they are associated. Another role is
that of partly determining the meaning of the term they are associated with.

The extensional criterion of identity conforms to what we said on this score.
For this criterion enables us to distinguish sets from other entities which in some
sense collect a plurality into a unity and which do have a unique decomposition,

8 If they weren’t — and I hope I am allowed this counterpossible — then the strength of set theory would be so
diminished as to compromise most of its use.
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