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BIMONOIDS FOR HYPERPLANE ARRANGEMENTS

The goal of this monograph is to develop Hopf theory in a new setting which features

centrally a real hyperplane arrangement. The new theory is parallel to the classical

theory of connected Hopf algebras, and relates to it when specialized to the braid

arrangement. Joyal’s theory of combinatorial species, ideas from Tits’ theory of

buildings, and Rota’s work on incidence algebras inspire and find common ground in

this theory.

The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid

relative to a fixed hyperplane arrangement. Faces, flats, and lunes of the arrangement

provide the building blocks for these concepts. They also construct universal

bimonoids by using generalizations of the classical notions of shuffle and quasishuf-

fle, and establish the Borel–Hopf, Poincaré–Birkhoff–Witt, and Cartier–Milnor–

Moore theorems in this new setting. A key role is played by noncommutative zeta

and Möbius functions which generalize the classical exponential and logarithm, and

by the representation theory of the Tits algebra.

This monograph opens a vast new area of research. It will be of interest to students

and researchers working in the areas of hyperplane arrangements, semigroup theory,

Hopf algebras, algebraic Lie theory, operads, and category theory.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in

mathematics or mathematical science and for which a detailed development of the

abstract theory is less important than a thorough and concrete exploration of the

implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their

subjects comprehensively. Less important results may be summarized as exercises

at the ends of chapters. For technicalities, readers can be referred to the bibliography,

which is expected to be comprehensive. As a result, volumes are encyclopedic

references or manageable guides to major subjects.
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Preface

Motivation

The geometry of braid arrangements is intimately related to the theory
of connected graded Hopf algebras. Our path to this conclusion started with
[17], where we noticed that the product and coproduct of certain combinato-
rial Hopf algebras are related to the geometric operations of join and link on
the faces of a braid arrangement, while the compatibility axiom is related to
the Tits product of those faces. This viewpoint was strengthened further when
we studied Hopf monoids in Joyal species [18], [19], where the connection to
the braid arrangement is more direct. This also suggested an extension of the
theory to more general contexts involving real hyperplane arrangements or
even certain semigroups replacing the Tits monoid of the braid arrangement.
We mentioned this point for the first time in the introduction to [19] and then
with more insistence in the end-of-chapter notes in [21].

Main players

The goal of this monograph is to embark on the theory of species and
bimonoids for hyperplane arrangements. The main players that have emerged
in this study are summarized in Table I below.

Table I. Coxeter bimonoids and Joyal bimonoids.

Starting data Objects of interest

hyperplane arrangement species

reflection arrangement Coxeter species Coxeter spaces

braid arrangement Joyal species graded vector spaces

hyperplane arrangement bimonoids

reflection arrangement Coxeter bimonoids Coxeter bialgebras

braid arrangement Joyal bimonoids graded bialgebras

Our hyperplane arrangements are assumed to be linear, that is, all hyper-
planes pass through the origin. We will use the term ‘classical’ to refer to the
mathematics of the braid arrangement. In most cases, classical objects will

xi
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xii PREFACE

mean graded vector spaces and graded bialgebras, but they can also mean
Joyal species and Joyal bimonoids.

In this book, we focus exclusively on species and bimonoids for which
the starting data is a hyperplane arrangement. We also briefly indicate how
they relate to Joyal species and Joyal bimonoids. Analogies with connected
graded Hopf algebras are mentioned but not elaborated. In fact, these classical
objects are better connected to Coxeter bimonoids and Coxeter bialgebras
which are more structured and for which the starting data is a reflection
arrangement. These Coxeter objects along with their relation to the classical
theory will be explained in a separate work.

Table II. Coxeter operads and May operads.

Starting data Objects of interest

Hyperplane arrangement Operads

Reflection arrangement Coxeter operads

Braid arrangement May operads

Related objects are summarized in Table II. In this book, we briefly
develop operads in the setting of hyperplane arrangements, and explain their
connection to species and bimonoids. We also indicate how they relate to
classical operads (which we call May operads). A proper understanding of this
relationship requires consideration of Coxeter operads which will be treated
in a separate work.

As a historical note, we mention that the picture in Tables I and II along
with all the basic definitions emerged as [18] was nearing publication and
became completely clear to us by the time [19] was published.

Synopsis

We begin by introducing the category of species for any hyperplane ar-
rangement and the notions of monoid, comonoid, bimonoid therein. These
may be viewed as an extension of corresponding notions in Joyal species from
braid arrangements to an arbitrary arrangement. The main novelty is the
usage of the Tits product on faces in the formulation of the bimonoid ax-
iom. (We use the term ‘bimonoid’ rather than ‘Hopf monoid’ since we only
treat the connected case.) A bimonoid can be commutative, cocommutative,
both or neither. Illustrative examples include the exponential bimonoid, the
bimonoid of chambers, the bimonoid of flats, the bimonoid of faces, the bimon-
oid of top-nested faces, the bimonoid of top-lunes, the bimonoid of bifaces,
the bimonoid of chamber maps and the bimonoid of pairs of chambers. We
also define signed bimonoids. More generally, for any scalar q, we introduce
q-bimonoids, with q = ±1 specializing to bimonoids and signed bimonoids,
respectively. This is done by deforming the bimonoid axiom using the dis-
tance function on faces of the arrangement. We also introduce the notion of
a Lie monoid for any hyperplane arrangement.
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PREFACE xiii

We briefly consider operads in the setting of hyperplane arrangements.
These may be seen as an extension of May operads from braid arrangements
to an arbitrary arrangement. We define the commutative operad, associative
operad, Lie operad for any hyperplane arrangement, and observe that left
modules over these operads in the category of species are commutative mon-
oids, monoids, Lie monoids, respectively. Any operad gives rise to a monad on
species with operad-modules corresponding to monad-algebras. Thus, com-
mutative monoids, monoids, Lie monoids can also be viewed as algebras over
suitable monads. Moreover, we construct bimonads (mixed distributive laws)
whose bialgebras are precisely bimonoids and their commutative and signed
counterparts.

We lay out the basic theory of bimonoids for hyperplane arrangements.
This includes a detailed discussion of primitive filtrations of comonoids and de-
composable filtrations of monoids, the related Browder–Sweedler commutativ-
ity result and Milnor–Moore cocommutativity result, universal constructions
of bimonoids, the Hadamard product of bimonoids and its freeness properties,
the universal measuring comonoid and enrichment of the category of monoids
over the category of comonoids, the antipode of a bimonoid and the Takeuchi
formula. This is largely motivated by the classical theory of Hopf algebras
[867] and the theory of Hopf monoids in Joyal species [18], [19]. The univer-
sal constructions, for instance, employ generalizations of the classical notions
of (de)shuffles and (de)quasishuffles to arrangements which were given in [17].
We use (noncommutative) zeta and Möbius functions introduced in [21] to
generalize the classical exponential and logarithm and obtain a family of exp-
log correspondences between (co)derivations and (co)monoid morphisms, and
between primitive and group-like series of a bimonoid. We consider (commu-
tative, two-sided) characteristic operations on bimonoids and employ them to
forge a precise connection of bimonoids and their commutative counterparts
with the representation theory of the Birkhoff algebra, Tits algebra, Janus al-
gebra. These algebras appear prominently in the recent semigroup literature;
see for instance [21]. Characteristic operations by complete systems of prim-
itive idempotents of the Tits algebra extend the classical theory of eulerian
idempotents to arrangements.

We treat in detail many important structure results for bimonoids. These
are analogues of well-known classical results for Hopf algebras. Their ex-
tension to arrangements appears here for the first time and contains many
new ideas. These include the Loday–Ronco theorem for 0-bimonoids, the
Leray–Samelson theorem for bicommutative bimonoids, the Borel–Hopf the-
orem for commutative bimonoids and for cocommutative bimonoids. We also
generalize the Loday–Ronco theorem to q-bimonoids for q not a root of unity.
This makes use of a classical factorization result of Varchenko on distance
functions, and a q-analogue of zeta and Möbius functions and the resulting
q-exp-log correspondence involving the q-exponential and q-logarithm. We
treat the Poincaré–Birkhoff–Witt (PBW) and Cartier–Milnor–Moore (CMM)
theorems relating Lie monoids and cocommutative bimonoids, as well as their
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xiv PREFACE

dual versions relating Lie comonoids and commutative bimonoids, and high-
light their connection with the Borel–Hopf theorem. These results come in
two flavors, namely, unsigned and signed, with the two linked by the signa-
ture functor. We establish the Hoffman–Newman–Radford rigidity theorems
which relate (de)shuffles and (de)quasishuffles in the setting of arrangements
and are significant for the theory of zeta and Möbius functions. All our results
are valid over a field of arbitrary characteristic.

Prerequisites

The prerequisites for reading this book pertain to three main areas: cat-
egory theory, Hopf and Lie theory, and hyperplane arrangements. They are
elaborated below.

Category theory. We assume familiarity with the basic language of cate-
gory theory at the level of [54], [591], [781], [785]. Some concepts which are
repeatedly used without explanation are functors, natural transformations,
equivalences between categories, adjunctions, universal properties. Appen-
dices are provided for more advanced concepts such as monads.

Hopf theory and Lie theory. While the entire theory here is developed
from first principles, some exposure to classical Hopf theory at the level of
[867] will be useful for motivational purposes. For Lie theory we require
much less, basic familiarity with Lie algebras including the construction of
the universal enveloping algebra is more than sufficient. We provide ample
references to the classical literature. We point out that our monograph on
species and Hopf algebras [18] is not a formal prerequisite for reading this
work, though again some familiarity will be useful.

Hyperplane arrangements. General familiarity with hyperplane arrange-
ments is sufficient to get started. The Tits monoid is a central object; familiar-
ity with the Tits product and its basic properties suffices to understand large
parts of the text. In certain places, we do need access to more specialized
notions and results. These involve incidence algebras and noncommutative
zeta and Möbius functions, the structure theory of the Tits algebra, distance
functions, Lie and Zie elements, the descent, lune, Witt identities. To keep the
book self-contained, this material is reviewed here in an introductory chapter.
The reader interested in more details can consult [21]. This reference, how-
ever, is not a prerequisite for reading the text. In fact, many ideas there can
be motivated and understood using the Hopf perspective developed in this
book.

Readership

This book would be of interest to students and researchers working in
the areas of hyperplane arrangements, semigroup theory, Joyal species, May
operads, Hopf algebras, algebraic Lie theory, category theory. It is written
with sufficient detail to make it accessible to well-prepared graduate students.
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PREFACE xv

Organization

The text is organized in three parts. Part I introduces species and bi-
monoids, Part II develops their basic theory, and Part III establishes various
structure results. A detailed summary of the contents is given in the main
introduction. Each chapter in the text also has its own introduction. Further,
there is a Notes section at the end of each chapter which provides historical
commentary and detailed references to the literature. Appendices are pro-
vided for background material. Diagrams and pictures form an important
component of our exposition. Numerous exercises (with generous hints) are
interspersed throughout the book. We also list a few open problems. A list of
notations, a list of tables, an author index, and a subject index are provided
at the end of the book.

The diagram of interdependence of chapters is displayed below.

1

2

4 3 6 5 9 10 8

16 14 13 15 12 11

17

A dashed arrow indicates that the dependence is of a minimal nature. Chap-
ter 7 is not shown in the above chart. It consists of examples and can be
read in parallel to the theory developed in the other chapters. Some further
guidelines on how to selectively read the book are given in the teaching section
below.

Teaching

The book is suitable for a two-semester sequence with the first semester
focusing on Parts I and II, and the second on Part III. With a careful selection
of topics, it can also be used for courses of shorter duration or theme-based
seminars. Details follow.

(0) First do the basic groundwork, namely: Review the Tits monoid and
Birkhoff monoid from Chapter 1. Define monoids, comonoids, bimon-
oids in species (along with their commutative counterparts) from Chap-
ter 2. Illustrate these notions with suitable examples from Chapter 7.
This could then be followed by any of the routes given below.
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(1) One plan could be to do the Leray–Samelson and Borel–Hopf theo-
rems from Chapter 13. To state these results, first review the relevant
universal constructions from Chapter 6. For the proofs, three entirely
different paths can be taken. The first path goes through Chapter 5 on
primitive and decomposable filtrations. The second path goes through
Chapter 9 on the exponential and logarithm. The third path goes
through Chapters 10 and 11 related to representation theory.

(2) The pattern in item (1) could be independently followed for the Loday–
Ronco and the more general rigidity theorem for q-bimonoids (for q

not a root of unity) from Chapter 13. This involves a lot of interest-
ing q-calculus, with distance functions and the Varchenko factorization
theorem from Chapter 1 playing a starring role.

(3) For those interested in zeta and Möbius functions, a nice option is
to first do the universal constructions from Chapter 6 and then focus
on the Hoffman–Newman–Radford rigidity theorems from Chapter 14.
This entire chapter can be done independently of items (1) or (2), or
relevant sections from it can also be done as a follow-up to either item
(1) or item (2).

(4) A different plan could be to do Chapter 16 on Lie monoids. For this,
first go over the commutative, associative, Lie operads and also the no-
tion of operad modules from Chapter 4. The construction of the univer-
sal enveloping monoid requires some basic familiarity with Chapter 6.
This can be followed with the Poincaré–Birkhoff–Witt theorem from
Chapter 17. The final step would be to do the Cartier–Milnor–Moore
theorem, but then this requires an exposure to the Borel–Hopf theorem
from item (1).

(5) Independent of all the above, one can do Chapters 8 and 15 on the
Hadamard product on species, OR bimonads from Chapter 3 and op-
erads from Chapter 4 with applications to universal constructions, OR
the antipode material from Chapter 12 which brings in Euler charac-
teristics and the related descent, lune, Witt identities from Chapter 1.

Depending on interest, any of the above themes may be supplemented
further in many different ways. For instance, one may discuss signed aspects of
the theory, unifications via partial-flats, generalizations to left regular bands.
One could also explore relevant historical facts using references in the Notes.

Comparison with previous work

In broad terms, the text builds on [17], [18, Part II], [19]. However,
there are some technical differences as well as some new developments which
we highlight below.

Differences. There are two main differences to be aware of. The theory
presented here is local to a fixed hyperplane arrangement, while the theory
presented in [18] applies to not just one braid arrangement but all braid
arrangements taken together. This is a local-global issue. Secondly, the tensor
product of vector spaces is central to the theory of Joyal bimonoids, but that is
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not the case for bimonoids for arrangements. This is a noncartesian-cartesian
issue. In summary, what we have developed here is a local noncartesian theory
of species. This has necessitated a technical change: monoidal categories are
now replaced by monads, and bilax functors now go between bimonads as
opposed to between braided monoidal categories. Thus, monoids in species
are now algebras over a certain monad rather than monoids in a monoidal
category, and so forth.

New developments. The extension to arrangements brings a completely
new perspective to Hopf theory. Many aspects of the theory which were
implicit before have now become more visible. In addition, several new aspects
of a fundamental nature have also appeared. A summary is given below.

• clarity on the central role played by the Birkhoff monoid, Tits monoid,
Janus monoid,

• formulation of bimonoids and Lie monoids using ‘higher operations’
involving faces of the arrangement as opposed to ‘binary operations’
involving vertices of the arrangement,

• formulation of the commutative aspects of the theory in terms of flats,
and noncommutative aspects in terms of faces,

• interpretation of the categories of monoids, comonoids, bimonoids as
functor categories just like the category of species,

• emergence of many interesting finite categories constructed from geo-
metric objects such as faces, flats, lunes, bilunes,

• connection of the antipode of a bimonoid to the antipodal map on
arrangements via the antipode opposition lemma and the op-cop con-
structions,

• emergence of the bimonoid of bifaces and related ideas such as two-sided
characteristic operations,

• connection between representation theory of the Birkhoff algebra and
bicommutative bimonoids, the Tits algebra and cocommutative bimon-
oids, the Janus algebra and arbitrary bimonoids, and more generally,
between the q-Janus algebra and q-bimonoids,

• relevance of the Karoubi envelopes of the Birkhoff monoid, Tits monoid,
Janus monoid to Hopf theory,

• systematic use of distance functions and the gate property to study
deformations of bimonoids,

• emergence of the monoidal category of dispecies with the category of
species as a left module category over it,

• connection between operads and incidence algebras, and in particular,
between the commutative operad and the flat-incidence algebra, and
the associative operad and the lune-incidence algebra,

• connection of the binary quadratic presentations of the commutative
and associative operads to the strong connectivity property of the posets
of flats and faces, respectively,

• emergence of the one-dimensional orientation and signature spaces of
an arrangement to deal with signed aspects of the theory,
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• emergence of noncommutative zeta and Möbius functions as a gener-
alization of the classical exponential and logarithm, and their intimate
connection to the Hoffman–Newman–Radford rigidity theorems as well
as to the Borel–Hopf theorem and Poincaré–Birkhoff–Witt theorem,

• connection of the Borel–Hopf theorem to the Zaslavsky formula for
enumeration of chambers and faces in a hyperplane arrangement,

• usage of (commutative, two-sided) characteristic operations and the
structure theory of the Birkhoff algebra, Tits algebra, Janus algebra
to give constructive proofs of the Leray–Samelson, Borel–Hopf, Loday–
Ronco theorems, respectively.

Domain of validity. All our results are valid over a field of arbitrary char-
acteristic. A key reason for this is the existence of noncommutative zeta and
Möbius functions over any field.

Similarly, all our results (except those of an enumerative nature or per-
taining to self-duality) are valid without any finite-dimensionality assumption
on the species or on the monoids, comonoids, bimonoids involved. A key rea-
son for this is that we are working in a noncartesian setting.

New results and topics. Some important new topics and results are listed
below.

• We establish a noncommutative analogue of the Zaslavsky formula. It
involves the antipodal map on arrangements, and has connections to the
Witt identities via noncommutative Möbius inversion. These ideas are
also intimately tied to the logarithm of the antipode map of bimonoids.

• We introduce partially commutative monoids as interpolating objects
between monoids and commutative monoids. We formalize the close
parallel between the Loday–Ronco and Leray–Samelson theorems using
this approach. There is a similar parallel between Borel–Hopf and
Leray–Samelson.

• We prove a rigidity theorem for q-bimonoids when q is not a root of
unity. Setting q = 0 recovers the Loday–Ronco theorem. As a part of
this story, we introduce the bilune-incidence algebra, define the two-
sided q-zeta and q-Möbius functions therein, and use them to develop
the q-exp-log correspondence. The two-sided q-zeta function is related
to the inverse of the Varchenko matrices associated to the q-distance
function on faces.

• We establish the Hoffman–Newman–Radford rigidity theorems. They
come in different flavors; each flavor corresponds to a specific type
of zeta and Möbius function. We use conjugation by the Hoffman–
Newman–Radford isomorphisms to study the nondegeneracy of the
mixed distributive law for bicommutative bimonoids and also for q-
bimonoids for q not a root of unity.

• We study in depth the Hadamard product on species. This includes the
construction of a variety of internal homs. We introduce the bimonoid
of star families built from the internal hom for comonoids, and a similar
bimonoid built from the universal measuring comonoid, and explain
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their connection to exp-log correspondences. We also study freeness
properties of bimonoids arising as Hadamard products of bimonoids.

• We introduce the Solomon operator on the free bimonoid on a species
to give a constructive proof of the Poincaré–Birkhoff–Witt theorem.
We also give a novel proof of the Cartier–Milnor–Moore theorem by
linking the Tits algebra to the Lie-incidence algebra. The latter is an
algebra associated to the Lie operad. There is a family of isomorphisms
between the two algebras indexed by noncommutative zeta and Möbius
functions.

In particular, this includes progress on some questions raised in our mono-
graph on species and Hopf algebras [18, Questions 12.27, 12.39, 12.67].

Future directions

Coxeter species and Coxeter spaces. This monograph along with our
previous work [21] gives a glimpse into how ideas from hyperplane arrange-
ments and ideas from Hopf theory and algebraic Lie theory can interact and
enrich each other. In a follow-up work, as mentioned in the paragraphs fol-
lowing Table I, we plan to:

• develop the notions of Coxeter bimonoids and Coxeter bialgebras, and
the theory of Fock functors which relates the two notions,

• compare this picture with the classical picture of Joyal bimonoids,
graded bialgebras and Fock functors, and

• in particular, explain how results about Coxeter bimonoids and Coxeter
bialgebras can be used to deduce the corresponding results about Joyal
bimonoids and graded bialgebras.

To deal with Coxeter species and Coxeter spaces, one needs to work with an
invariant noncommutative zeta or Möbius function. This exists iff the field
characteristic does not divide the order of the Coxeter group [21, Lemma
16.42]. This is how field characteristic issues eventually enter the picture.

The connection between Joyal species and species for arrangements is
briefly indicated in Section 2.16 and Section 17.7. Similarly, the connection
between formal power series and lune-incidence algebras is indicated in Sec-
tion 9.8, see in particular Table 9.2.

Coxeter operads. In a similar vein, we plan to develop the notion of Coxeter
operad mentioned in Table II. This will include aspects of homological algebra
such as the Koszul theory of Coxeter operads, with the basic object being
a differential graded Coxeter species. Given the wide applicability of May
operads, this line of research looks very promising.

The connection between May operads and operads for arrangements is
briefly indicated in Section 4.6.

Semigroup theory. Our notions of species and monoids, comonoids, bimon-
oids therein are defined for a fixed real hyperplane arrangement, with a central
role played by the Tits monoid. These notions continue to make sense when
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the Tits monoid is replaced by an arbitrary left regular band (LRB) (Sec-
tion 3.9) and large parts of the theory extend to this setting. For instance,
see Section 4.14 for operads, Section 9.2.8 for the exp-log correspondence,
Section 13.5.2 for the Leray–Samelson and Borel–Hopf theorems, Section 17.8
for the Poincaré–Birkhoff–Witt and Cartier–Milnor–Moore theorems. This
line of study can lead to a better understanding of the interactions between
Hopf theory and semigroup theory.

We point out a few situations where the generalization from arrangements
to LRBs is not clear. There is no notion of opposite for an arbitrary LRB,
so most of the descent, lune, Witt identities (Section 1.7) do not work as
stated. This issue carries forward to the noncommutative Zaslavsky formula
(Section 1.8) and to the antipode (Chapter 12). The orientation space and
signature space do not work as stated. In particular, this affects all signed
aspects of the theory such as signed commutative monoids (Section 2.5), the
monad E (Section 3.2.6), signed Lie monoids (Section 16.7). In a similar vein,
results such as rigidity of q-bimonoids for q not a root of unity (Theorem 13.77)
rely on Theorem 1.10 on Varchenko matrices which is specific to arrangements.
The presentation of the Lie operad given in Example 4.12 does not hold for
an arbitrary LRB. So to define LRB Lie monoids (Section 17.8), one cannot
directly use the Lie bracket (generator-relation) approach (Section 16.1.2);
however, the operadic approach does work (Section 16.1.1). There are similar
issues with the results in Section 2.12 which are linked to the presentations
of the commutative and associative operads (Examples 4.9 and 4.10).

We mention that abstract distance functions on LRBs were introduced in
[21, Appendix E] and deserve to be studied further.
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