Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Historical Prologue</td>
<td>xix</td>
</tr>
<tr>
<td>1 One-Dimensional Viscoelasticity</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Constitutive Law</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Stored and Dissipated Energy</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Physical Models</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Equation of Motion</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Problems</td>
<td>17</td>
</tr>
<tr>
<td>2 Three-Dimensional Viscoelasticity</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Constitutive Law</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Stress-Strain Notation</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Equation of Motion</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Correspondence Principle</td>
<td>25</td>
</tr>
<tr>
<td>2.5 Energy Balance</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Problems</td>
<td>30</td>
</tr>
<tr>
<td>3 Viscoelastic P, SI, and SII Waves</td>
<td>32</td>
</tr>
<tr>
<td>3.1 Solutions of Equation of Motion</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Particle Motion for P Waves</td>
<td>37</td>
</tr>
<tr>
<td>3.3 Particle Motion for Elliptical and Linear S Waves</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1 Type-I or Elliptical S (SI) Wave</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2 Type-II or Linear S (SII) Wave</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Energy Characteristics of P, SI, and SII Waves</td>
<td>46</td>
</tr>
<tr>
<td>3.4.1 Mean Energy Flux (Mean Intensity)</td>
<td>46</td>
</tr>
<tr>
<td>3.4.2 Mean Energy Densities</td>
<td>50</td>
</tr>
<tr>
<td>3.4.3 Energy Velocity</td>
<td>52</td>
</tr>
<tr>
<td>3.4.4 Mean Rate of Energy Dissipation</td>
<td>53</td>
</tr>
<tr>
<td>3.4.5 Reciprocal Quality Factor, Q^{-1}</td>
<td>54</td>
</tr>
</tbody>
</table>
Contents

3.5 Viscoelasticity Characterized by Parameters for Homogeneous P and S Waves 57

3.6 Characteristics of Inhomogeneous Waves in Terms of Characteristics of Homogeneous Waves 59
 3.6.1 Wave Speed and Maximum Attenuation 59
 3.6.2 Particle Motion for P and SI Waves 64
 3.6.3 Energy Characteristics for P, SI, and SII Waves 66

3.7 P, SI, and SII Waves in Low-Loss Viscoelastic Media 75

3.8 P, SI, and SII Waves in Media with Equal Complex Lamé Parameters 82

3.9 P, SI, and SII waves in a Standard Linear Solid 84

3.10 Displacement and Volumetric Strain 86
 3.10.1 Displacement for General P and SI Waves 86
 3.10.2 Volumetric Strain for a General P Wave 92
 3.10.3 Simultaneous Measurement of Volumetric Strain and Displacement 93

3.11 Problems 96

4 Framework for Single-Boundary Reflection-Refraction and Surface-Wave Problems 98

4.1 Specification of Boundary 98

4.2 Specification of Waves 100

4.3 Problems 106

5 General P, SI, and SII Waves Incident on a Viscoelastic Boundary 107

5.1 Boundary-Condition Equations for General Waves 107

5.2 Incident General SI 109
 5.2.1 Specification of Incident General SI Wave 109
 5.2.2 Propagation and Attenuation Vectors; Generalized Snell’s Law 111
 5.2.3 Amplitude and Phase 114
 5.2.4 Conditions for Homogeneity and Inhomogeneity 115
 5.2.5 Conditions for Critical Angles 120

5.3 Incident General P Wave 123
 5.3.1 Specification of Incident General P Wave 123
 5.3.2 Propagation and Attenuation Vectors; Generalized Snell’s Law 125
 5.3.3 Amplitude and Phase 126
 5.3.4 Conditions for Homogeneity and Inhomogeneity 127
 5.3.5 Conditions for Critical Angles 128
Contents xi

5.4 Incident General SII Wave 130
 5.4.1. Specification of Incident General SII Wave 130
 5.4.2 Propagation and Attenuation Vectors; Generalized Snell’s Law 131
 5.4.3 Amplitude and Phase 133
 5.4.4 Conditions for Homogeneity and Inhomogeneity 134
 5.4.5 Conditions for Critical Angles 134
 5.4.6 Energy Flux and Energy Flow Due to Wave Field Interactions 135

5.5 Problems 141

6 Numerical Models for General Waves Reflected and Refracted at Viscoelastic Boundaries 143
 6.1 General SII Wave Incident on a Moderate-Loss Viscoelastic Boundary (Sediments) 144
 6.1.1 Incident Homogeneous SII Wave 145
 6.1.2 Incident Inhomogeneous SII Wave 151
 6.2 P Wave Incident on Low-Loss Viscoelastic Boundary (Water, Stainless-Steel) 155
 6.2.1 Reflected and Refracted Waves 156
 6.3 Experimental Confirmation of Viscoelastic Wave Theory 163
 6.4 Viscoelastic Reflection Coefficients for Ocean, Solid-Earth Boundaries 165
 6.5 Problems 168

7 General SI, P, and SII Waves Incident on a Viscoelastic Free Surface 170
 7.1 Boundary-Condition Equations 170
 7.2 Incident General SI Wave 172
 7.2.1 Reflected General P and SI Waves 172
 7.2.2 Displacement and Volumetric Strain 176
 7.2.3 Numerical Model for Low-Loss Media (Weathered Granite) 181
 7.3 Incident General P Wave 191
 7.3.1 Reflected General P and SI Waves 191
 7.3.2 Numerical Model for Low-Loss Media (Pierre Shale) 195
 7.4 Incident General SII Wave 200
 7.5 Problems 202

8 Rayleigh-Type Surface Wave on a Viscoelastic Half Space 203
 8.1 Analytic Solution 203
 8.2 Physical Characteristics 207
Contents

8.2.1 Velocity and Attenuation Coefficient 207
8.2.2 Propagation and Attenuation Vectors for Component Solutions 208
8.2.3 Displacement and Particle Motion 209
8.2.4 Volumetric Strain 214
8.2.5 Media with Equal Complex Lame Parameters \((\lambda = \mu)\) 216

8.3 Numerical Characteristics of Rayleigh-Type Surface Waves 222
8.3.1 Characteristics at the Free Surface 224
8.3.2 Characteristics versus Depth 228

8.4 Problems 239

9 General SII Waves Incident on Multiple Layers of Viscoelastic Media 241
9.1 Analytic Solution (Multiple Layers) 242
9.2 Analytic Solution (One Layer) 249
9.3 Numerical Response of Viscoelastic Layers (Elastic, Earth’s Crust, Rock, Soil) 250
9.4 Problems 256

10 Love-Type Surface Waves in Multilayered Viscoelastic Media 258
10.1 Analytic Solution (Multiple Layers) 258
10.2 Displacement (Multiple Layers) 261
10.3 Analytic Solution and Displacement (One Layer) 263
10.4 Numerical Characteristics of Love-Type Surface Waves 266
10.5 Problems 274

11 General Viscoelastic Ray Theory 276
11.1 General SII Rays in Horizontal Layered Viscoelastic Media 277
11.1.1 Viscoelastic Ray Parameters for Phase and Attenuation 287
11.1.2 Viscoelastic Solution of Forward Ray-Tracing Problem 289
11.1.3 Ray-Path, Wave-Propagation, and Travel-Time Characteristics 294
11.1.4 Amplitude Attenuation Characteristics 302
11.1.5 General Viscoelastic Head Waves 306
11.1.6 Critical, Reversal, and Turning Points for Viscoelastic Rays 316
11.1.7 Computation Steps (Forward Ray-Tracing Algorithm) 323
11.1.8 Ray Characteristics in a Surface Layer 328
11.1.9 Ray Characteristics in Underlying Layers; “Wide” Angle Refractions across Anelastic Boundaries (Earth’s Mantle, Rock, Soil) 332
Contents

11.2 General SII Rays in Horizontal Viscoelastic Media with Vertical Material Gradients 339
 11.2.1 Viscoelastic Ray Parameters for Phase and Attenuation 341
 11.2.2 Viscoelastic Solution of Forward Ray-tracing Problem 342
 11.2.3 Ray-Path, Wave-Propagation, and Travel-Time Characteristics 345
 11.2.4 Amplitude Attenuation Characteristics 350
 11.2.5 Critical, Reversal, and Turning Points for Viscoelastic Rays 352

11.3 General SII Rays in Spherical Layered Viscoelastic Media 355
 11.3.1 Viscoelastic Ray Parameters for Phase and Attenuation 360
 11.3.2 Viscoelastic Solution of Forward Ray-Tracing Problem 361
 11.3.4 Ray-Path, Wave-Propagation, and Travel-Time Characteristics 364
 11.3.4 Amplitude-Attenuation Characteristics 371
 11.3.5 General Viscoelastic Head Waves (Spherical Layers) 374
 11.3.6 Critical, Reversal, and Turning Points for Viscoelastic Rays 376

11.4 General SII Rays in Spherical Viscoelastic Media with Radial Material Gradients 379
 11.4.1 Viscoelastic Ray Parameters for Phase and Attenuation 381
 11.4.2 Viscoelastic Solution of Forward Ray-tracing Problem 382
 11.4.3 Ray-Path, Wave-Propagation, and Travel-Time Characteristics 384
 11.4.4 Amplitude-Attenuation Characteristics 392
 11.4.5 Critical, Reversal, and Turning Points for Viscoelastic Rays 394

11.5 Forward Ray-Tracing Algorithms and Earth-Flattening Transformations for Horizontal and Spherical Viscoelastic Media 397

11.6 Inverse-Problem Solutions for Viscoelastic Media 408
 11.6.1 Horizontal Media (Single and Multiple Layers) 409
 11.6.1.1 Viscoelastic Material Parameters Inferred for Single Layer from Reflected Waves 409
 11.6.1.2 Viscoelastic Material Parameters Inferred for Multiple Layers from Reflected Waves 413
 11.6.1.3 Viscoelastic Material Parameters Inferred for Multiple Layers from Head Waves 416
 11.6.2 Horizontal and Spherical Media with Material Gradients (Solution of Viscoelastic Herglotz-Wiechert Integral) 418
 11.6.2.1 Viscoelastic Material Parameters Inferred for Half Space with Vertical Material Gradients 418
 11.6.2.2 Viscoelastic Material Parameters Inferred for Sphere with Radial Material Gradients 423

11.7 Implications of Using Elastic Models to Describe General Rays in Anelastic Viscoelastic Media 426
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8 Problems</td>
<td>428</td>
</tr>
<tr>
<td>12 Appendices</td>
<td></td>
</tr>
<tr>
<td>12.1 Appendix 1 – Properties of Riemann-Stieltjes Convolution Integral</td>
<td>433</td>
</tr>
<tr>
<td>12.2 Appendix 2 – Vector and Displacement-Potential Identities</td>
<td>433</td>
</tr>
<tr>
<td>12.2.1 Vector Identities</td>
<td>433</td>
</tr>
<tr>
<td>12.2.2 Displacement-Potential Identities</td>
<td>434</td>
</tr>
<tr>
<td>12.3 Appendix 3 – Solution of the Helmholtz Equation</td>
<td>434</td>
</tr>
<tr>
<td>12.4 Appendix 4 – Roots of Squared Complex Rayleigh Equation</td>
<td>438</td>
</tr>
<tr>
<td>12.5 Appendix 5 – Complex Root for a Rayleigh-Type Surface Wave</td>
<td>440</td>
</tr>
<tr>
<td>12.6 Appendix 6 – Particle Motion Characteristics for a Rayleigh-Type Surface Wave</td>
<td>442</td>
</tr>
<tr>
<td>12.7 Appendix 7 – Characteristics of General Waves in a Viscoelastic Surface Layer</td>
<td>445</td>
</tr>
<tr>
<td>12.7.1 General SII Reflected Wave</td>
<td>445</td>
</tr>
<tr>
<td>12.7.2 General SII Head Wave</td>
<td>452</td>
</tr>
<tr>
<td>12.7.3 General SII Direct Wave</td>
<td>460</td>
</tr>
<tr>
<td>12.8 Appendix 8 – Viscoelastic Herglotz-Wiechert Integral for Spherical Media with Radial Gradients</td>
<td>465</td>
</tr>
<tr>
<td>References</td>
<td>468</td>
</tr>
<tr>
<td>Additional Reading – first edition</td>
<td>473</td>
</tr>
<tr>
<td>Additional Reading – second edition</td>
<td>474</td>
</tr>
<tr>
<td>(Observations, Empirical Interpretations, and Applications of</td>
<td></td>
</tr>
<tr>
<td>the Theory of Viscoelastic Waves in Layered Media)</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>478</td>
</tr>
</tbody>
</table>