The Cambridge Handbook of Computing Education Research

This handbook describes the extent and shape of computing education research today. Over 50 leading researchers from academia and industry (including Google and Microsoft) have contributed chapters that together define and expand the evidence base.

The foundational chapters set the field in context, articulate expertise from key disciplines, and form a practical guide for new researchers. They address what can be learned empirically, methodologically, and theoretically from each area. The topic chapters explore issues that are of current interest, why they matter, and what is already known. They include discussion of motivational context, implications for practice, and open questions that might suggest avenues of future research.

The authors provide an authoritative introduction to the field that is essential reading for policy makers, as well as both new and established researchers.

SALLY A. FINCHER is Professor of Computing Education in the School of Computing at the University of Kent, UK, where she leads the Computing Education Research Group. She is also an Association for Computing Machinery Distinguished Scientist, a UK National Teaching Fellow, a Senior Fellow of the UK Higher Education Academy, and a Fellow of the Royal Society of Arts.

ANTHONY V. ROBINS is Professor of Computer Science at the University of Otago, New Zealand. He is also Associate Journal Editor of Computer Science Education and has co-organized multinational research studies. He has worked for the Ministry of Education, New Zealand, on new programming assessment standards and related instructional materials for secondary schools.
The Cambridge Handbook of Computing Education Research

Edited by
Sally A. Fincher
University of Kent
Anthony V. Robins
University of Otago
To our parents, present and passed. A hardy generation – they should build battleships out of them.
Contents

List of Figures page x
List of Tables xii
List of Contributors xiii
Acknowledgments xv

0 An Important and Timely Field
SALLY A. FINCHER AND ANTHONY V. ROBINS

Part I Background

1 The History of Computing Education Research
MARK GUZDIAL AND BENEDICT DU BOULAY

2 Computing Education Research Today
SALLY A. FINCHER, JOSH TENENBERG, BRIAN DORN,
CHRISTOPHER HUNDHAUSEN, ROBERT MCCARTNEY,
AND LAURIE MURPHY

3 Computing Education: Literature Review and
Voices from the Field
PAULO BLIKSTEIN AND SEPI HEJAZI MOGHADAM

Part II Foundations

4 A Study Design Process
AMY J. KO AND SALLY A. FINCHER

5 Descriptive Statistics
PATRICIA HADEN

6 Inferential Statistics
PATRICIA HADEN

7 Qualitative Methods for Computing Education
JOSH TENENBERG

8 Learning Sciences for Computing Education
LAUREN E. MARGULIEUX, BRIAN DORN, AND KRISTIN A. SEARLE
<p>	Contents
9	Cognitive Sciences for Computing Education
ANTHONY V. ROBINS, LAUREN E. MARGULIEUX, AND BRIANA B. MORRISON	
10	Higher Education Pedagogy
KERRY SHEPHARD	
11	Engineering Education Research
MICHAEL C. LOUI AND MAURA BORREGO	
Part III	Topics
Systemic Issues	
12	Novice Programmers and Introductory Programming
ANTHONY V. ROBINS	
13	Programming Paradigms and Beyond
SHRIRAM KRISHNAMURTHI AND KATHI FISLER	
14	Assessment and Plagiarism
THOMAS LANCASTER, ANTHONY V. ROBINS, AND SALLY A. FINCHER	
15	Pedagogic Approaches
KATRINA FALKNER AND JUDY SHEARD	
16	Equity and Diversity
COLLEEN M. LEWIS, NIRAL SHAH, AND KATRINA FALKNER	
New Milieux	
17	Computational Thinking
PAUL CURZON, TIM BELL, JANE WAITE, AND MARK DORLING	
18	Schools (K–12)
JAN VAHRENHOLD, QUINTIN CUTTS, AND KATRINA FALKNER	
19	Computing for Other Disciplines
MARK GUZDIAL	
20	New Programming Paradigms
R. BENJAMIN SHAPIRO AND MIKE TISSENBAUM	
Systems Software and Technology	
21	Tools and Environments
LAURI MALMI, IAN UTTING, AND AMY J. KO	</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Tangible Computing</td>
<td>Michael Horn and Marina Bers</td>
<td>663</td>
</tr>
<tr>
<td>23</td>
<td>Leveraging the Integrated Development Environment for Learning Analytics</td>
<td>Adam Carter, Christopher Hundhausen, and Daniel Olivares</td>
<td>679</td>
</tr>
<tr>
<td></td>
<td>Teacher and Student Knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Teacher Knowledge for Inclusive Computing Learning</td>
<td>Joanna Goode and Jean J. Ryoo</td>
<td>709</td>
</tr>
<tr>
<td>25</td>
<td>Teacher Learning and Professional Development</td>
<td>Sally A. Fincher, Yifat Ben-David Kolikant, and Katrina Falkner</td>
<td>727</td>
</tr>
<tr>
<td>26</td>
<td>Learning Outside the Classroom</td>
<td>Andrew Begel and Amy J. Ko</td>
<td>749</td>
</tr>
<tr>
<td>27</td>
<td>Student Knowledge and Misconceptions</td>
<td>Colleen M. Lewis, Michael J. Clancy, and Jan Vahrenhold</td>
<td>773</td>
</tr>
<tr>
<td>28</td>
<td>Motivation, Attitudes, and Dispositions</td>
<td>Alex Lishinski and Aman Yadav</td>
<td>801</td>
</tr>
<tr>
<td>29</td>
<td>Students As Teachers and Communicators</td>
<td>Beth Simon, Christopher Hundhausen, Charlie McDowell, Linda Werner, Helen Hu, and Clif Kussmaul</td>
<td>827</td>
</tr>
<tr>
<td></td>
<td>Case Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A Case Study of Peer Instruction: From University of California, San Diego to the Computer Science Community</td>
<td>Leo Porter and Beth Simon</td>
<td>861</td>
</tr>
<tr>
<td>31</td>
<td>A Case Study of Qualitative Methods</td>
<td>Colleen M. Lewis</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>895</td>
</tr>
</tbody>
</table>
Figures

4.1 A study design process spanning four iterative phases that come before executing a study page 82
5.1 PI, OD, and DV 105
5.2 Generic FD 108
5.3 Comparing FDs 108
5.4 FDs with positive and negative skew 110
5.5 Positive skew in time to solve a homework problem 111
5.6 Bimodal FD 111
5.7 Factorial plot 112
5.8 Histogram-style factorial plot 113
5.9 Small, medium, and large standard deviations 116
5.10 Comparing scores from different distributions 117
5.11 Hypothetical scatter plots for height and weight, age and visual acuity, and height and IQ 120
5.12 Strong and weak positive correlations 120
5.13 Scatter plots of data sets 122
5.14 The influence of outliers on r 124
5.15 Possible experimental design 127
6.1 Population frequency distributions showing no effect and a real effect of the independent variable 137
6.2 The hypothesis testing decision matrix 142
6.3 Distribution of values of t for a given sample size and population variability when H0 is true 148
6.4 Crossover interaction 152
6.5 Moderate interaction 152
6.6 No interaction 153
6.7 Generic one-way ANOVA table in SPSS 24 154
6.8 Factorial plot for computing interest study (hypothetical) 155
6.9 SPSS 24 output for two-way ANOVA 156
6.10 CI for a population mean 157
6.11 SPSS 24 output for a significant Pearson product moment correlation 160
6.12 Salary by years employed (hypothetical) 161
6.13 Outcome of a regression study predicting CS1 mark from math mark (hypothetical) 163
6.14 Linear regression (hypothetical data) with line of best fit in Excel 164
6.15 Output of linear regression analysis in SPSS 24 165
6.16 A poor predictor 165
6.17 Line of best fit for a poor predictor 166
6.18 Linear regression analysis for a poor predictor in SPSS 24 166
9.1 Levels of analysis and their application to an example system 233
15.1 The combination of student-centered learning activity and teacher-centered instruction as adopted within blended learning 457
15.2 Memory visualization exploring primitive data types and the correspondence between variable name and value 466
15.3 Memory visualization of a C++ program facilitating understanding of memory addressing, allocation, and deallocation 467
17.1 Agreement and disagreement around two views of what computational thinking should be 515
20.1 A neural network with hidden layers 611
20.2 FitBit for dogs 621
20.3 Dog collar beacon program 626
22.1 A prototype tangible programming language based on computer vision technology 669
22.2 KIBO robot and its blocks 669
23.1 Process model for IDE-based learning analytics in computing education 685
23.2 Programming process data that can be automatically collected through a standard IDE 688
23.3 Data that can be automatically collected through an IDE augmented with additional features and functionality 689
23.4 Taxonomy of design dimensions for IDE-based interventions 696
24.1 Teacher knowledge 713
29.1 Reduction in course fail rates by course 838
29.2 Reduction in course fail rates for instructors teaching the same course with and without PI 839
29.3 Two locations of isomorphic, multiple-choice questions to test learning gain (q2) and retention (q3) 840
31.1 Completed drawing of a brick wall in Scratch 881
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Frequently discussed topics and the chapters they occur in</td>
<td>7</td>
</tr>
<tr>
<td>5.1</td>
<td>Strength of positive correlations (apply symmetrically for negative correlations)</td>
<td>123</td>
</tr>
<tr>
<td>7.1</td>
<td>Data collection methods</td>
<td>184</td>
</tr>
<tr>
<td>7.2</td>
<td>Data analysis strategies</td>
<td>194</td>
</tr>
<tr>
<td>12.1</td>
<td>A programming framework</td>
<td>335</td>
</tr>
<tr>
<td>15.1</td>
<td>Pedagogic approaches and relevant pedagogic practices</td>
<td>450</td>
</tr>
<tr>
<td>23.1</td>
<td>Comparison of five IDEs used in computing education based on the data they collect for the programming category</td>
<td>691</td>
</tr>
<tr>
<td>23.2</td>
<td>Comparison of five IDEs used in computing education based on the data they collect for the social, testing, survey/quiz, and physiological categories</td>
<td>692</td>
</tr>
<tr>
<td>23.3</td>
<td>A taxonomy of useful information derivable from IDE data</td>
<td>693</td>
</tr>
<tr>
<td>25.1</td>
<td>Knowledge in the TPACK model</td>
<td>734</td>
</tr>
<tr>
<td>27.1</td>
<td>Truth table for modus ponens, $P \rightarrow Q$</td>
<td>782</td>
</tr>
<tr>
<td>27.2</td>
<td>Overlap between logical operators AND, if-then, and if-and-only-if</td>
<td>784</td>
</tr>
<tr>
<td>29.1</td>
<td>Key findings of a study of PCRs</td>
<td>845</td>
</tr>
</tbody>
</table>
Contributors

ANDREW BEGEL, Microsoft, USA
TIM BELL, University of Canterbury, New Zealand
MARINA BERS, Tufts University, USA
PAULO BLIKSTEIN, Stanford University, USA
MAURA BORREGO, University of Texas, USA
ADAM CARTER, Humboldt State University, USA
MICHAEL J. CLANCY, University of California Berkeley, USA
PAUL CURZON, Queen Mary University of London, UK
QUINTIN CUTTS, University of Glasgow, UK
MARK DORLING, Queen Mary University of London, UK
BRIAN DORN, University of Nebraska at Omaha, USA
BENEDICT DU BOULAY, University of Sussex, UK
KATRINA FALKNER, University of Adelaide, Australia
SALLY A. FINCHER, University of Kent, UK
KATHI FISLER, Brown University, USA
JOANNA GOODE, University of Oregon, USA
MARK GUZDIAL, Georgia Institute of Technology, USA
PATRICIA HADEN, University of Otago, New Zealand
MICHAEL HORN, Northwestern University, USA
HELEN HU, Westminster College, USA
CHRISTOPHER HUNDHAUSEN, Washington State University, USA
AMY J. KO, University of Washington, Seattle USA
YIFAT BEN-DAVID KOLIKANT, Hebrew University of Jerusalem, Israel
SHRIRAM KRISHNAMURTHI, Brown University, USA
CLIF KUSSMAUL, Muhlenberg College, USA
THOMAS LANCASTER, Imperial College London, UK
COLLEEN M. LEWIS, Harvey Mudd College, USA
ALEX LISHINSKI, Michigan State University, USA
MICHAEL C. LOUI, Purdue University, USA
LAURI MALMI, Aalto University, Finland
LAUREN E. MARGULIEUX, Georgia State University, USA
ROBERT MCCARTNEY, University of Connecticut, USA
CHARLIE MCDOWELL, University of California Santa Cruz, USA
SEPI HEJAZI MOGHADAM, Google, USA
BRIANA B. MORRISON, University of Nebraska at Omaha, USA
LAURIE MURPHY, Pacific Lutheran University, USA
DANIEL OLIVARES, Washington State University, USA
LEO PORTER, University of California San Diego, USA
ANTHONY V. ROBINS, University of Otago, New Zealand
JEAN J. RYOO, University of California Los Angeles, USA
KRISTIN A. SEARLE, Utah State University, USA
NIRAL SHAH, Michigan State University, USA
R. BENJAMIN SHAPIRO, University of Colorado, USA
JUDY SHEARD, Monash University, Australia
KERRY SHEPHARD, University of Otago, New Zealand
BETH SIMON, University of California San Diego, USA
JOSH TENENBERG, University of Washington Tacoma, USA
MIKE TISSENBAUM, University of Illinois at Urbana Champaign, USA
IAN UTTING, University of Kent, UK
JAN VAHRENHOLD, Westfälische Wilhelms-Universität Münster, Germany
JANE WAITE, Queen Mary University of London, UK
LINDA WERNER, University of California Santa Cruz, USA
AMAN YADA V, Michigan State University, USA
Acknowledgments

We would like to acknowledge and thank everyone listed as an author for their contributions to the open reviewing culture within which this book was written. Many of them also took part in the systematic reviewing process.

Other reviewers or advisors (who are not also authors) were Mordechai (Moti) Ben-Ari, Neil Brown, Paul Carins, Sebastian Dziallas, Christopher Hoadley, Yasmin Kafai, Raymond Lister, and Elizabeth Patitsas. Our thanks to them for taking the time to help us improve the work.

Shriram Krishnamurthi and Kathi Fisler at Brown University organized the reviewing of most chapters by students in a graduate computing education course. Thanks to those participants: Natasha Danas, Nicholas DeMarinis, Justin Pombrio, Sorawee Porncharoenwase, Sam Saarinen, Preston Tunnell Wilson, and John Wrenn. You helped a lot!

Thanks also to our editor David Repetto, content manager Adam Hooper, and editorial assistant Emily Watton at Cambridge University Press, and project manager Céline Durassier at Newgen Publishing UK, who provided us excellent support and allowed us the flexibility that we needed.

Finally, of course, we have to extend enormous thanks to our families for their patience and support.