Index

π plane, 61, 106
absolute derivative, 608, 633
acoustic impedance, 150, 189
actions, 560
adiabat
ideal gas, 31, 576
metal, 575
rubber, 576
adiabatic shear bands, see also shear bands
advection, 14, 16, 301
ballistic limit
fabric, 535
Bernoulli equation, 334, 370
bifurcation, 577–579
bird strike, 4
bolide, 441
boundary conditions, 33
couple stress, 38
kinematic, 33
Saint-Venant’s principle, 34, 578
traction, 33
Boussinesq elastic point-load solution, 364
Bridgman stress distribution, 75
Burgers’ equation, 39–41
Cassini mission, 2, 235
cavity expansion
 cylindrical, 261–269, 278–280
 elastic-plastic boundary condition, 260–261
elastic-plastic extent α, 265
 as target plastic extent, 407
 expansion speed dependence, 284
 one dimension, 257–260, 278–280
 spherical, 260–280
 target resistance R_t, 353–356
centerline momentum balance, 392
Chelyabinsk meteor, 2
commutative diagram, 564
compatibility conditions (curvature), 647, 650
composites
fiber, 539
conjugate stress–deformation rate, 514, 591
connection ∇_c, 606, 633
Christoffel symbols Γ^c_{ij}, 506, 633, 638
Christoffel symbols (orthonormal) γ^c_{ij}, 506, 606, 619, 638
conservation laws
 angular momentum, 552, 604
 energy, 17, 514, 604, 644
 mass, 14, 509, 601, 643
 momentum, 16, 513, 602, 643
constitutive models, see also plasticity
 theory, 69
 anisotropic elastic, 517, 525
 anisotropic yield/failure surface, 552
damage, 84
dashpot, 165
Drucker–Prager, 62, 116
finite strain elasticity
 Blatz–Ko, 572–573
 isotropic material, 570–571
 Mooney–Rivlin, 573–575
 Mooney–Rivlin balloon inflation, 589
 neo-Hookean, 573
 nonuniqueness of solutions, 576–579, 589
Poisson’s ratio ν, 587
Poynting effect, 587
Gurson, 113
Hall–Petch, 82
Hooke’s law, 45
hyperelastic, 545, 571, 574
hypoelastic, 585
incremental, 585
inviscid fluid, 333
Johnson–Cook, 80
Kelvin–Voigt, 165
Maxwell, 165
Mechanical Threshold Stress (MTS), 82
Mohr–Coulomb, 62, 116
small strain elasticity, 45
spring, 35, 165, 210, 213, 246, 247, 525
Steinberg–Guinan–Lund, 83
superfluid (zero viscosity), 118
viscoelastic, 165, 207
viscoplastic, 52, 105, 207
Wilkins–Streit–Reaugh, 112
Zerilli–Armstrong, 82
corotational rate, 579–586
\(B \) diagonalization (q), 596
commutative diagram, 581
Cotter–Rivlin \((CR)\), 580
definition (objective, frame indifferent), 584
for Piola–Kirchhoff \(S\), 584
Green–Naghdi \((GN)\), 569, 582
Jaumann \((J)\), 303, 583, 597
Oldroyd \((O)\), 582
Truesdell \((T)\), 582
covariant derivative, 633, 639, 640

crater
ejecta, 378–379
radius, 315, 372–378
cross product \(\times\), 609, 650
damage, 84, see also failure
saturation, 388
scale effects, 95
stress state, 84–95
Deep Impact mission, 389
deflagration, 242
defformation gradient \(F\), 508, 553–555,
564–565, 611–617, 645
average rotation \(\theta\), 557
average rotation matrix \(R\), 557, 560,
564–565
explicit formula (2D), 557
induced ellipse, 556
invariant of one-sided rotation, 560
stretch, see also tensors
time rate of change, 568
detonation, 236
Chapman–Jouguet (CJ) point, 237
ideal gas, 239
Jones–Wilkins–Lee (JWL) equation of state, 240–241
von Neumann spike, 241
Zeldovich, von Neumann, Döring (ZND)
theory, 258
diagnostics
digital image correlation, 9
PDV, 9
pressure gages, 9
strain gages, 9
VISAR, 9
X-rays, 9
diamond anvil cell (DAC), 212
differential forms, 642
Hodge star (+) operator, 642, 650
differentiating an integral (generalization of
Leibniz), 601
divergence theorem, 600
Earth interior (PREM), 249
eigenvalue, 49
characteristic equation, 49
Einstein summation convention, 13
elastocaloric effect, 215
energy
elastic strain, 67
plastic dissipation, 65
entropy, 123, 125, 129–130, 170
ideal gas, 32
equations of state, 29, 69, 208
p–\(\alpha\), 228–231
cold compression curve, 211, 215
ideal gas, 29–33, 239, 245–246
Jones–Wilkins–Lee (JWL), 240–241
Mie–Grüneisen, 209–212
Murnaghan, 226, 251
snowplow, 253–254
thermal mechanical model, 210–211, 246
explosives, see also detonation
failure, 78, 84
Al 2024-T351 model, 94, 386
Johnson–Cook, 86–87
maximum tensile stress, 320
size-scale effect, 386
strain rate, 386
strain to failure, 84, 95
strength vs. ductility, 84, 461–471
stress state, 84–95
tensile principal stress, 88
Tuler–Butcher, 164
work to failure, 84, 95, 470
fibers, 507
carbon, 508, 542
composites, 542
E-glass, 508, 542
epoxy matrix, 542
graphene, 550
Kevlar, 507
Kevlar 129, 508, 542, 548
Kevlar 29, 508, 541, 542
Kevlar 49, 508, 542
Kevlar KM2, 508, 536, 542
nylon, 508, 542
PBO (Zylon), 508, 542, 543, 550
polyester matrix, 542
spider silk, 550
ultra-high-molecular-weight polyethylene, 507
Dyneema, 507
Spectra, 507, 508, 542
fracture, 84, 86
compact tension specimen, 89, 163
fracture mechanics, 96, 381, 474
fragmentation, 471–476
Grady–Kipp model, 473–475
INDEX

Mott wave, 476

generalized continua, 14, 34–38, 95, 598
Cosserat elasticity, 598
couple stress, 14, 37, 598
higher order derivatives, 35
microrotation, 598
nonlocal, 36, 42
wryness tensor κ, 598
Grüneisen parameter Γ, 208, 211, 252

gradient elasticity, see also generalized continua

hardness
Brinell (BHN), 290
Rockwell C (Rc), 291

heat
conduction, 65
Gough–Joule thermoelastic effect, 576
kernel, 65
mechanical model, 211, 246
temperature, 213–218
thermal expansion coefficient α, 68, 208
Hugoniot, 121
elastic precursors, 191, 221–224, 226
impedance matching, 256
isentrope, 132
linear U_s–u_p, 199
path, 122, 194–196
phase changes, 232–236, 248
Rayleigh line, 122, 125
single shock, 123, 124, 128
entropy criterion, 130
sound speed criterion, 124
stress-strain ρ0-convex, 127
concave up, 127
superlinear, 128
three wave, 248
two wave, 190–194
very high pressure, 204
Hugoniot elastic limit (HEL), 191, 196, 248
elastic precursor decay, 196
Hugoniot jump conditions (Eulerian), 20, 22, 25, 119–133, 197
cylindrical, 29
differential equation form, 212
differential jump, 27, 123
double shock, 25
energy, 22, 24
enthalpy, 39
entropy, 27
ideal gas, 31
mass, 20, 23
momentum, 21, 24
multi-axis, 38
shear, 38, 110
single rise, 25
spherical, 29

Hugoniot jump conditions (Lagrangian), 515
energy, 515
entropy, 515
mass, 514
momentum, 513, 514
hydrostat, 58
hypersonic flight, 441

impact
Apollo spacecraft, 172
Deep Impact, 389
flyer plate, 190–194, 204–205, 248
graphical solution, 251
hypervelocity, 329
one-dimensional, 149–156
rigid wall, 143–149
Taylor ansatz, 175–183, 243, 366
indeterminate, 574
indicial notation, 599
invariant
original configuration, 569
invariants, see also stress tensors, 50, 106
isentrope, 132, 213–218
isotropic, 50

launchers
electrostatic, 8
explosively formed penetrator, 2
gas gun, 4
powder gun, 4
rail gun, 7
shaped charge, 2
two-stage light gas gun, 6
Z machine, 8

Lie derivative, 646

material derivative, 15, 17

materials
1045 steel, 76
304 stainless steel, 200, 248
4340 steel, 104, 168, 293, 304, 319
Al 2024, 88–94, 248, 252
Al 5083, 494, 504
Al 6061, 70–72, 80, 87, 89, 161, 168, 183, 200, 217, 248, 293, 491, 494, 504
Al 6082, 494
Al 7075, 70–72, 80, 87, 494
aluminum, 207, 232, 345, 359, 390
AP core steel, 70, 81, 87
beryllium, 207
bismuth, 245
copper, 207, 234, 243, 248, 359
copper gilding metal, 70, 81, 87
deuterium, 41, 220
fiber, see also fibers
gold, 359
helium-3, 118
hydrogen, 220

© in this web service Cambridge University Press
INDEX

orientation, 609
penetration
L/D effect, 319–329, 484
complete, 443
direct cavity expansion approach, 497–502
efficiency, 367
eroding projectile, 297
eroding-noneroding transition, 502
erosion, 300
fluid target, 439–441
Newtonian impact theory, 440–441
Stoke’s formula, 439–440
hydrodynamic, 302, 312
initial conditions, 409–411, 436
minimum speed, 366
nondeforming projectile, 293, 481
partial, 444
phases
secondary, 300, 331, 422–426, 436–437
shock, 300, 311
steady state, 300, 312
terminal, 300, 312
projectile deceleration, 401
projectile plastic extent s, 408
rigid projectile, 481
S curve, 296, 313
shatter gap, 295
target compression, 318
target of finite lateral extent, 479
target plastic extent α, 397
constant, 412
cylindrical cavity expansion, 407
dynamic plasticity, 429–433
target plastic strain, 315, 426–429
target resistance R_t, 336, 344, 357–363, 406
cavity expansion approach, 353–356
Walker–Anderson approach, 356, 406
target resistance S_{1W}, 448
target velocity field, 397, 484
back surface bulging, 450
tate model modifications, 348
Tate–Alekseevskii model, 336
Walker–Anderson model, 406
finite thickness target, 450
perforation V_{50}, 444
back surface strain failure criterion, 453
ballistic limit velocity V_{bl}, 443, 480
behind armor debris, 471
causality, 445
complete penetration, 443
petalling, 444
plugging, 443
residual velocity, 453
fabric, 537
zone of mixed results, 444
permutation symbol ε_{ijk}, 50, 604
phase changes, 232–236, 298
iron 13 GPa, 236, 249
phase diagram, 249
piezocaloric effect, 215
plasticity theory
Bauschinger effect (unloading), 53, 84, 162
cyclic loading, 53
deformentation plasticity, 105
dynamic plasticity, 100, 178–180, 429–433
equivalent plastic strain ε_p, 56
equivalent plastic strain rate $\dot{\varepsilon}_p$, 56
exact step, 97–100
finite strain, 55
flow rule, 48
associated (associative), 49
incremental plasticity, 47
maximum dissipation, 100
nonuniqueness of solutions, 72
overstress, 105
pressure independence, 49
rigid plasticity, 63–64, 402
scale effects, 95
strain increment partition, 48
Tresca (max shear), 59–62, 107, 108
associated flow rule, 61
uniaxial strain, 56–59
uniaxial stress, 53–56
viscoplasticity, 52, 105, 207
von Mises (J_2), 54, 59, 61–62
work hardening
isotropic, 52, 53
isotropic linear, 103
kinematic, 53, 104
yield 0.2% offset, 52
yield surface, 48, 52
polar decomposition, 558, 593
porosity, see also equations of state, 211, 224–252
pressure, see also stress tensors
projectile
armor piercing APM2, 70, 493–496, 504
fragment simulating projectile (FSP), 504–506
ogive caliber radius head (CRH), 487
quadratic equation, 286
Rankine–Hugoniot jump conditions, see also Hugoniot jump conditions
rarefaction fan, 36, 133–143, 198, 224
elastic precursor, 223
rarefaction shocks, 134
Rayleigh line, see also Hugoniot
reference frames
Eulerian (laboratory), 11
Lagrangian (initial), 11
Reynolds number Re, 441
Reynolds transport theorem, 601
Riemann
integral, 134, 146
problem, 145
solver, 145
sabot, 8
Saint-Venant’s principle, see also boundary conditions
scale effects, 95, 323, 331
shear
2D, 560
3D, 564
shear bands, 78, 96, 384
shock impedance, 105
shock waves, 119–133
rise times, 164–167, 205–207
Shoemaker–Levy 9, 2
skew symmetric, 567
sound speed, 123, 198, 221–224
space shuttle, 4
spall, 158–164, 390, 471
Grady fragment size model, 471
specific, 18
split-Hopkinson pressure bar (SHPB), 71, 184–189, 244
strain, see also tensors
engineering (Lagrangian), 68, 71
engineering shear γ, 72
equivalence of large strain measures, 597
Eulerian, 69
localization (necking), 71
logarithmic (natural), 69, 247
tensorial shear ε_{12}, 72
true, 72
stress
engineering, 71
true, 71
stress tensors
Cauchy σ, 12, 13, 565–566
positive in compression σ, 13
symmetric, 604
Cauchy stress deviator s, 49
Cauchy tetrahedron, 13, 38
couple stress m, 14, 37, 42, 598
first Piola–Kirchhoff S, 14, 512, 565–566
elastic strain energy density potential, 516
invariants, 50
I_1, I_2, I_3, 50
J_2, J_3, 50, 51, 102
effective stress σ_{eff}, 54
Lode angle θ, 85, 92, 107
Lode parameter ζ, 85
mean stress σ_{mean}, 85
pressure p, 13
principal stresses, 107
stress triaxiality η, 71, 76, 85
second Piola–Kirchhoff $S^{(2)}$, 565–566
symmetry breaking, 79, 588
symposia
American Physical Society Shock Compression of Condensed Matter, 10
Hypervelocity Impact Symposium, 10
International Symposium on Ballistics, 10
temperature, see also heat
tensors
contravariant (tangent basis), 565, 630
covariant (cotangent basis), 565, 631
covariant derivative, 633, 639, 640
curvature, 506, 646–647, 650
Eulerian strain E^*, 510, 566–567
Lagrangian (large) strain E, 44, 510, 516, 566–567, 645
left stretch V, 558, 560, 564–565
explicit formula (2D), 558
metric, 605, 629
rate of deformation D, 19, 69
right stretch U, 557, 560, 564–565
explicit formula (2D), 557
rotation rate Ω, 567
small strain ε, 44
positive in compression $\tilde{\varepsilon}$, 13
spin W, 19
stress, see also stress tensors
torsion, 646
velocity gradient L, 18, 568
wryness κ, 598
tractions \mathbf{t}, 12
original configuration \mathbf{T}^*, 565–566
viscosity, 196, 206, 441
dynamic, 165
kinematic, 40
waves
dispersion, 35
elastic, 117–119
$U_s - u_p$, intercept c_0, 119, 199
bar c_E, 118
bulk c_K, 118
longitudinal c_L, 118
precursor decay, 196
shear c_s, 118
group velocity, 35
interface condition, 260
phase velocity, 35
Pochhammer–Chree oscillations, 189
reflection and transmission, 156–158, 177, 218–221
free surface, 145–146
seismic
lunar, 173
p-wave, 118
s-wave, 118
spherical elastic, 291
yarn, 507
denier, 507
linear elastic, 515
strain energy, 515
tenacity (strength), 507
tex, 507
transverse breaking speed, 520, 524
transverse wave speed, 523
yaw, 479