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1
C H A P T E R

Model and Analysis

When we make a claim such as Algorithm A has running time O(n2 logn), we have an

underlying computational model where this statement is valid. It may not be true if we

change the model. Before we formalize the notion of a computational model, let us consider

the example of computing Fibonacci numbers.

1.1 Computing Fibonacci Numbers

One of the most popular sequences is the Fibonacci sequence defined by

Fi =







0 i = 0

1 i = 1

Fi−1 +Fi−2 otherwise for i ≥ 2

It is left as an exercise problem to show that

Fn =
1√
5
(φn −φ′n) where φ =

1+
√

5

2
φ′ = 1−φ

Clearly, it grows exponentially with n and Fn has θ(n) bits.

Since the closed form solution for Fn involves the golden ratio – an irrational number –

we must find a way to compute it efficiently without incurring numerical errors or

approximations as it is an integer.
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2 Design and Analysis of Algorithms

Method 1

By simply using the recursive formula, one can easily argue that the number of operations

(primarily additions) involved is proportional to the value of Fn. We just need to unfold

the recursion tree where each internal node corresponds to an addition. As we had noted

earlier, this leads to an exponential time algorithm and we cannot afford it.

Method 2

Observe that we only need the last two terms of the series to compute the new term. Hence,

by applying the principle of dynamic programming,1 we successively compute Fi starting

with F0 = 0 and F1 = 1 and use the previously computed terms, Fi and Fi−1 for i ≥ 2.

This takes time that is proportional to approximately n additions, where each addition

involves adding (increasingly large) numbers. The size of F⌈n/2⌉ is about n/2 bits; so, the

last n/2 computations will take Ω(n) steps 2 culminating in an O(n2) algorithm.

Since the nth Fibonacci number is at most n bits, it is reasonable to look for a faster

algorithm.

Method 3
[

Fi

Fi−1

]

=

[

1 1

1 0

][

Fi−1

Fi−2

]

By iterating the aforementioned equation, we obtain

[

Fn

Fn−1

]

=

[

1 1

1 0

]n−1 [
1

0

]

To compute An, where A is a square matrix, we recall the following strategy for recursively

computing xn for a real x and positive integer n.
{

x2k = (xk)
2

for even integral powers

x2k+1 = x · x2k for odd integral powers

We can extend this method to compute An.

The number of multiplications taken by the aforementioned approach to compute xn

is bounded by 2 logn (the reader can convince oneself by writing a recurrence). However,

the actual running time depends on the time taken to multiply two numbers, which in

turn depends on their lengths (number of digits). Let us assume that M(n) is the number

of (bit-wise) steps to multiply two n bit numbers. The number of steps to implement the

aforementioned approach must take into account the lengths of numbers that are being

multiplied. The following observations will be useful.

1The reader who is unfamiliar with this technique may refer to a later chapter, Chapter 5, that discusses it in
complete detail.

2Adding two k bit numbers takes Θ(k).
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Model and Analysis 3

The length of xk is bounded by k · |x|, where |x| is the length of x.

Therefore, the cost of the the squaring of xk is bounded by M(k|x|). Similarly, the cost of

computing x× x2k can also be bound by M(2k|x|).The overall recurrence for computing xn

can be written as

TB(n)≤ TB(⌊n/2⌋)+M(n|x|)

where TB(n) is the number of bit operations to compute the nth power using the previous

recurrence. The solution of the aforementioned recurrence can be written as the following

summation (by unfolding)

logn

∑
i=1

M(2i|x|)

If M(2i)> 2M(i), then this summation can be bounded by O(M(n|x|)), that is, the cost of the

last squaring operation.

In our case, A is a 2× 2 matrix – each squaring operation involves 8 multiplications

and 4 additions involving entries of the matrix. Since multiplications are more expensive

than additions, let us count the cost of multiplications only. Here, we have to keep track

of the lengths of the entries of the matrix. Observe that if the maximum size of an entry is

|x|, then the maximum size of an entry after squaring is at most 2|x|+ 1 (Why?). The cost

of computing An is O(M(n|x|)), where the maximum length of any entry is |x| (left as an

exercise problem). Hence, the running time of computing Fn using Method 3 is dependent

on the multiplication algorithm. Well, multiplication is multiplication – what can we do

about it? Before that, let us summarize what we know about it. Multiplying two n digit

numbers using the add-and-shift method takes O(n2) steps, where each step involves

multiplying two single digits (bits in the case of binary representation), and generating

and managing carries. For binary representation, this takes O(n) steps for multiplying

with each bit; finally, n shifted summands are added – the whole process takes O(n2)

steps.

Using such a method of multiplication implies that we cannot do better than Ω(n2)

steps to compute Fn. For any significant (asymptotically better) improvement, we must

find a way to multiply faster.

1.2 Fast Multiplication

Problem Given two numbers A and B in binary, we want to compute the product A×B.

Let us assume that the numbers A and B have lengths equal to n = 2k – this will keep

our calculations simpler without affecting the asymptotic analysis.

A×B = (2n/2 ·A1 +A2)× (2n/2 ·B1 +B2)
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4 Design and Analysis of Algorithms

where A1 (B1) is the leading n/2 bits of A (B). Likewise, A2 is the trailing n/2 bits of A. We

can expand this product as

A1 ×B1 ·2n/2 +(A1 ×B2 +A2 ×B1) ·2n/2 +A2 ×B2

Observe that multiplication by 2k can be easily achieved in binary by adding k trailing 0s

(likewise, in any radix r, multiplying by rk can be done by adding trailing zeros). Hence,

the product of two n bit numbers can be achieved by recursively computing four products

of n/2 bit numbers. Unfortunately, this does not improve things (see exercise 1.6).

We can achieve an improvement by reducing it to three recursive calls of multiplying

n/2 bit numbers by rewriting the coefficient of 2n/2 as follows

A1 ×B2 +A2 ×B1 = (A1 +A2)× (B1 +B2)− (A1 ×B1)− (A2 ×B2)

Although strictly speaking, A1 +A2 is not n/2 bits but at most n/2+1 bits (Why?), we can

still view this as computing three separate products involving n/2 bit numbers

recursively and subsequently subtracting appropriate terms to get the required products.

Subtraction and additions are identical in modulo arithmetic (2’s complement), so the

cost of subtraction can be bounded by O(n). (What is the maximum size of the numbers

involved in subtraction? ). This gives us the following recurrence

TB(n)≤ 3 ·TB(n/2)+O(n)

where the last term accounts for addition, subtractions, and shifts. It is left as an exercise

problem to show that the solution to this recurrence is O(nlog2 3). This running time is

roughly O(n1.7), which is asymptotically better than n2 and therefore we have succeeded

in designing an algorithm to compute Fn faster than n2.

It is possible to multiply much faster using a generalization of the aforementioned

method in O(n logn log logn) bit operations utilizing Schonage and Strassen’s method.

However, this method is quite involved as it uses discrete Fourier transform computation

over modulo integer rings and has fairly large constants that neutralize the advantage of

the asymptotic improvement unless the numbers are a few thousand bits long. It is,

however, conceivable that such methods will become more relevant as we may need to

multiply large keys for cryptographic/security requirements. We discuss this algorithm

in Chapter 9.

1.3 Model of Computation

Although there are a few thousand variations of the computer with different architectures

and internal organization, it is best to think about them at the level of the assembly
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Model and Analysis 5

language. Despite architectural variations, the assembly level language support is very

similar – the major difference being in the number of registers and the word length of the

machine. However, these parameters are also in a restricted range of a factor of two, and

hence, asymptotically in the same ballpark. In summary, we can consider any computer

as a machine that supports a basic instruction set consisting of arithmetic and logical

operations and memory accesses (including indirect addressing). We will avoid

cumbersome details of the exact instruction set and assume realistically that any

instruction of one machine can be simulated using a constant number of available

instructions of another machine. Since analysis of algorithms involves counting the

number of operations and not the exact timings (which could differ by an order of

magnitude), the aforementioned simplification is justified.

The careful reader would have noticed that during our detailed analysis of Method 3

in the previous section, we were not simply counting the number of arithmetic operations

but actually the number of bit-level operations. Therefore, the cost of a multiplication or

addition was not unity but proportional to the length of the input. Had we only counted

the number of multiplications for computing xn, it would only be O(logn). This would

indeed be the analysis in a uniform cost model, where only the number of arithmetic (also

logical) operations are counted and the cost does not depend on the length of the operands.

A very common use of this model is for comparison-based problems like sorting, selection,

merging, and many data-structure operations. For these problems, we often count only the

number of comparisons (not even other arithmetic operations) without bothering about the

length of the operands involved. In other words, we implicitly assume O(1) cost for any

comparison. This is not considered unreasonable since the size of the numbers involved

in sorting does not increase during the course of the algorithm for most of the commonly

known sorting problems. On the other hand, consider the following problem of repeated

squaring n times starting with 2. The resultant is a number 22n

, which requires 2n bits to

be represented. It will be very unreasonable to assume that a number that is exponentially

long can be written out (or even stored) in O(n) time. Therefore, the uniform cost model

will not reflect a realistic setting for this problem.

On the other extreme is the logarithmic cost model where the cost of an operation is

proportional to the length of the operands. This is very consistent with the physical world

and is also similar to the Turing machine model which is a favorite of complexity theorists.

Our analysis in the previous section is actually done with this model in mind. It is not only

the arithmetic operations but also the cost of memory access that is proportional to the

length of the address and the operand.

The most commonly used model is something in between. We assume that for an

input of size n, any operation involving operands of size logn 3 takes O(1) steps. This is

3We can also work with c logn bits as the asymptotic analysis does not change for a constant c.
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6 Design and Analysis of Algorithms

justified as follows. All microprocessor chips have specialized hardware circuits for

arithmetic operations like multiplication, addition, division, etc. that take a fixed number

of clock cycles when the operands fit into a word. The reason that logn is a natural choice

for a word is that, even to address an input size n, you require logn bits of address space.

The present high-end microprocessor chips have typically 2–4 GBytes of RAM and about

64 bits word size – clearly 264 exceeds 4 GBytes. We will also use this model, popularly

known as random access machine (or RAM in short), except for problems that deal with

numbers as inputs like multiplication in the previous section where we will invoke the log

cost model. In the beginning, it is desirable that for any algorithm, we get an estimate of

the maximum size of the numbers to ensure that operands do not exceed Ω(logn) so that

it is safe to use the RAM model.

1.4 Randomized Algorithms: A Short Introduction

The conventional definition of an algorithm demands that an algorithm solves a given

instance of a problem correctly and certainly, that is, for any given instance I , an algorithm

A should return the correct output every time without fail. It emphasizes a deterministic

behavior that remains immutable across multiple runs. By exploring beyond this

conventional boundary, we have some additional flexibility that provides interesting

trade-offs between correctness and efficiency, and also between predictability and

efficiency. These are now well-established techniques in algorithm design known as

randomized techniques. In this section, we provide a brief introduction to these alternate

paradigms, and in this textbook, we make liberal use of the technique of randomization

which has dominated algorithm design in the past three decades leading to some

surprising results as well as simpler alternatives to conventional design techniques.

Consider an array A of n elements such that each element is either colored red or green.

We want to output an index i, such that A[i] is green. Without any additional information or

structure, we may end up inspecting every element of A to find a green element. Suppose

we are told that half the elements are colored green and the remaining red. Even then we

may be forced to probe n/2 elements of the array before we are assured of finding a green

element since the first n/2 elements that we probe could be all red. This is irrespective of

the distribution of the green elements. Once the adversary knows the probe sequence, it

can force the algorithm to make n/2 probes.

Let us now assume that all
(

n

n/2

)

choices of green elements are equally likely – in what

way can we exploit this? With a little reflection, we see that every element is equally

likely to be red or green and therefore, the first element that we probe may be green with

probability = 1/2. If so, we are done – however, it may not be green with probability 1/2.

Then, we can probe the next location and so on until we find a green element. From our

earlier argument, we may have to probe at most n/2 locations before we succeed. But there
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Model and Analysis 7

is a crucial difference – it is very unlikely that in a random placement of green elements, all

the first n/2 elements are red. Let us make this more precise.

If the first m < n/2 elements are red, it implies that all the green elements got squeezed

in the n − m locations. If all placements are equally likely, then the probability of this

scenario is
(

n−m

n/2

)

(

n

n/2

) =
(n−m)! · (n/2)!

n! · (n/2−m)!
=

(n−m)(n−m−1) · · ·(n/2−m+1)

n(n−1) · · ·(n/2+1)

It is easy to check that this probability is at most e−m/2. Therefore, the expected number of

probes is at most

∑
m≥0

(m+1) · e−m/2 = O(1)

In the previous discussion, the calculations were based on the assumption of random

placement of green elements. Can we extend it to the general scenario where no such

assumption is required? This turns out to be surprisingly simple and obvious once the

reader realizes it. The key to this is – instead of probing the array in a pre-determined

sequence A[1], A[2], . . ., we probe using a random sequence, say j1, j2, . . . , jn, where

j1, . . . , jn is a permutation of {1, . . . ,n}.

How does this change things ? Since n/2 locations are green, a random probe will yield

a green element with probability 1/2. If it is not green, then the subsequent random probes

(limited to the unprobed locations) will have even higher probability of the location having

a green element. This is a simple consequence of conditional probability given that all

the previous probes yielded red elements. To formalize, let X be a random variable that

denotes the number of probes made to find the first green element. Then,

Pr[X = k] = The probability that the initial k−1 probes are red and the k-th probe is green

≤ 1/2k

The reader must verify the correctness of this expression. The expression can also be

modified to yield

Pr[X ≥ k]≤
i=n/2

∑
i=k

1/2i ≤ 1/2k−1,

and the expected number of probes is at most O(1).

This implies that the number of probes not only decreases exponentially with k but is

independent of the placement of the green elements, that is, the worst-case scenario is over all

possible input arrays. Instead of relying on the randomness of the placement (which is

not in our control), the algorithm itself uses a random probe sequence matching the same

phenomenon. This is the essence of a randomized algorithm. In this case, the final result is
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8 Design and Analysis of Algorithms

always correct, that is, a green element is output but the running time (number of probes)

is a random variable and there is a trade-off between the number of probes k and the

probability of termination within k probes.

If the somewhat hypothetical problem of finding a green element from a set of

elements has not been convincing in terms of its utility, here is a classical application of

the aforementioned solution. Recall the quicksort sorting algorithm. In quicksort, we

partition a given set of n numbers around a pivot. It is known that the efficiency of the

algorithm depends primarily on the relative sizes of the partition – the more balanced

they are in size, the better. Ideally, one would like the pivot to be the median element so

that both sides of the partition are small. Finding the median element is a problem in

itself; however, any element around the median is almost equally effective, say an

element with rank4 between [ n
4
, 3n

4
] will also lead to a balanced partitioning. These n/2

elements can be thought of as the green elements and so we can apply our prior

technique. There is a slight catch – how do we know that the element is green or red? For

this, we need to actually compute the rank of the probed element, which takes n − 1

comparisons but this is acceptable since the partitioning step in quicksort takes n steps

and will subsume this. However, this is not a complete analysis of quicksort which is a

recursive algorithm; we require more care that will be discussed in a later chapter dealing

with selections.

1.4.1 A different flavor of randomized algorithms

Consider a slight twist on the problem of computing the product of two n× n matrices

C = A×B. We are actually given A,B,C and we have to verify if C is indeed the product

of the two matrices A and B. We may be tempted to actually compute A×B and verify it

element by element with C. In other words, let D= A×B and we check if C−D=O
n, where

the right-hand side is an n×n matrix whose elements are identically 0.

This is a straightforward and simple algorithm, except that we will pay the price for

computing the product which is not really necessary for the problem. Using elementary

method for computing matrix products, we will need about O(n3) multiplications and

additions5, whereas an ideal algorithm could be O(n2) steps, which is the size of the

input. To further simplify the problem and reduce dependency on the size of each

element, let us consider Boolean matrices and review addition modulo 2. Examine the

algorithm described in Figure 1.1. It computes three matrix vector products – BX , A(BX),

and CX–incurring a total of 3n2 operations which matches the input size and therefore, is

optimal.

4The rank of x is the number of elements in the set smaller than x.
5There are sophisticated and complex methods to reduce the number of multiplications below n3 but they are still
much more than n2.
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Procedure Verifying matrix product(A,B,C)

1 Input: A,B,C are n×n matrices over GF(2);

2 Output: If A ·B =C then Yes else No;

3 Choose a random 0–1 vector X ;

4 if A · (B ·X) =C ·X then

5 Return YES;

6 else

7 Return NO

Figure 1.1 Algorithm for verifying matrix product

Observation If A(BX) 6=CX , then AB 6=C.

However, the converse, that is, A(BX) = C =⇒ AB = C is not easy to see. On the

contrary, consider the following example, which raises serious concerns.

Example 1.1 A =

[

1 1

1 0

]

B =

[

0 1

1 0

]

C =

[

1 0

0 1

]

AB =

[

1 1

1 0

]

X =

[

1

0

]

ABX =

[

1

0

]

CX =

[

1

0

]

X ′ =

[

0

1

]

ABX ′ =

[

1

0

]

CX ′ =

[

0

1

]

Clearly, the algorithm is not correct if we choose the first vector. Instead of giving up on

this approach, let us get a better understanding of the behavior of this simple algorithm.

Claim 1.1 For an arbitrary vector (non-zero) Y and a random vector X , the probability that the dot

product X ·Y = 0 is less than 1/2.

There must be at least one Yi 6= 0 – choose that Xi last; with probability 1/2, it will be

non-zero. For the overall behavior of the algorithm, we can claim the following.

Claim 1.2 If A(BX) 6=CX , then AB 6=C, that is, the algorithm is always correct if it answers NO.

When the algorithm answers YES, then Pr[AB =C]≥ 1/2.

If AB 6=C, then in AB−C, at least one of the rows is non-zero and from the previous claim,

the dot product of a non-zero vector with a random vector is non-zero with probability

1/2. It also follows that by repeating this test and choosing independently another random

vector when it returns YES, we can improve the probability of success and our confidence

in the result. If the algorithm returns k consecutive YES, then Pr[AB 6=C]≤ 1
2k .

The reader may have noted that the two given examples of randomized algorithms

have distinct properties. In the first example, the answer is always correct but the running
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10 Design and Analysis of Algorithms

time has a probability distribution. In the latter, the running time is fixed, but the answer

may be incorrect with some probability. The former is known as Las Vegas and the latter is

referred to as Monte Carlo randomized algorithm. Although in this particular example, the

Monte Carlo algorithm exhibits asymmetric behavior (it can be incorrect only when the

answer is YES), it need not be so.

1.5 Other Computational Models

There is clear trade-off between the simplicity and the fidelity achieved by an abstract

model. One of the obvious (and sometimes serious) drawbacks of the RAM model is the

assumption of unbounded number of registers since the memory access cost is uniform.

In reality, there is a memory hierarchy comprising registers, several levels of cache, main

memory, and finally the disks. We incur a higher access cost as we go from registers toward

disks and for technological reasons, the size of the faster memory is limited. There could

be a disparity of 105 between the fastest and the slowest memory which makes the RAM

model somewhat suspect for larger input sizes. This has been redressed by the external

memory model.

1.5.1 External memory model

In this model, the primary concern is the number of disk accesses. Given the rather high

cost of a disk access compared to any CPU operation, this model actually ignores all other

costs and counts only the number of disk accesses. The disk is accessed as contiguous

memory locations called blocks. The blocks have a fixed size B and the simplest model

is parameterized by B and the size of the faster memory M. In this two-level model, the

algorithms are only charged for transferring a block between the internal and external

memory; all other computations are free. The cost of sorting n elements is O
(

n
B

logM/B
n
B

)

disk accesses and this is also optimal. To see this, we can analyze M/B-way merge sort

in this model. Note that one block from each of the M/B sorted streams can fit into the

main memory. Using appropriate data structures, we can generate the next B elements

of the output and we can write an entire block to the output stream. Hence, the overall

number of I-Os per phase is O(n/B) since each block is read and written exactly once. The

algorithm makes O( n/B

M/B
) passes, yielding the required bound.

There are further refinements to this model that parameterizes multiple levels and also

accounts for internal computation. As the model becomes more complicated, designing

algorithms also becomes more challenging and often more laborious. We discuss algorithm

design and analysis in this model and many variations in Chapter 15.
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