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Introduction

Motivation

In order to illustrate briefly what these lectures are about, I’d like to give an

informal sketch of two closely related theorems from the early days of sym-

plectic topology. The first is a beautiful application of the theory of closed

pseudoholomorphic curves as introduced by Gromov in [Gro85], and its proof

requires only a few basic facts from this theory, plus some knowledge of

the standard homological intersection product from algebraic topology. The

second theorem admits a closely analogous proof, but we will see that the

intersection-theoretic portion of the argument is difficult to make precise,

because it is no longer homological – it requires some generalization of the

intersection product in which “cycles” need not be closed. One of the main

objectives of the subsequent lectures will be to make this idea precise and

demonstrate what else it can be used for.

The statements of these theorems assume familiarity with the notions of

minimal symplectic 4-manifolds, symplectomorphisms, symplectic subman-

ifolds, the standard symplectic structure on R4, the sign of a transverse

intersection, and the homological intersection product – some background on

all of these topics is covered in Lectures 1 and 2.

Theorem 1 Suppose (M, ω) is a closed, connected, minimal symplectic

4-manifold containing a pair of symplectic submanifolds S1, S2 ⊂ M with the

following properties:

• Both are homeomorphic to S2.

• Both have vanishing homological self-intersection number:

[S1] · [S1] = [S2] · [S2] = 0.

• The set S1∩S2 ⊂ M consists of a single transverse and positive intersection.
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2 Motivation

Then there exists a symplectomorphism identifying (M, ω) with (S2 × S2
, ω0)

such that S1 and S2 are identified with S2×{const} and {const}×S2, respectively,

and ω0 is a product of two area forms on S2.

This result says in effect that if we are given a certain type of “local” infor-

mation about submanifolds of a closed symplectic 4-manifold, then this is

enough to recover its global structure. From an alternative perspective, it says

that the vast majority of closed symplectic 4-manifolds do not contain certain

types of symplectic submanifolds. The second result says something similar,

but now the symplectic manifold is noncompact and the “local” information

we are given is its structure outside of some compact subset – the theorem is

typically summarized by saying that there do not exist any exotic symplectic

4-manifolds that look “standard at infinity.”

Theorem 2 Suppose (M, ω) is an open, connected, minimal symplectic

4-manifold with a compact subset K ⊂ M such that (M\K, ω) is symplecto-

morphic to the complement of a compact subset in the standard symplectic R4.

Then (M, ω) is globally symplectomorphic to the standard symplectic R4.

Remark 3 Both of these theorems appeared in less general forms in Gro-

mov’s paper [Gro85] (see §2.4.A′
1

and §3.C, respectively). The statements

given above are attributed to both Gromov and McDuff, as they rely on the

slightly more sophisticated intersection theory of closed holomorphic curves

that was developed by McDuff within a few years after Gromov’s paper (see, in

particular, [McD90]). Theorem 2 can also be rephrased as the statement that S3

with its standard contact structure admits a unique minimal symplectic filling,

and we will discuss this version of the result in Lecture 5 (see, in particular,

Corollary 5.7).

Let’s sketch a proof of Theorem 1. The starting point is the observation

that since S1 and S2 are both symplectic submanifolds and their intersection is

transverse and positive, one can choose a compatible almost complex structure

J : TM → TM on (M, ω) that preserves the tangent spaces of S1 and S2 (see

§1.1 for more on almost complex structures). This makes S1 and S2 into images

of embedded J-holomorphic spheres, i.e., smooth maps u : S2 → M that satisfy

the nonlinear Cauchy–Riemann equation

Tu ◦ i = J ◦ Tu,

where i : TS2 → TS2 is the almost complex structure on S2 resulting from

its standard identification with the extended complex plane C ∪ {∞}. The

advantage of replacing symplectic submanifolds by J-holomorphic spheres is a

matter of rigidity: the condition of being a symplectic submanifold is open and
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thus quite flexible, i.e., the space of all symplectic submanifolds is unmanage-

ably large, whereas J-holomorphic spheres are solutions to an elliptic PDE, and

thus tend to come in finite-dimensional moduli spaces, which are sometimes (if

we’re lucky!) even compact. For this reason, we now consider for each k = 1, 2

the moduli spaces

Mk(J) ≔
{

u : S2 → M
∣

∣

∣ Tu ◦ i = J ◦ Tu and [u] ≔ u∗[S
2]

= [Sk]∈ H2(M)
} /

Aut(S2
, i),

where Aut(S2
, i) is the group of holomorphic automorphisms ϕ : S2 → S2 of

the extended complex plane (i.e., the Möbius transformations), acting on the

space of J-holomorphic maps u : S2 → M by ϕ · u ≔ u ◦ ϕ. We assign to

this space the natural topology arising from C∞-convergence of maps. Both

M1(J) andM2(J) are clearly nonempty, since they contain equivalence classes

of parametrizations of the submanifolds S1 and S2, respectively. One can now

apply general results from the theory of J-holomorphic curves to prove that

for generic choices of the almost complex structure J,M1(J) andM2(J) both

are compact smooth 2-dimensional manifolds. A quick survey of the analytical

results behind this is given in Appendix A.1, and we will sketch the proof in a

somewhat more general setting in Lectures 1 (see Lemmas 1.17 and 1.18) and 2,

though we do not plan to go too deeply into such analytical details in this book.

What we will discuss in more detail is the intersection-theoretic properties

of the J-holomorphic spheres inM1(J) and M2(J). We observe first that the

hypotheses of Theorem 1 clearly imply

[S1] · [S2] = 1,

as this intersection number can be computed as a signed count of transverse

intersections between S1 and S2, for which there is only one intersection to

count, and it is positive. In Lecture 2 and Appendix B, we will discuss a

standard result known as positivity of intersections, which implies that when-

ever u : Σ → M and v : Σ′ → M are two closed J-holomorphic curves with

nonidentical images in an almost complex 4-manifold M, their intersections are

all isolated and count positively toward the homological intersection number

[u] · [v] ∈ Z; moreover, the contribution of each isolated intersection is exactly

+1 if and only if that intersection is transverse. This is very strong information,

from which one can deduce the following:

(1) For each k = 1, 2 and every pair of distinct elements u, v ∈ Mk(J), the

images of u : S2 → M and v : S2 → M are disjoint. (This follows from the

condition [Sk] · [Sk] = 0.)
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S1

S2

Figure 1 The two symplectic submanifolds S1, S2 ⊂ M generate two trans-
verse foliations by holomorphic spheres in the proof of Theorem 1. The two
families can be regarded as a “coordinate grid” that identifies M with S2 × S2.

(2) For every u ∈ M1(J) and v ∈ M2(J), the maps u : S2 → M and v : S2 → M

have exactly one intersection point, which is transverse and positive.

A related result discussed in §2.1, called the adjunction formula, makes it pos-

sible to characterize in homological terms which J-holomorphic curves in an

almost complex 4-manifold are embedded, and in this case it implies

(3) Every element ofM1(J) orM2(J) is embedded.

Finally, we will see in §1.3 that whenever u ∈ Mk(J) is an embedded

J-holomorphic sphere in one of these moduli spaces, the 2-parameter fam-

ily of nearby J-holomorphic spheres inMk(J) forms a smooth foliation of the

neighborhood of u(S2) in M. Combining this with the compactness ofMk(J),

it follows that the set of points in M that are contained in the images of any

of the spheres inMk(J) is both open and closed, and thus it is everything: the

holomorphic spheres of Mk(J) foliate M. The result is the “coordinate grid”

depicted in Figure 1: starting from the two symplectically embedded spheres

S1, S2 ⊂ M, we obtain two smooth families of embedded J-holomorphic

spheres that each foliate M such that each sphere in M1(J) has a unique

transverse intersection with each sphere in M2(J). It follows that there is a

diffeomorphism

M
�

−→M1(J) ×M2(J), (1)
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assigning to each point p ∈ M the unique pair of holomorphic spheres

(u, v) ∈ M1(J) × M2(J) such that both have p in their images. Moreover, for

each individual element ofM1(J) parametrized by a map u : S2 → M, there is

a diffeomorphism

S2 �

−→M2(J)

sending each z ∈ S2 to the unique holomorphic sphere v ∈ M2(J) that has u(z)

in its image; this proves that M2(J) has the topology of S2, and, in the same

manner, one shows M1(J) � S2. In summary, (1) can now be interpreted as

a diffeomorphism from M to S2 × S2. There is still a bit of work to be done

in identifying the symplectic structure ω with a product of two area forms,

but the techniques needed for this are not hard – they involve geometric tools

such as the Moser stability theorem for deformations of symplectic forms (see,

e.g., [MS17]), but no serious analysis is required.

The original proof of Theorem 2 used a clever “capping” trick to derive

it from Theorem 1. For this motivational discussion, I would like to sketch a

different proof that is conceptually simpler, but trickier in the technical details.

By the hypotheses of Theorem 2, we can decompose the open symplectic

manifold (M, ω) into two regions: one is the compact (but otherwise completely

unknown) subset K ⊂ M, and the other is a region that we can identify with

(R4\K′, ωstd) for some compact set K′ ⊂ R4, where ωstd denotes the standard

symplectic form on R4. We would like to argue as we did in Theorem 1; that is,

find a nice pair of “seed curves” to generate two well-behaved moduli spaces

of J-holomorphic curves that can then be used to form a coordinate grid iden-

tifying M with R4. One easy way to find such seed curves is by observing that

R
4 has a natural identification with C2 such that the natural multiplication by i

on C2 defines a compatible almost complex structure on (R4
, ωstd). This is use-

ful for the following reason: C2 contains two obvious families of holomorphic

planes

fw : C→ C2 : z �→ (z,w), for w ∈ C,

gw : C→ C2 : z �→ (w, z), for w ∈ C,

all of which are properly embedded maps, with two distinct types of asymptotic

behavior. To describe the latter, choose a large constant R > 0, let D4
R
⊂ C2

denote the disk of radius R and identify C2\D4
R

with (R,∞) × S3 by viewing S3

as the unit sphere in C2 and applying the diffeomorphism

(R,∞) × S3 �

−→ C2\D4
R : (r, x) �→ rx.
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fw

gwD
4

R

γ1 γ1

γ2

γ2

Figure 2 The two families of properly embedded holomorphic planes fw and
gw form a coordinate grid for C2 and are each asymptotic on the cylindrical
end C2\D4

R
� (R,∞) × S3 to one of two specific loops γ1, γ2 ⊂ S3.

Then each fw or gw maps a neighborhood of infinity into an arbitrarily small

neighborhood of the cylinder (R,∞)×γ1 or (R,∞)×γ2, respectively, where we

define

γ1 ≔ S1 × {0} ⊂ S3 ⊂ C2
, γ2 ≔ {0} × S1 ⊂ S3 ⊂ C2

.

A schematic picture of this asymptotic behavior and the resulting transverse

pair of holomorphic foliations of C2 is shown in Figure 2. Informally, we will

say that the planes fw are asymptotic to γ1 and the planes gw are asymptotic

to γ2; more precise definitions of this terminology will appear in §2.4 when we

discuss asymptotically cylindrical maps.

Now since K′ ⊂ C2
= R

4 is compact, D4
R

will contain K′ for any R >

0 sufficiently large, so that we can also regard (M, ω) as containing a copy

of the region identified above with (R,∞) × S3. Let us fix such a radius and

choose a compatible almost complex structure J on (M, ω) that matches the
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standard multiplication by i on C2\D4
R
� (R,∞) × S3. The curves fw and gw

can then be regarded as J-holomorphic planes in M for every w ∈ C with

|w| > R, and just as in Theorem 1, these two families define elements in a

pair of connected moduli spaces M1(J; γ1) and M2(J; γ2) of J-holomorphic

planes in M, where we can use the loops γ1 and γ2 to prescribe the asymptotic

behavior of the curves in the moduli spaces. There exists a well-developed

theory of moduli spaces of J-holomorphic curves with this type of asymptotic

behavior, a survey of which is given in Appendix A.2. In the present context,

it can be applied to prove that M1(J; γ1) and M2(J; γ2) are both smooth 2-

dimensional manifolds, and they are also compact except for the obvious way

in which they are not: a sequence uj ∈ Mk(J; γk) for k ∈ {1, 2} will fail to have

a convergent subsequence if and only if for large j it is of the form uj = fwj
∈

M1(J; γ1) or uj = gwj
∈ M2(J; γ2) for a sequence wj ∈ C with |wj| → ∞. This

gives each ofM1(J; γ1) andM2(J; γ2) the topology of a compact surface with

one boundary component attached to a cylindrical end of the form C\DR �

(R,∞) × S1.

If we want to apply these two moduli spaces the same way they were used

in Theorem 1, then we need to establish the following:

Lemma 4 The moduli spacesM1(J; γ1) andM2(J; γ2) described above have

the following properties:

(1) For each k = 1, 2 and every pair of distinct elements u, v ∈ Mk(J; γk), the

images of u : C→ M and v : C→ M are disjoint.

(2) For every u ∈ M1(J; γ1) and v ∈ M2(J; γ2), the maps u : C → M and

v : C → M have exactly one intersection point, which is transverse and

positive.

(3) Every element ofM1(J; γ1) orM2(J; γ2) is embedded.

Indeed, one can then argue exactly as in the proof of Theorem 1 that the two

moduli spacesM1(J; γ1) andM2(J; γ2) form two transverse smooth foliations

of M by planes, producing a coordinate grid (see Figure 3) that identifies M

with C × C � R4. The question I would now like to focus on is this: why is

Lemma 4 true?

The answer does not come from homological intersection theory, as the

curves in M1(J; γ1) and M2(J; γ2) are noncompact and do not represent

homology classes. One can, however, use differential topological arguments

to verify the second claim in the lemma: the fact that each fw intersects each

gw′ exactly once transversely implies via a homotopy argument that the same

will be true for any pair u ∈ M1(J; γ1) and v ∈ M2(J; γ2). Indeed,M1(J; γ1)
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Figure 3 The moduli spaces M1(J; γ1) and M2(J; γ2) of proper J-
holomorphic planes asymptotic to the loops γ1, γ2 ⊂ S3 form two transverse
foliations of M in Theorem 2, building a coordinate grid that proves M �

C × C = R4.

andM2(J; γ2) are each connected spaces of properly embedded planes that are

asymptotic to disjoint loops in S3, and thus they map neighborhoods of infinity

to completely disjoint regions near infinity in M. This ensures that there exist

homotopies of properly embedded maps

uτ : C→ M, vτ : C→ M, τ ∈ [0, 1]

with u0 = u, u1 = fw, v0 = v and v1 = gw′ such that the intersections of uτ

with vτ for every τ ∈ [0, 1] are confined to compact subsets of both domains.

Standard arguments as in [Mil97] then imply that u and v must have the same

algebraic intersection count as fw and gw′ , which is 1, so in light of positivity

of intersections, u and v can only have one intersection point, and it must be

transverse.

This type of argument does not suffice to prove the other two claims in

Lemma 4. For example, suppose we would like to prove that two distinct curves

u, v ∈ M1(J; γ1) must always be disjoint. It is easy to believe this in light of
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u v 0u v 0 u v = 0

Figure 4 The algebraic intersection count u · v ∈ Z between two proper maps
of noncompact domains can change under homotopies if the two maps have
matching asymptotic behavior.

the curves that we can explicitly see; i.e., fw and fw′ both belong toM1(J; γ1)

for any w,w′ ∈ C sufficiently large, and they are clearly disjoint if w � w′.

To extend this to the curves that we cannot explicitly see because they do not

live entirely in the region (R,∞) × S3 ⊂ M, we would ideally like to argue via

homotopy invariance, namely that if uτ and vτ are two continuous families of

curves in M1(J; γ1) with u0 and v0 disjoint, then u1 and v1 must also be dis-

joint. But here we have a problem that did not arise in the previous paragraph:

the curves uτ and vτ in this homotopy are always asymptotic to the same loop

γ1 ⊂ S3, so their images in M always become arbitrarily close to each other

in the cylindrical end (R,∞) × S3. In this situation, there is no way to make

sure that intersections are confined to compact subsets, and we can imagine,

in fact, that under a homotopy, some intersections might just escape to infinity

and disappear (see Figure 4)!

It is a remarkable fact that, in the situation under consideration, this night-

mare scenario cannot happen, and Lemma 4 is indeed true. To understand why,

we will have to explore the asymptotic behavior of noncompact J-holomorphic

curves much more deeply. Still more interesting, perhaps, is that in more gen-

eral situations, the nightmare scenario of Figure 4 really can happen, but it

can also be controlled: one can define an asymptotic contribution that mea-

sures the possibility for “hidden” intersections to emerge from infinity under

small perturbations. It turns out that just like the contribution of an isolated

intersection between two J-holomorphic curves, this asymptotic contribution

is always nonnegative, and adding it to the algebraic count of actual intersec-

tions produces a meaningful homotopy-invariant intersection product. Once

this product and the corresponding generalization of the adjunction formula

have been understood, proving results like Lemma 4 becomes quite easy.

The first hints of a systematic intersection theory for noncompact holomor-

phic curves appeared in Hutchings’s work on embedded contact homology
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[Hut02], and the theory was developed in earnest a few years later in the

Ph.D. thesis of Richard Siefring [Sie05] and his two papers [Sie08, Sie11].

Our primary objectives in these lectures will be to explain where this theory

comes from, demonstrate how to use it, and give some examples of what it

can be used for. We’ll start in Lectures 1 and 2 by reviewing the intersection

theory for closed holomorphic curves and discussing one of its most famous

applications, McDuff’s theorem [McD90] on symplectic ruled surfaces (which

is a variation on Theorem 1). The asymptotic analysis required for Siefring’s

theory is then surveyed in Lecture 3 (mostly without the proofs since these are

analytically somewhat intense), and Lecture 4 uses these asymptotic results

to define the precise generalizations of the homological intersection product

and the adjunction formula that are needed for results such as Lemma 4. In

Lecture 5, we will demonstrate how to use the theory via a generalization of

Theorem 2, framed in the language of contact 3-manifolds and their symplectic

fillings.
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