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Introduction

We now describe the contents of the monograph in more detail along with
pointers to important results. For organizational purposes, the text has been
divided into three parts.

Part I

We begin Part I with a brief review of hyperplane arrangements. We
then introduce the central objects, namely, species and monoids, comonoids
and bimonoids for hyperplane arrangements, and initiate their basic study.
We also briefly consider operads in the setting of hyperplane arrangements,
and explain their connection to bimonoids. Monads and monoidal categories
provide the categorical spine for these considerations.

Hyperplane arrangements. (Chapter 1.) A hyperplane arrangement A is
a finite collection of hyperplanes in a real vector space. We assume that all
hyperplanes pass through the origin. These hyperplanes break the space into
subsets called faces. Let Σ[A] denote the set of faces. It is a graded poset
under inclusion. We usually denote faces by the letters A, B, F , G, H, K.
There is a unique minimum face called the central face. We denote it by O.
Maximal faces are called chambers, and we denote them by the letters C, D,
E. The set of faces Σ[A] is also a monoid. We call it the Tits monoid. The
product of F and G is denoted FG and called the Tits product. Further, the
product of a face and a chamber is a chamber, so the set of chambers Γ[A] is
a left Σ[A]-set.

Subspaces obtained by intersecting hyperplanes are called flats. Let Π[A]
denote the set of flats. It is a graded lattice under inclusion. We usually
denote flats by the letters X, Y, Z, W. The minimum and maximum flats are
denoted ⊥ and ⊤. The set of flats Π[A] is a commutative monoid under the
join operation, that is, the product of X and Y is X ∨ Y. We call this the
Birkhoff monoid.

Every face has a support given by its linear span. It is a flat. We write
s(F ) for the support of F . The map s : Σ[A] → Π[A] which sends F to s(F )
is a morphism of monoids.

A biface is a pair (F, F ′) of faces such that F and F ′ have the same
support. The Janus monoid J[A] consists of bifaces (F, F ′) under the product
(F, F ′)(G,G′) := (FG,G′F ′). It is the fiber product of the Tits monoid and
its opposite monoid over the Birkhoff monoid.
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2 INTRODUCTION

The Tits algebra, Birkhoff algebra, Janus algebra are obtained from the
corresponding monoids by linearization over a field k. We denote them by
Σ[A], Π[A], J[A], respectively. Similarly, linearizing the set of chambers yields
a left module Γ[A] over the Tits algebra. The space of chambers Γ[A] contains
an important subspace, namely, the space of Lie elements which we denote
by Lie[A]. Similarly, Σ[A] contains the space of Zie elements which we denote
by Zie[A].

For a flat X of A, one can define the arrangement under X denoted AX

and the arrangement over X denoted AX. Further, for X ≤ Y, we have
the arrangement AY

X obtained by first going under Y and then over X, or
equivalently, by first going over X and then under Y.

We make a note of some other important algebraic objects. The flat-

incidence algebra is the incidence algebra of the lattice of flats. It contains
the zeta function ζ and Möbius function μ. The lune-incidence algebra is a
certain reduced incidence algebra of the poset of faces. It contains noncom-
mutative zeta functions ζ defined by the lune-additivity formula (1.42) and
noncommutative Möbius functions µ defined by the noncommutative Weis-
ner formula (1.44). A related object that we introduce is the bilune-incidence
algebra. For q not a root of unity, it contains the two-sided q-zeta function ζq

defined by the two-sided q-lune-additivity formula (1.66) and the two-sided
q-Möbius function µq defined by the two-sided q-Weisner formula (1.67).

The Zaslavsky formula for chamber enumeration is recalled in (1.84).
We then establish noncommutative analogues of this formula, see (1.88) and
(1.89). They involve noncommutative zeta and Möbius functions.

Species. (Chapter 2.) Fix a real hyperplane arrangement A, and a field k. A
species p is a family of k-vector spaces p[F ], one for each face F of A, together
with linear maps

βG,F : p[F ] → p[G],

whenever F and G have the same support, such that

βH,F = βH,GβG,F and βF,F = id,

the former whenever F , G, H have the same support, and the latter for every
F . (The letter β suggests a connection to braiding in monoidal categories.)
A map of species f : p → q is a family of linear maps

fF : p[F ] → q[F ],

one for each face F , such that fGβG,F = βG,F fF whenever F and G have the
same support. This defines the category of species.

Species can also be formulated using flats instead of faces as follows
(Proposition 2.5). A species p is a family p[X] of k-vector spaces, one for
each flat X of A. A map of species f : p → q is a family of linear maps
fX : p[X] → q[X], one for each flat X.

Either formulation can be used depending on convenience of the context.
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INTRODUCTION 3

Examples of species. (Chapter 7.) The exponential species E is one of
the most basic and important examples of a species. It is defined by setting
E[X] := k for all flats X. Alternatively, put E[A] := k for all faces A and
βB,A = id for all faces A and B of the same support. We mention that E has
a signed analogue E− which we call the signed exponential species.

The species of flats Π is defined by setting the component Π[X] to be
the linear span of flats greater than X. For clarity, the basis element of Π[X]
indexed by the flat Y is denoted HY/X.

The species of chambers Γ is defined by setting the component Γ[A] to be
the linear span of chambers greater than A. For clarity, the basis element of
Γ[A] indexed by the chamber C is denoted HC/A. For faces A and B of the
same support,

βB,A : Γ[A] → Γ[B], HC/A �→ HBC/B ,

where BC denotes the Tits product of B and C.
The species of faces Σ is defined in a similar manner by replacing chambers

by arbitrary faces. The inclusion map Γ →֒ Σ is a map of species.
Many more examples are discussed in the text such as the species of

charts, top-nested faces, top-lunes, bifaces, and so on.

Bimonoids. (Chapters 2 and 7.) A monoid, denoted (a, μ), is a species a

equipped with linear maps

μF
A : a[F ] → a[A],

one for each pair of faces A ≤ F , such that

μBF
B βBF,F = βB,Aμ

F
A, μG

A = μF
Aμ

G
F , μA

A = id .

These are the naturality, associativity, unitality axioms, respectively. In the
naturality axiom, A and B have the same support and A ≤ F , which implies
B and BF have the same support and B ≤ BF . In the associativity axiom,
A ≤ F ≤ G. In the unitality axiom, A is an arbitrary face. We refer to μ as
the product of a.

A comonoid, denoted (c,∆), is defined dually using linear maps

∆F
A : c[A] → a[F ]

for A ≤ F . We refer to ∆ as the coproduct of c.
A bimonoid is a triple (h, μ,∆), where h is a species, (h, μ) is a monoid,

(h,∆) is a comonoid, and

∆G
Aμ

F
A = μGF

G βGF,FG∆
FG
F

for any faces A ≤ F and A ≤ G. This is the bimonoid axiom. Note very
carefully how the product of the Tits monoid enters into the axiom. The idea
is to change a product followed by a coproduct to a coproduct followed by
a product. However, since the Tits monoid is not commutative, FG 	= GF
in general. Nonetheless, FG and GF have the same support, so they can
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4 INTRODUCTION

be related by β, and this intervenes in the axiom. The axiom is shown in
diagrammatic form below.

h[FG] h[GF ]

h[F ] h[G]

h[A]

βGF,FG

µGF
G

µF
A

∆FG
F

∆G
A

More generally, for any scalar q, we define a q-bimonoid proceeding as
above, but with the bimonoid axiom deformed to

∆G
Aμ

F
A = qdist(FG,GF )μGF

G βGF,FG∆
FG
F ,

where dist(FG,GF ) is the number of hyperplanes which separate the faces
FG and GF . Setting q = 1 recovers the bimonoid axiom. Other parameter
values of immediate interest are q = −1 and q = 0. We use the term signed

bimonoid to refer to a (−1)-bimonoid.

The species of chambers Γ carries the structure of a bimonoid, with prod-
uct and coproduct defined by

μF
A : Γ[F ] → Γ[A] ∆F

A : Γ[A] → Γ[F ]

HC/F �→ HC/A HC/A �→ HFC/F .

More generally, Γ becomes a q-bimonoid if the coproduct is deformed to

HC/A �→ qdist(C,FC)
HFC/F .

To show dependence on q, we denote it by Γq. We call it the q-bimonoid of
chambers.

The bimonoid of faces Σ and its q-analogue can be defined in a similar
manner by replacing chambers by faces. The inclusion map Γ →֒ Σ is a
morphism of bimonoids.

We mention in passing that one can also define the q-bimonoid of top-
nested faces and the q-bimonoid of bifaces.

(Co, bi)commutative bimonoids. (Chapters 2 and 7.) A monoid (a, μ) is
commutative if

μF
A = μG

AβG,F

whenever A ≤ F and A ≤ G, and F and G have the same support. This is
the commutativity axiom. Dually, a comonoid (c,∆) is cocommutative if

∆G
A = βG,F∆

F
A

whenever A ≤ F and A ≤ G, and F and G have the same support. This is
the cocommutativity axiom. A bimonoid can be commutative, cocommutative,
both or neither. If it is both, then we use the term bicommutative.

There is also a notion of a signed commutative monoid, and dually that
of a signed cocommutative comonoid. Moreover, the two can be combined to
yield the notion of a signed bicommutative signed bimonoid.
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INTRODUCTION 5

The bimonoid of chambers Γ is cocommutative but not commutative.
Similarly, Γ−1 is signed cocommutative but not signed commutative. Similar
remarks apply to the bimonoid of faces Σ.

Commutativity can also be formulated directly in terms of flats as follows
(Propositions 2.20, 2.21, 2.22).

A commutative monoid, denoted (a, μ), is a species a equipped with linear
maps

μX
Z : a[X] → a[Z],

one for each pair of flats Z ≤ X, such that

μX
Z = μY

Zμ
X
Y and μZ

Z = id,

the former for every Z ≤ Y ≤ X, and the latter for every Z. These are the
associativity and unitality axioms, respectively. A morphism of commutative
monoids f : a → b is a map of species f such that fZμ

X
Z = μX

Z fX for every
Z ≤ X. This defines the category of commutative monoids.

A cocommutative comonoid, denoted (c,∆), is defined dually using linear
maps

∆X
Z : c[Z] → c[X]

for Z ≤ X.
A bicommutative bimonoid is a triple (h, μ,∆), where h is a species, (h, μ)

is a commutative monoid, (h,∆) is a cocommutative comonoid, and

∆Y
Zμ

X
Z = μX∨Y

Y ∆X∨Y
X

for any flats Z ≤ X and Z ≤ Y. This is the bicommutative bimonoid axiom. It
allows us to change a product followed by a coproduct to a coproduct followed
by a product. Note very carefully how the product of the Birkhoff monoid
(join operation on flats) has entered into the axiom. The axiom is shown in
diagrammatic form below.

h[X ∨Y]

h[X] h[Y]

h[Z]

µY∨X

Y

µX

Z

∆X∨Y

X

∆Y

Z

A morphism of bicommutative bimonoids is a map of the underlying species
such that fZμ

X
Z = μX

Z fX and fX∆
X
Z = ∆X

Z fZ for Z ≤ X.

The exponential species E is a bicommutative bimonoid with μX
Z = id

and ∆X
Z = id. We mention that the signed exponential species E− carries the

structure of a signed bicommutative signed bimonoid.
The species of flats Π is a bicommutative bimonoid, with product and

coproduct defined by

μY
Z : Π[Y] → Π[Z] ∆Y

Z : Π[Z] → Π[Y]

HX/Y �→ HX/Z HX/Z �→ HX∨Y/Y.
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6 INTRODUCTION

Duality. (Chapter 2.) The duality operation on vector spaces extends to
species. The dual p∗ of a species p is defined by p∗[X] := p[X]∗. Duality
interchanges (commutative) monoids and (cocommutative) comonoids, and
preserves bimonoids. Thus, if h is a bimonoid, then so is h∗.

A bimonoid is self-dual if it is isomorphic to its own dual. For instance,
E and Π are self-dual, but Γ and Σ are not (since Γ is cocommutative but not
commutative, while Γ∗ shows the opposite behavior).

Monads. (Chapter 3.) (Co, bi)monads on a category and (co, bi)lax functors
linking them are reviewed in Appendix C. We recall from Definition C.4 that
a bimonad is a triple (V,U , λ) consisting of a monad V, a comonad U , and a
mixed distributive law λ : VU → UV linking them. There are also notions of
monad algebra, comonad coalgebra and bimonad bialgebra.

We construct a bimonad on species which we denote by (T , T ∨, λ) (The-
orem 3.4). A T -algebra is the same as a monoid, a T ∨-coalgebra is the same
as a comonoid, and a (T , T ∨, λ)-bialgebra is the same as a bimonoid (Propo-
sition 3.5). Moreover, for any scalar q, one can deform the mixed distributive
law λ to λq such that the resulting bialgebras are q-bimonoids (Theorem 3.6).

Similarly, we construct another bimonad on species denoted (S,S∨, λ). A
S-algebra is the same as a commutative monoid, a S∨-coalgebra is the same
as a cocommutative comonoid, and a (S,S∨, λ)-bialgebra is the same as a
bicommutative bimonoid. The precise connection between this bimonad and
the previous one is summarized in Proposition 3.13.

Operads. (Chapter 4.) A dispecies p is a family p[X,Y] of k-vector spaces,
one for each pair (X,Y) of flats with X ≤ Y. The category of dispecies carries
a monoidal structure. For dispecies p and q, define the dispecies p ◦ q by

(p ◦ q)[X,Z] :=
⊕

Y:X≤Y≤Z

p[X,Y]⊗ q[Y,Z].

We refer to this operation as the substitution product of p and q. The unit
object is the dispecies x defined by x[X,Y] = k when X = Y, and 0 otherwise.

A monoid in this monoidal category is an operad. Explicitly, an operad
is a dispecies a equipped with linear maps

γ : a[X,Y]⊗ a[Y,Z] → a[X,Z] and η : k → a[X,X],

the former for each X ≤ Y ≤ Z and the latter for each X, subject to associa-
tivity and unitality axioms.

The category of species is a left module category over the category of
dispecies as follows. For a dispecies p and a species m, define the species
p ◦m by

(p ◦m)[X] :=
⊕

Y:Y≥X

p[X,Y]⊗m[Y].

This yields the notion of a left a-module for any operad a. Explicitly, a left
a-module is a species m equipped with linear maps

a[X,Y]⊗m[Y] → m[X],
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INTRODUCTION 7

one for each X ≤ Y, subject to associativity and unitality axioms. The free
left a-module over a species m is given by a ◦m (Proposition 4.23).

A comonoid in the monoidal category of dispecies is a cooperad. It makes
sense to talk of left comodules over a cooperad. Further, there is a duality
functor on dispecies which interchanges operads and cooperads (and modules
and comodules). A bioperad is a self-dual notion. It is a triple (a, c, λ)
consisting of an operad a, a cooperad c, and a mixed distributive law λ :
a ◦ c → c ◦ a linking them. By combining operad-modules and cooperad-
comodules, we obtain the notion of a bioperad-bimodule.

Commutative operad and associative operad. (Chapter 4.) The com-

mutative operad Com is defined by Com[X,Y] := k for all X ≤ Y, with
structure maps γ and η being identities. A left module over Com is precisely
a commutative monoid. The commutative operad has a signed analogue de-
noted Com−. Left modules over it are signed commutative monoids.

The associative operad As is defined as follows. For any X ≤ Y, set
As[X,Y] := Γ[AY

X], the space of chambers of the arrangement AY
X. Equiv-

alently, it is the linear span of symbols HF/A with A ≤ F , s(A) = X and
s(F ) = Y, subject to the relation HF/A = HBF/B , whenever A and B have the
same support. The structure map is given by

γ : As[X,Y]⊗As[Y,Z] → As[X,Z], HF/A ⊗ HG/F �→ HG/A,

where A, F , G are faces with support X, Y, Z, respectively, and A ≤ F ≤ G.
A left module over As is precisely a monoid, with HF/A corresponding to the

product component μF
A of the monoid.

Dualizing the commutative and associative operads yields the cooperads
Com∗ andAs∗. Left comodules over them are cocommutative comonoids and
comonoids, respectively. Further, there is a mixed distributive law λ linking
As and As∗ such that left bimodules over the bioperad (As,As∗, λ) are pre-
cisely bimonoids. Moreover, this law can be deformed by a scalar q such that
the resulting left bimodules are q-bimonoids. Similarly, there is a bioperad
(Com,Com∗, λ) whose left bimodules are bicommutative bimonoids.

We now tie this with the earlier discussion on bimonads. A (co, bi)operad
gives rise to a (co, bi)monad on species, and moreover, left (co, bi)modules
over the (co, bi)operad are the same as (co, bi)algebras over the corresponding
(co, bi)monad. The point is that the bioperad (As,As∗, λ) yields the bimonad
(T , T ∨, λ) (Theorem 4.33). Similarly, (Com,Com∗, λ) yields the bimonad
(S,S∨, λ).

Lie operad. (Chapter 4.) The Lie operad Lie is defined as a suboperad of the
associative operadAs as follows. For any X ≤ Y, set Lie[X,Y] := Lie[AY

X], the
space of Lie elements of the arrangement AY

X. Recall that this is a subspace
of Γ[AY

X]. The point is that the operad structure of As restricts to these
subspaces and yields a suboperad.
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8 INTRODUCTION

Quadratic operads. (Chapter 4.) The free operad on a dispecies e is
given by

F◦(e) := +
n≥0

e◦n,

where e◦n is the n-fold substitution product of e with itself, and + denotes
the coproduct in the category of dispecies. Explicitly,

F◦(e)[X,Z] =
⊕

X≤Y1≤···≤Yk≤Z

e[X,Y1]⊗ e[Y1,Y2]⊗ · · · ⊗ e[Yk,Z],

where the sum is over all multichains in the interval [X,Z].
An operad a is quadratic if it can be written as a quotient of a free operad

F◦(e) by an ideal generated by a subdispecies r of e ◦ e. We denote this by
a = 〈e | r〉. We use the term binary quadratic if further e[X,Y] = 0 unless
Y covers X in the lattice of flats. For any quadratic operad, one can talk
about its oriented dual which is again a quadratic operad. The commutative,
associative, Lie operads are binary quadratic. For the Lie operad, antisym-
metry is incorporated in e, while the Jacobi identities are in r. The oriented
quadratic dual of the associative operad is itself, while the commutative and
Lie operads are oriented quadratic duals of each other (Proposition 4.14).

Part II

In Part II, we continue the development of the basic theory of bimonoids.
We discuss the primitive filtration of a comonoid and dually the decomposable
filtration of a monoid. We then discuss in detail various universal construc-
tions starting with the free monoid and cofree comonoid on a species. We
study the Hadamard functor and its specialization to the signature functor.
The latter sets up an equivalence between the categories of bimonoids and
signed bimonoids. We develop exp-log correspondences of a bimonoid by
employing noncommutative zeta and Möbius functions. We forge a precise
connection of bimonoids with modules over the Birkhoff algebra, Tits alge-
bra, Janus algebra by considering characteristic operations on bimonoids. In
our setting, the antipode of a bimonoid always exists and we study it using
the Takeuchi formula.

Primitive filtrations and decomposable filtrations. (Chapters 5 and
7.) Every comonoid c has a primitive part P(c). It is a species whose A-
component consists of those elements x ∈ c[A] such that ∆F

A(x) = 0 for all
F > A. More generally, one can define a filtration of c whose first term is
P(c). This is the primitive filtration of c. It turns c into a filtered comonoid.
Dually, every monoid a has a decomposable part D(a), and more generally,
a decomposable filtration which turns it into a filtered monoid. We refer to
Q(a) := a/D(a) as the indecomposable part of a.

Just like faces and chambers, Lie and Zie elements of an arrangement give
rise to the Lie species and Zie species. The primitive part of the bimonoid
of chambers Γ is the Lie species (Lemma 7.64), while that of the bimonoid
of faces Σ is the Zie species (Lemma 7.69). We refer to these results as the
Friedrichs criteria for Lie and Zie elements.
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INTRODUCTION 9

A map from a species to a comonoid is a coderivation if it maps into the
primitive part of that comonoid. Dually, a map from a monoid to a species is
a derivation if it factors through the indecomposable part of that monoid. A
(co)derivation is the same as a (co)monoid morphism with the species viewed
as a (co)monoid with all its nontrivial (co)product components being 0.

For a q-bimonoid, one can consider the primitive as well as the decom-
posable filtrations. Both of them turn it into a filtered q-bimonoid. Thus,
for either filtration, one can consider the corresponding associated graded q-
bimonoid. When q = 1, the associated graded bimonoid wrt the primitive
filtration is commutative, and wrt the decomposable filtration is cocommuta-
tive (Propositions 5.62 and 5.65). These results have a signed analogue when
q = −1. We call these the Browder–Sweedler commutativity result and the
Milnor–Moore cocommutativity result, respectively.

For a bimonoid, there is a canonical map from its primitive part to its
indecomposable part, see (5.50). This map is surjective iff the bimonoid is
cocommutative, injective iff the bimonoid is commutative, and bijective iff the
bimonoid is bicommutative (Proposition 5.56). In particular, for the bimonoid
of faces Σ, this map is surjective. As an application, we deduce the existence
of special Zie elements (Exercise 7.71).

Free monoid and free commutative monoid. (Chapters 6 and 7.) For a
species p, define the species S(p) by

S(p)[Z] :=
⊕

X: Z≤X

p[X].

It carries the structure of a commutative monoid: For Z ≤ Y, note that the
summands in S(p)[Y] are all contained in S(p)[Z], and we define μY

Z to be the
canonical inclusion. In fact, S(p) is the free commutative monoid on p. In
other words, S(p) = Com ◦ p, where Com is the commutative operad.

Similarly, for a species p, define the species T (p) by

T (p)[A] :=
⊕

F :A≤F

p[F ].

The map βB,A is defined by summing the maps βBF,F of the species p over
all F ≥ A. Further, T (p) is a monoid with μF

A defined to be the canonical
inclusion. This is the free monoid on p. In other words, T (p) = As◦p, where
As is the associative operad.

These constructions can be extended further. Let c be a comonoid. Then
the coproduct of c induces coproducts on S(c) and T (c) turning them into
bimonoids. Examples include the bimonoids that we have discussed earlier,
namely,

S(x) = E, T (x) = Γ, S(E) = Π, T (E) = Σ.

Here x denotes the species whose component x[Y] is k if Y = ⊤, and 0 other-
wise. We view it as a comonoid in the only way possible with ∆⊤

⊤ = id and
the remaining coproduct components being zero.

In the case of T (c), one can do more. Its coproduct can be deformed
using a scalar q such that it becomes a q-bimonoid. To show dependence
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10 INTRODUCTION

on q, we write Tq(c). For instance, Tq(x) = Γq, the q-bimonoid of chambers.
The universal property of Tq(c) is given in Theorem 6.6. The dual version
is given in Theorem 6.13. These results can be seen as formal consequences
of the existence of the bimonad (T , T ∨, λq). Related universal properties
involving the primitive part functor and indecomposable part functor are given
in Theorems 6.31 and 6.34, respectively.

We mention that for a species p, one can also construct the free signed
commutative monoid. We denote it by E(p). When p = x, we obtain the
signed exponential species E−.

Hadamard product. (Chapter 8.) For species p and q, their Hadamard

product p× q is given by

(p× q)[F ] := p[F ]⊗ q[F ].

This defines a symmetric monoidal structure on the category of species. Let
hom×(p, q) denote its internal hom. For a comonoid c and monoid a, the
species hom×(c, a) carries the structure of a monoid, while hom×(a, c) carries
the structure of a comonoid. We refer to them as the convolution monoid and
coconvolution comonoid, respectively. Combining the two constructions, for
bimonoids h and k, we obtain a bimonoid hom×(h, k). This is the biconvolution
bimonoid. When h = k, we write end×(h) for hom×(h, h). A summary of these
and related objects is given in Table 8.1.

The Hadamard product gives rise to a bilax functor between bimonads
(Theorem 8.4). Hence, it preserves monoids, comonoids, bimonoids. Thus,
we can consider its internal hom in these categories as well. Let C(c, d) denote
the internal hom in the category of comonoids. When c is a cocommutative
comonoid, and k is a bimonoid, C(c, k) carries the structure of a bimonoid. We
refer to C(c, k) as the bimonoid of star families (Section 8.4). If, in addition,
c carries the structure of a bimonoid, then C(c, k) can be realized as a subbi-
monoid of the biconvolution bimonoid hom×(c, k) (Lemma 8.36). There is a
similar bimonoid C(h, a) associated to a commutative monoid a and bimon-
oid h which is built out of the universal measuring comonoid (Section 8.6).
The latter allows us to enrich the category of monoids over the category of
comonoids. We describe the power and copower of this enriched category
(Propositions 8.65 and 8.67).

For any species p, we let p− := p×E−, where E− is the signed exponential
species. We refer to p− as the signed partner of p. This yields the signature

functor which sends a species to its signed partner. It induces an adjoint
equivalence between the categories of q-bimonoids and (−q)-bimonoids for
any scalar q (Corollary 8.92).

Exp-log correspondences. (Chapter 9.) The lune-incidence algebra acts
on the space of all maps from a comonoid c to a monoid a. We refer to the
action of a noncommutative zeta function ζ as an exponential, and to the
action of a noncommutative Möbius functions µ as a logarithm. This sets up
exp-log correspondences on this space of maps (Proposition 9.9). Moreover,
any logarithm of a comonoid morphism from a cocommutative comonoid to a
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