Validation of Risk Management Models for Financial Institutions

Financial models are an inescapable feature of modern financial markets. Yet, it was over-reliance on these models and the failure to test them properly that is now widely recognized as one of the main causes of the financial crisis of 2007–2011. Since this crisis, there has been an increase in the amount of scrutiny and testing applied to such models, and validation has become an essential part of model risk management at financial institutions. The book covers all the major risk areas that a financial institution is exposed to and uses models for, including market risk, interest rate risk, retail credit risk, wholesale credit risk, compliance risk and investment management. The book discusses current practices and pitfalls that model risk users need to be aware of and it identifies areas where validation can be advanced in the future. This provides the first unified framework for validating risk management models.

David Lynch is Deputy Associate Director for Policy Research and Analytics at the Board of Governors of the Federal Reserve System. He joined the board in 2005, and his areas of responsibility include Volcker metrics, swap margin, and oversight of models for market risk capital and counterparty risk capital.

Iftekhar Hasan is University Professor and E. Gerald Corrigan Chair in Finance at Fordham University. He is the editor of the Journal of Financial Stability and is among the most widely cited academics in the world.

Akhtar Siddique taught finance at Georgetown University after his finance Ph.D. at Duke University. He has published extensively in leading finance journals and currently works at the Office of the Comptroller of the Currency.
Validation of Risk Management Models for Financial Institutions

Theory and Practice

Edited by

DAVID LYNCH
Federal Reserve Board of Governors

IFTEKHAR HASAN
Fordham University Graduate Schools of Business

AKHTAR SIDDIQUE
Office of the Comptroller of the Currency
Contents

List of Figures page vii
List of Tables x
List of Contributors xiii
Foreword xv
Christopher Finger
Acknowledgments xvii

1 Common Elements in Validation of Risk Models Used in Financial Institutions 1
David Lynch, Iftekhar Hasan and Akhtar Siddique

2 Validating Bank Holding Companies’ Value-at-Risk Models for Market Risk 22
David Lynch

Victor K. Ng

4 Beyond Exceedance-Based Backtesting of Value-at-Risk Models: Methods for Backtesting the Entire Forecasting Distribution Using Probability Integral Transform 57
Diana Iercosan, Alysa Shcherbakova, David McArthur and Rebecca Alper

5 Evaluation of Value-at-Risk Models: An Empirical Likelihood Approach 84
David Lynch, Valerio Poti, Akhtar Siddique and Francesco Campobasso

6 Evaluating Banks’ Value-at-Risk Models during the COVID-19 Crisis 104
Chris Anderson and Dennis Mawhirter
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Performance Monitoring for Supervisory Stress-Testing Models</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Nick Klagge and Jose A. Lopez</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Counterparty Credit Risk</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Eduardo Canabarro</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Validation of Retail Credit Risk Models</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Sang-Sub Lee and Feng Li</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Issues in the Validation of Wholesale Credit Risk Models</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Jonathan Jones and Debashish Sarkar</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Case Studies in Wholesale Risk Model Validation</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Debashish Sarkar</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Validation of Models Used by Banks to Estimate Their Allowance for</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Loan and Lease Losses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partha Sengupta</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Operational Risk</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Filippo Curti, Marco Migueis and Robert Stewart</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Statistical Decisioning Tools for Model Risk Management</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Bhojnarine R. Rambharat</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Validation of Risk Aggregation in Economic Capital Models</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Ibrahim Ergen, Hulusi Inanoglu and David Lynch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Model Validation of Interest Rate Risk (Banking Book) Models</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>Ashish Dev</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Validation of Risk Management Models in Investment Management</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>Akhtar Siddique</td>
<td></td>
</tr>
</tbody>
</table>

Index

145
Figures

4.1a Total exceedances by subportfolio (winzorized). page 62
4.1b Top of the house exceedances by bank (winzorized). 62
4.2a PIT distribution. 63
4.2b Top of the house PIT distribution. 63
4.3a CDF of PIT distribution. 64
4.3b Top of the house CDF of PIT distribution. 64
4.4a Subportfolio moments of the distribution of PITs. 66
4.4b Top of the house moments of the distribution of PITs. 67
4.5 PITs vs lagged PITs. 81
6.1 Percent of desks with backtesting exceptions over time. 108
7.1 Scenario sensitivity testing using scatterplots. 135
7.2 Model’s scenario sensitivity with reference to a macroeconomic variable. 137
7.3 Scenario sensitivity across multiple portfolio segments and a macroeconomic variable. 138
7.4 Scenario sensitivity testing using scatterplots of stock return projections. 140
7.5 Scenario sensitivity across industry sectors and scenario index returns. 141
7.6 Benchmarking analysis of the CAPM and naïve models across scenarios. 147
8.1 Market values and credit exposures, netted and non-netted. 158
8.2 EE_t and PE_t for a 10-year interest rate swap without margin agreement. 160
List of Figures

8.3 EE_t and PE_t for a 10-year cross-currency swap with final exchange of notional amounts and without margin agreement. 161
8.4 PE_t for a 10-year interest rate swap with and without margin agreement. 162
8.5 PE_t for a 10-year cross-currency swap with final exchange of notional amounts, with and without margin agreement. 162
8.6 Expected Exposure created by the portfolio of derivatives with counterparty B. 163
8.7 Conditional expected exposure and marginal loss rates for the portfolio of derivatives with counterparty B. 163
8.8 CVA hedging profit and loss (P&L) under normal market conditions and zero transaction costs. 171
8.9 CVA hedging profit and loss (P&L) under normal market conditions and 5% transaction costs. 172
8.10 CVA hedging profit and loss (P&L) under stressed market conditions and 5% transaction costs. 173
9.1 Household debt to net disposable income by country 2021. 176
9.2 Loans and liabilities of US household and nonprofits. 178
9.3 US Commercial banks consumer credit charge-offs. 178
9.4 Standard parametric models and their hazard and survival functions. 190
9.5 Illustration of exploded panel. 196
9.6 Illustration of a retail transition matrix for mortgage loans. 198
12.1 Conditional claims rates over different horizons for the 2000, 2005 and 2010 loan charts. 303
12.2 Time series of monthly unemployment rates, 1990–2016. 308
12.3 Conditional claims rates over different horizons for the 2000, 2005 and 2010 loan charts (30-year fixed mortgages). 309
12.4 Illustration of payments on a credit card and allowance. 310
List of Figures

12.5 Sequence of originations and losses (charge-offs). 325
12.6 CECL and current ALLL computations. 326
12.7 Weighted-average-life (WAL) computations. 326
12.8 Sequence of originations and losses (charge-offs) with new assumptions. 328
12.9 CECL and current ALLL computations (new assumptions). 328
12.10 Reserve computations based on discounted (expected) cash flows. 329
14.1 A schematic of risk modeling as 1) inputs, 2) processing and 3) outputs, where some relevant issues are listed for each component. 361
14.2 An illustrative concave utility function, which graphically shows that the marginal utility from rewards “diminish” as rewards increase. 363
14.3 HMDA Loan Application Register (LAR) code sheet. 366
15.1 Scatter plot of transformed losses for four risk types: credit, operational, market and interest rate risks. 390
15.2 Time series plots of transformed losses for four risk types. 392
15.3 Graphical goodness-of-fit test from Hofert and Machler (2013) applied to our data. 399
15.4 Realized violation counts vs expected violations. 411
15.5 The evolution of average VaR for all benchmark copula models from 2013 Q4 to 2015 Q4. 414
15.6 The response of average VaR to a hypothetical stress quarter for all benchmark copula models. 415
16.1 Comparison of curves generated from FINCAD vs QRM. 434
Tables

2.1 Confidence intervals of for one-day 99% VaR under different methods. page 34

2.2 One day 99% VaR confidence intervals on Hypothetical P&L as a percentage of the VaR estimate. 35

2.3 Summary statistics on backtesting data for 99% VaR. 41

2.4 Results of backtesting. 42

4.1 Subportfolio count by product composition. 61

4.2 Count and percent of subportfolios pass the Kupiec test. 69

4.3 Count and percent of subportfolios that pass the independence test. 71

4.4 Count and percent of subportfolios that pass the conditional coverage test. 72

4.5 Count and percent of subportfolios that pass the Ljung–Box test. 73

4.6 Logit and LPM regressions of exceedances on lagged VaR orlagged P&L. 75

4.7 Count and percent of subportfolios that pass the Kolmogorov–Smirnov test. 77

4.8 Count and percent of subportfolios that pass the Anderson–Darling test. 79

4.9 Count and percent of subportfolios that pass the Cramér–von Mises test. 80

4.10 Linear regression of transformed PITs on lagged transformed PIT andlagged P&L. 80

5.1a Test statistics (Desks 1–50). 92

5.1b Test statistics (Desks 51–100). 93

5.1c Test statistics (Desks 101–150). 95

5.2a p-values (Desks 1–50). 96
List of Tables

5.2b p-values (Desks 51–100). 98
5.2c p-values (Desks 101–150). 99
6.1 Predicting backtesting exceptions from lagged exceptions. 110
6.2 Predicting backtesting exceptions from lagged exceptions by asset class. 112
6.3 Predicting backtesting exceptions from lagged market factors. 115
6.4 Predicting backtesting exceptions from lagged market factors by asset class in 2020. 116
6.5 Associating backtesting exceptions with contemporaneous market movements. 119
6.6 Associating backtesting exceptions with contemporaneous market movements by asset class in 2020. 120
6.7 Linear regression coefficients compared to logit marginal effects. 122
6.8 Linear regression coefficients compared to logit marginal effects. 122
11.1 Backtesting tests. 282
11.2 Metrics for outcomes analysis (Shaikh et al. (2016)). 285
12.1 Allowance (ALLL) data for 2017: US banks. 296
13.1 US banking organizations operational risk RWA ratios. 332
13.2 Descriptive statistics for 99.9th quantile estimates. 335
13.3 Descriptive statistics for ratio of alternative estimates of the 99.9th quantile to lognormal estimates. 336
13.4 Descriptive statistics for quantile estimates. 338
13.5 Descriptive statistics for ratio of alternative estimates to lognormal estimates. 339
13.6 Descriptive statistics by Basel event type. 343
13.7 Descriptive statistics of the severity of loss events. 346
13.8 Descriptive statistics on operational risk assets. 352
13.9 Ratio of operational risk stressed projections. 353
13.10 Descriptive statistics on stressed and maximum losses. 353
List of Tables

13.11 Descriptive statistics on AMA capital and its benchmark. 354
14.1 Results of HMDA data across nine banks. 368
14.2 Results from ordinal logistic regression model. 369
14.3 Results from multinomial logistic regression model. 371
14.4 AIC metric for three models. 372
14.5 Assessment of three models. 375
15.1 Information criteria and goodness-of-fit tests results for all benchmark copula models. 397
15.2 Diversification benefits in percentage terms for each model at different quantiles. 404
15.3 Backtesting results. Realized and expected violation counts for each model at different quantiles. 406
15.4 Backtesting results: Penalty function values. 409
Contributors

Rebecca Alper, Board of Governors of the Federal Reserve
Chris Anderson, Board of Governors of the Federal Reserve
Francesco Campobasso, University of Bari Aldo Moro
Eduardo Canabarro, Barclays (retired)
Filippo Curti, Federal Reserve Bank of Richmond
Ashish Dev, Ex Board of Governors of the Federal Reserve
Ibrahim Ergen, Ex Federal Reserve Bank of Richmond
Iftekhar Hasan, Fordham University
Diana Iercosan, Board of Governors of the Federal Reserve
Hulusi Inanoglu, Board of Governors of the Federal Reserve
Jonathan Jones, Office of the Comptroller of the Currency
Nick Klagge, Federal Reserve Bank of New York
Sang-Sub Lee, Office of the Comptroller of the Currency
Feng Li, Office of the Comptroller of the Currency
Jose A. Lopez, Federal Reserve Bank of San Francisco
David Lynch, Board of Governors of the Federal Reserve
List of Contributors

Dennis Mawhirter, Board of Governors of the Federal Reserve

David McArthur, Board of Governors of the Federal Reserve

Marco Migueis, Board of Governors of the Federal Reserve

Victor K. Ng, Goldman Sachs

Valerio Poti, University College Dublin

Bhojnarine R. Rambharat, Office of the Comptroller of the Currency

Debashish Sarkar, Federal Reserve Bank of New York

Alysa Shcherbakova, Goldman Sachs

Partha Sengupta, Office of the Comptroller of the Currency

Akhtar Siddique, Office of the Comptroller of the Currency

Robert Stewart, Ex Federal Reserve Bank of Chicago
Modern financial institutions rely heavily on quantitative data, analysis and reporting to inform decisions on risk management, on pricing transactions, on extending credit and on establishing capital needs, among other applications. Collectively, the systems and components that link data, analysis and reporting can be referred to as quantitative “models.” In practice, models undergo a life cycle of design, prototype, testing, implementation, monitoring and enhancement, perhaps with eventual replacement. A key part of this cycle is model validation, that is, review of the model, initially and over time, both by the model builders and by parties independent of model design, implementation and use. The purpose of model validation is to identify and communicate strengths and weaknesses of a given quantitative approach, and to determine whether the model is appropriate for its intended and actual use.

This book provides detailed information about model validation in the context of financial institutions. A variety of approaches are explained, compared and evaluated. As it does for models themselves, the choice of validation approach depends on the situation; there may not be a “best” practice, but there are strong practices to choose from, and experiences to guide those choices. The authors of the chapters in this book have extensive experience in the workings of financial institutions, and share here some of their unique perspectives on the many aspects of validation. This set of chapters captures a snapshot of the state of the art in a field that continues to develop.

Lest the reader have the misconception that a formal approach to model validation is a product only of efforts in the recent past, the editors demonstrate that formal thinking on the topic dates back over fifty years. Indeed, I was astonished and touched to learn from this manuscript that one of the early influential papers was published by my late father. I thank the editors for this delightful surprise, and for the opportunity to introduce this excellent volume. I am sure readers...
will take from this book a wealth of in-depth knowledge, and hope that they also derive some fraction of the inspiration that it gave me to make my own contributions to the field.

Christopher Finger

Associate Director, Supervision and Regulation, Board of Governors of the Federal Reserve
Acknowledgments

David acknowledges the encouragement and support from Michael Gibson and Norah Barger. Iftekhar acknowledges the continuous support from colleagues in the area of finance and the administration at the Gabelli School of Business at Fordham. Akhtar acknowledges support and encouragement over the years, especially from Campbell Harvey and Andrew Lo, as well as from colleagues in supervision and economics at the Office of the Comptroller of the Currency.