Index

Abel, integral transform, 419
absorption, energy, viscoelastic medium
 see energy dissipation, viscoelastic waves
amplitude attenuation, along anelastic ray path, general SII wave,
 horizontal layers, 302-6
 half space, vertical gradient, 350-2
 spherical layers, 371-4
 sphere, radial gradient, 392-4
amplitude distribution, surface wave
 Love-Type, 265-6, 270, 273
 Rayleigh-Type, 211, 229-31
amplitude modulation factor, 89-91, 177
amplitude reflection, transmission coefficients
 P wave, incident on
 free surface, 199
 ocean, solid-earth boundary, 166-7
 water, stainless-steel boundary, 161,164
 SI wave, incident on free surface
 Pierre shale, 187, 189
 SII wave, incident on sediments
 homogeneous, 149
 inhomogeneous, 155
 see also energy reflection, transmission, interaction coefficients
angular distance
 spherical layers, 370-1
 sphere, radial gradient, 390-1
anelastic media, 1, 5-7, 17, 26, 34-6
angle between propagation and attenuation vectors, (gamma), 34-6, 60-1
 see also inhomogeneity, degree of;
 general P and SII waves; general SII waves
angle of incidence, defined
attenuation vector, 87
 propagation vector, 87
apparent attenuation, general
 P, 126
 SI, 113
 SII, 132
apparent phase velocity, general
 P, 126
 SI, 113
 SII, 132
attenuation coefficient, amplitude in direction of phase propagation, reflected, refracted SII, SI, P waves, 148, 154, 156, 184
maximum
 general waves, 34-7, 60, 62-3, 75-6
 homogeneous wave, 37, 60, 75-6
 low-loss error-percentages, 79-80
 one-dimensional wave, 17
 see also amplitude attenuation, along anelastic ray path
attenuation coefficient, amplitude, surface waves
 Love-Type surface wave, 260, 262-8, 266-8, 271
 Rayleigh-Type surface wave, 207-8, 217, 224-5
attenuation vector, defined
 general P, SI, SII waves, 33-7
 Love-Type surface wave, 259
 Rayleigh-Type surface wave, 204, 208-9, 217-9
 viscoelastic ray paths, 291-2, 363, 368, 389
axis ratio, elliptical particle motion, 185, 213, 228, 231-2
Benndorf relation, viscoelastic generalization, 388
body wave, 59, 118-9, 166
Index

see also general P and SI waves; general SII waves
Boltzmann, Ludwig (1844–1906), 1
Boltzmann's superposition principle, 2–3
boundary conditions
 half space, free surface, 171
 multiple layers, 241
 welded boundary, 107
boundary, viscoelastic
 ocean-solid-Earth, 165
 sediment 1-sediment 2, 145
 water-stainless-steel, 157
 welded, 98-9
bulk modulus, complex, 24, 57-8
 see also modulus
causality, principle of, 2, 19–20
compliance, complex, defined, 4
 elastic, 14
 Generalized Maxwell, 14
 Generalized Voigt, 12, 14
 Maxwell, 10,14
 Standard Linear, 11,14
viscoelastic, 4, 6, 8–9
viscous, 14
 Voigt, 10,14, equations
computation steps
 see forward ray-tracing algorithm
conservation of energy
 see energy conservation; energy balance
constitutive law, equations
 one-dimensional viscoelasticity, 2–5, 7-8
 three-dimensional viscoelasticity, 19-20, 24
convolution integral, 2–3, 19, 434
 see also Riemann–Stieltjes integral
correspondence principle, 25–6, 119-20, 276
creep function, defined, 2
 elastic, 8, 13
 Generalized Maxwell, 13
 Generalized Voigt, 11, 13
 Maxwell, 9-10,13
 Standard Linear, 11,13
tensorial, 20
viscous, 9,13
 Voigt, 10,13
critical angle, defined, 120
critical angle, conditions for incident P, 129
 SI, 121-2, 174-5
 SII, 134-5, 142
critical point, viscoelastic ray path
 horizontal layers, 316-7
 half space, vertical gradient, 353-5
 spherical layers, 376-7
 sphere, radial gradient, 395-6
cross-over distance, 311-2
damping ratio, 7, 18
dashpot, viscous, 7-9
dilatometer, 93
Dirac-delta function, 9
direct wave, surface layer, 329,
 amplitude attenuation, 330
 analytic characteristics, 456-64
 Travel time, 330
dispersion
 Love-Type surface waves, 265, 269, 272
 S waves, Standard Linear solid, 85-6
displacement potential
 see vector potential; scalar potential
displacement-potential identities, 433-4
Earth flattening transformation, 407
eccentricity, particle motion ellipse, 40, 44,
 64-5, 162
 see also general P and SI waves;
 Rayleigh-Type wave
elastic model, 7-8, 13-4
 see also compliance, modulus; creep
 function; relaxation function
elliptical particle motion, inhomogeneous waves
 P, 39-40, 64-6, 76
 Rayleigh-Type, 212-3, 442-5
 SI, 43–5, 64-6, 77
 see also particle motion
elliptical S wave, 42–3
 see also general P and SI wave, particle motion
emergence angle, 146, 148, 153-4, 157-8,
 183–4, 195, 289, 315, 324, 339, 341, 356, 381
energy balance, three-dimensional viscoelasticity, 26-31
energy flow at boundaries, 135-41, 149
energy density
see kinetic; potential; energy density loss; total energy density
energy density loss per cycle, general P, SI, SII waves, 55
energy density peak per cycle
see potential energy density, maximum
energy dissipation rate per unit volume, 27-30
energy dissipation rate per unit volume, mean,
general waves, P, SI, SII 54, 70-1, 78
homogeneous waves, P, S 54, 67-8, 71
energy intensity (flux), mean, 27-30
energy intensity (flux), mean

general waves, P, SI, 47, 68, 77
SII 47, 68, 77, 317-8, 321, 352-3, 369-70, 376, 388-9
homogeneous waves, P, S, 48, 67-8
energy interaction coefficients, incident, reflected, transmitted waves, 136-41, 149, 150, 155, 159-60, 185-6, 196
energy partition curves, 139
energy reflection, transmission, interaction coefficients for incident waves

general waves
P, 140-1
SI, 140-1
SII, 138-9
homogeneous waves
P, 160, 198
SI, 186
SII, 138, 149
inhomogeneous SII, 155
see also amplitude reflection, transmission coefficients
energy speed
homogeneous waves
P, S, 67
reflected, transmitted waves for incident waves
P, 157
SI, 183
SII, 146, 153
energy velocity, defined, 53-4
general waves
P, SI, SII, 53, 71
homogeneous waves
P, S, 53
equation of motion
one-dimensional viscoelasticity, 15-6
solution, 16-7
three-dimensional viscoelasticity, 23-5
solutions, 32-7, 40-3
equivoluminal displacement field, 33
Euler's formula, 244
forward ray-tracing algorithm (computation steps)
horizontal layers, 323-8, 399-403
half space, vertical gradient, 343-6, 404-7
spherical layers, 399-403
sphere, radial gradient, 403-7
forward ray-tracing problem, viscoelastic solution
horizontal layers, 289-94, 302-6
half space, vertical gradient, 342-5, 350-1
spherical layers, 361-4, 372-4
sphere, radial gradient, 382-4, 392-4
free surface, defined, 170
Fundamental Theorem of Algebra, 206, 438
Gauss' theorem, 28
general wave, defined, 34
general P and SI (Type-I S) waves, 33-4, 42
attenuation (coefficient), maximum, 34-7, 60-3, 82
attenuation coefficient, phase direction, 63-4
attenuation vector, 33-8, 41-5
characteristics in
low-loss viscoelastic media, 75–82
media with equal complex Lamé parameters, 82–4
Standard Linear solids, 84–6
displacement field
complex, 38, 41-2
components, radial, vertical, 88–92
physical (real), 38, 43, 86-7
displacement potential solutions, general
P waves, incident, reflected, transmitted, 99-102
energy flux, mean, 47-8, 67–9, 77
energy velocity, 52-3, 71
inhomogeneity, angle between propagation and attenuation vectors, 34-7, 60-1
kinetic energy density, mean, 50, 67-69, 78
particle motion, 37–40, 43-4, 64-6, 76-7
phase velocity (speed), 34, 58-63
potential (strain) energy density, maximum, 68, 70, 78
potential energy density, mean, 50-1, 67-70, 78
propagation vector, 33-4, 36–7
rate of energy dissipation per unit volume, mean, 54, 67-70, 78
reciprocal quality factor (Q−1), 56-7, 70, 78
total energy density, mean, 51, 67-70, 78
volumetric strain, 92-3
see also homogeneous P and S
general SII (Type II S) wave, defined, 45-6, amplitude attenuation, 302-6, 350-2, 371-3, 393-4
attenuation coefficient, maximum, 34-7, 61-3, 291-2, 344, 362-3, 383-4
attenuation coefficient, phase direction, 63-4,
attenuation vector, 33-8, 45-6, 291-2, 362, 367, 389
characteristics in
low-loss viscoelastic media, 75–82
media with equal complex Lamé parameters, 82–4
Standard Linear solids, 84-6
displacement field
complex, 45
physical (real), 45
displacement solutions, general SII waves, 102-3
displacement potential solutions, general SII waves, 99-102
energy flux, intensity, mean, 47-8, 67–9, 77, 298, 348, 368, 388-9
energy velocity, 53-4, 71
kinetic energy density, mean, 50, 67-9, 78
inhomogeneity, degree of (angle between propagation and attenuation vectors), 34-7, 60-1, 296, 347, 368, 387
particle motion, 45-6
phase velocity (speed), 34, 58, 60, 62-3, 296, 346, 366
potential energy density, maximum, 55, 68, 70, 78
potential energy density, mean, 51, 67-70, 78
rate energy dissipation per unit volume, mean, 54, 67-70, 78
ray parameter, attenuation, 289-90, 343, 362-4, 382-3
ray parameter, phase, 288, 290, 343, 362-4, 382, 382-3
ray paths, 279, 294-5, 341, 345-7, 365-7, 381, 384-6
slowness, 296, 347, 368, 388
travel distances, 298, 349-50, 369, 388-90
travel times, 299, 349, 370-1, 389-90
Generalized Maxwell model, 8-9, 12-4
see also compliance: modulus; creep function; relaxation function
Generalized Snell’s Law, incident general P, 126, 194
SI, 113-4, 174
SII, 132, 287, 340-1, 360, 381
Generalized Voigt model, 8-9, 11-4
see also compliance: modulus; creep function; relaxation function
gradients, intrinsic material parameters, viscoelastic medium
vertical gradient, half-space, 339-40, 403-7
radial gradient, sphere, 379-80, 403-7
granite, weathered, 182
head-wave angle of incidence, defined, horizontal layers, 306-7
Index

spherical layers, 374
head wave, general SII, viscoelastic ray path
horizontal layers, 306-16
 amplitude attenuation, 312, 331
 attenuation coefficient, 310-1
 attenuation vector, 310-1
 definition, 307
 distance, 311
 propagation vector, 310-1
 energy flux, mean intensity, 308
 ray parameter, attenuation, 309, 315, 332
 ray parameter, phase propagation, 309, 315, 332
 propagation vector, 310-1
 ray path, 309, 329
 slope, attenuation curve, 313
 slope, travel-time curve, 312
 slowness, 311
 travel distances, 311
 travel times, 311, 331, 335-6
 wave numbers, 309
spherical layers, 374-79
 attenuation vector, 375
 ray parameter, attenuation, 374
 ray parameter, phase, 374
 propagation vector, 375
 wave numbers, 375
Heaviside function, 3
Helmholtz equation, solutions, 32-3
general P wave, 32-4, 434-8
general S waves, 32-4, 42-4, 96, 434-8
Helmholtz theorem, 32
Helmholtz conditions, for wave propagation, 34, 281-2
Herglotz-Wiechert integral, viscoelastic solution
 half space, vertical gradient, 419-22
 sphere, radial gradient, 466-7
hll (homogeneous low-loss) model, defined, 144
homogeneous isotropic linear viscoelastic (HILV) continuum,
defined, 20
 equation of motion, 23
see also three-dimensional viscoelasticity
homogeneous P and S waves, defined 34-5
 attenuation, (coefficient) maximum, 37, 60-1, 76
 attenuation vector, 34-5, 40, 44-5
 energy speed, 48, 67
 energy velocity, 53
 existence conditions, HILV continuum, 34-5
 energy intensity (flux), mean, 48, 67
 kinetic energy density, mean, 67-8, 78
 mean intensity, magnitude of, 67-8
 particle motion, 40, 44-6, 65-6
 phase (wave) speed, 37, 58-9, 62, 64, 75, 84-5
 potential energy density, maximum, 67, 78
 potential energy density, mean, 51, 67-8, 78
 propagation vector, 34-5, 37, 40, 44-5
 rate of energy density dissipation, mean, 54, 67-8, 78
 reciprocal Q, 56-9, 74-5, 78-9, 84-5
 total energy density, mean, 52, 67-8, 78
 viscoelastic material parameters, phase speed, reciprocal Q, 57-9
 wave number, complex, 32, 37, 40, 44-5, 99
see also general P, SI, and SII waves
Hooke, Robert (1635–1703), 7
Hooke’s Law, 3

identities
 displacement-potential, 434
 wave parameter and intrinsic material parameter identities, 61-3
 vector, 433-4
inhomogeneity, degree of, general waves P, SI, 34-6, 60-1
 SII, 34-6, 296, 347, 366-7, 387, 395
inhomogeneous wave, defined, 34
see also general P and SI; general SII
Rayleigh-Type wave, Love-Type wave
irrotational displacement field, 33
intrinsic material absorption as characterized by \((Q^{-1}_k, Q_{ip}^{-1})\), 59-63, 63-84, 86-95
intrinsic material wave speed, as characterized by \((v_{HS}, v_{HP})\) 59-63, 63-84, 86-95

inverse problem, viscoelastic solution, horizontal layer, reflected wave, 409-12 multiple layers, reflected waves, 413-5 head waves, 416-7 half space, vertical gradient, 418-23 sphere, radial gradient, 423-5

kinetic energy density, 27-30
kinetic energy density, mean general waves \(P, SI, SII, 50, 69, 71, 78\) homogeneous waves \(P, S, 67, 71\)
Kramers-Kronig relation 282
Kronecker delta, 20

Lamé’s parameters, complex, 24–5
Lamé parameters, equal, characteristics of general \(P, SI, SII\) waves, 82–4 Rayleigh-Type surface wave, 219–21 linear momentum, conservation law, 15, 23 linear \(S\) wave, 45
see also general \(SII\) wave, particle motion
linear superposition, 2-3
linear viscoelasticity
see one-dimensional viscoelasticity; three-dimensional viscoelasticity
linear viscoelastic models
see viscoelastic models
Love, Augustus Edward Hough (1863–1940), 258
Love-Type surface wave attenuation coefficient, 260, 262, 268, 271 analytic solution viscoelastic media, 261-6 elastic media, 266 attenuation vector, 259 boundary conditions, 259 dispersion, 265

Index 483

displacement solution \(^{th}\) layer, assumed 258-9
notation, multilayered media 258-9
numerical solutions, method, 267 attenuation coefficient, normalized 267-8, 271 attenuation curves, 268, 271 amplitude distribution curves, 270, 273 dispersion curves, 269, 272 intrinsic material parameters, 267 modes, fundamental, 1st higher, 267-73
displacement, 262-3, 265-6
wave speed, normalized, 267-9
period equation, elastic media, 265 viscoelastic media, 264
phase speed, 260, 263, 265 propagation vector, 259
Standard Linear layer over Maxwell half-space 273-4,
wave number, complex, 250-60, 263-4
low-loss viscoelastic media, defined, 61
see also physical characteristics general \(P, SI, SII\) waves in low-loss viscoelastic media
LV (linear viscoelastic) media
see one-dimensional viscoelasticity; three-dimensional viscoelasticity

material parameters, viscoelastic
see three-dimensional viscoelasticity
Maxwell model, 8-10, 13-4
Love-Type surface wave, 273-4
wave speed, reciprocal \(Q\) for \(P, SI, SII\) waves, 96
see also compliance; modulus; creep function; relaxation function; Generalized Maxwell model
mechanical energy-balance equations, 27–8
moderate-loss viscoelastic boundary material parameters, water-saturated sediments, 145

modulus, complex, defined 4
bulk, 24, 58
elastic, 14, 17
Generalized Maxwell, 12, 14
Generalized Voigt, 12, 14
Maxwell, 10, 14
real, 17
relaxed elastic, 11, 84
shear, 24, 59
Standard Linear, 11, 14, 84
Viscous, 9, 14, 15
Voigt, 10, 14
Young's, 24

multilayered viscoelastic media,
specification of, notation,
horizontal layers, 246-7, 278-9
Voigt layers, 248
elastic layers, 248
spherical layers, 355-6

ocean-solid-Earth boundary
material parameters, 165
amplitude reflection coefficients, 166-7
phase shifts, 166-7
see also reflection-refraction, general P

one-dimensional viscoelasticity, 1-18
constitutive equations, 2-5
compliance, complex, 4
creep function, 2-3
energy in harmonic oscillation, 5-7
fractional energy loss per cycle, 6
maximum potential energy, 6
potential energy, time rate of change of, 6
rate of dissipated energy, 6
reciprocal quality factor, 6-7
equation of motion, 16
attenuation coefficient, 17
phase speed, 17
steady-state solution, 16
damping ratio, 7
models
elastic, 7-8, 13-4
Generalized Maxwell, 8, 12-4
Generalized Voigt, 8, 12-4
Maxwell, 8, 10, 13-4
Standard Linear, 8, 11, 13-4
Viscous, 8, 13-4
Voigt, 8, 10, 13-4
modulus, complex, 4
phase angle, 5
relaxation function, 2-3

P transition window, 182, 184
see also transition window, defined
P' transition window, 157
see also transition window, defined
P wave
see general P and S waves; homogeneous P and S waves
particle motion
Love-Type surface wave, 265-6
P wave
homogeneous, 40
inhomogeneous, 38-40, 64-6, 76
Rayleigh-Type surface wave, 212-3, 219-20, 226, 228, 442-5
SI wave
homogeneous, 44-5
inhomogeneous, 43-4, 65-6, 77
SII wave, 45-6, 48, 103
period equation, 264-5
see also Love-Type surface wave
phase coefficients, reflection, transmission (phase shifts), 149, 155, 162, 164, 166-7, 188, 190, 198-9
phase shift, measured reflection coefficient, water-stainless steel boundary, 164
phase speed
general P, SI, SII waves, 59-63
homogeneous waves
one-dimensional wave, 17
P, S waves, 37, 58, 68
Love-Type wave, 260, 263, 265
Rayleigh-Type wave, 207, 217, 224-5
reflected, transmitted waves for incident P, 157
SI, 183
SII, 146, 152
phase terms, vertical and radial
displacement components, general waves
P, SI, 89, 91
phase velocity
general waves
P, SI, SII, 34
homogeneous waves
P, S, 37
physical characteristics general P, SI, SII
waves in low-loss viscoelastic media, 75-
82
attenuations, maximum, 76
energy fluxes, mean, 77
error percentages, maximum
attenuations, phase speeds, 80-2
kinetic energy densities, mean, 78
low-loss media, defined, 62, 75
particle motions, P, SI, 76-7
phase speeds, 75-6
potential energy densities
maximum, 78
mean, 78
rates of energy dissipation per unit volume, mean, 78
reciprocal quality factors, 78-9
total energy densities, mean, 78
see also general P and SI; general SII
physical displacement field
Love-Type surface wave, 262, 265-6
one dimensional wave, 17
P wave
general, 38-9, 86-8
homogeneous, 88
Rayleigh-Type surface wave, 209-12
S wave
homogeneous, 89
SI, general, 43, 86-8
SII, general 45–6
viscoelastic continuum, 23, 28-9
physical models, one-dimensional viscoelasticity, 7–14
physical stress tensor, 49–50
Pierre Shale
material parameters, 182
potential energy density, 27-30
potential energy density, mean
general waves
P, SI, SII, 51, 69-70, 78
homogeneous waves
P, 51, 67-8, 71
S, 51, 67-8, 71
potential energy density per cycle, maximum
general waves
P, SI, SII, 55, 70, 78
homogeneous waves

Index 485

P, S, 68
principal value
square root of, defined, 101, 285-6
cube root of, defined, 439
propagation vector
general waves
P, SI, SII, 33-7
homogeneous waves
P, S, 37
Love-Type surface wave, 263
Rayleigh-Type surface wave, 207, 211-2, 220-2
reflected, refracted waves, single boundary
P, SI, 100-4, 109-10, 112-3, 124-5, 156, 172, 191
SII, 100-4, 130-2, 145, 152, 200, 242
viscoelastic ray paths
SII, 279, 291, 345, 364, 384
Q (quality factor)
see reciprocal quality factor
ray, general viscoelastic
defined, 288
initial conditions, 288
ray parameter, amplitude attenuation, P_A
general SII wave in, viscoelastic horizontal layers, 289
half space, vertical gradient, 341-5
spherical layers, 362-4
sphere, radial gradient, 383
ray parameter, phase propagation, P_p
general SII wave in, viscoelastic horizontal layers, 288
half space, vertical gradient, 341-5
spherical layers, 362-4
sphere, radial gradient, 382
ray path, general SII wave, viscoelastic horizontal layers, 279
half space, vertical gradient, 340, 345-6
spherical layers, 356, 364
sphere, radial gradient, 380, 384-6, 392
ray tracing algorithm, viscoelastic media
see forward ray-tracing algorithm
Rayleigh equation, see Rayleigh-Type surface wave
Rayleigh, John Strutt, 3rd Baron Rayleigh (1842-1919), 203
Rayleigh-Type surface wave
attenuation coefficient, 207, 211, 217, 225
analytic solution, 203–7
attenuation vectors, component solutions 204
boundary-condition equations 204-5
displacement potential, component solutions, 204
Lamé parameters, equal complex 216–21
attenuation coefficient, 217
acute angles, attenuation, propagation vectors, vertical, horizontal, 217-8
attenuation vectors, 217
displacement, horizontal, vertical, 219–21
particle motion orbit, 219-21
propagation vectors, 217
Rayleigh equation, real coefficients, 216
Rayleigh equation, roots, real, 216
velocity, magnitude (speed), 217
volumetric strain, 215-6
numerical characteristics, surface, depth
attenuation coefficient ratio, 225
amplitude distribution curves, horizontal, vertical 229-30
axes ratio curves, particle motion ellipse, 228, 231-2
material parameters, 222-4
maximum displacement ratio curves, radial, vertical, 227
tilt curves, particle motion ellipse, 226, 233-4
volumetric-strain distribution curves, 236-7
wave speed ratio, 225
particle motion, elliptical orbit
amplitude distribution, 214, 229-30
axis ratio, 216
direction, prograde, retrograde, 212-4, 220-1, 444
displacement grid, fixed time, 238-9
elastic media, 213-4
ellipticity, 212-14, 444
tilt, major axis, 212-4, 226, 233-6, 445
viscoelastic media, 212-4
physical displacement, 212-15
propagation vectors, component solutions 204, 209
Rayleigh equation, complex coefficients, 205-7, 438-42
Rayleigh equation, roots
conditions for, 206-7, 440
elastic media, 207
viscoelastic media, 206
viscoelastic media, equal Lamé parameters, 216
speed 207-8, 217, 224-5
volumetric strain, 217, 224, 240-1
Rayleigh window
see transition windows, defined
reciprocal quality factor, \(\frac{1}{Q} \),
general waves
P, 56, 70, 74, 78, 83
SI, 56, 70, 72-3, 79, 83, 85
SII, 56, 71-3, 79, 83, 85
homogeneous waves
P, 57-8, 74
S, 57-8, 72-3
one dimensional model, defined, 6
elastic, 14
Generalized Maxwell, 12, 14
Generalized Voigt, 12, 14
Maxwell, 10, 14
Standard linear, 11, 14
viscous, , 14
Voigt, 10, 14
reflection-refraction solution, viscoelastic boundary, incident general P wave, 125
analytic solution
propagation, attenuation vectors, 125-6
amplitude, phase, 126-7
Generalized Snell's Law, 126
incident wave, 123-5
critical angle, conditions, 128-9
inhomogeneity, conditions, 127-8
ocean, solid-Earth boundary, 165
minimum reflection amplitude, 168
reflection coefficients, 166-7
water, stainless-steel boundary
reflection, transmission coefficients, 161
emergence angles, 157-8
energy coefficients, reflection, transmission, interaction, 160
inhomogeneity, 157
particle motion, P, SI, 162
reciprocal Q, 158
speed, phase, energy 157
theory confirmation evidence, 164
reflection-refraction solution, viscoelastic boundary, incident general SI wave, 112
analytic solution
propagation, attenuation vectors, 112-4
amplitude, phase, 114-5
Generalized Snell's Law, 113
incident wave, 109-11
critical angle, conditions, 119-23
inhomogeneity, conditions, 115-20
reflection-refraction solution, viscoelastic boundary, incident general SII wave, 132
analytic solution
propagation, attenuation vectors 131-2
amplitude, phase, 133-4
Generalized Snell's Law, 132
incident wave, 130-1
inhomogeneity, conditions for, 134
energy flux, mean, at boundary normal component, 135
total, 136
interaction, dissipation coefficients, 138-40
sediment, moderate-loss boundary, homogeneous SII, incident, 145
energy interaction coefficients, 149
emergence angles, phase, energy 146
emergence angle, attenuation 148
speed, phase, energy 146
reciprocal Q, transmitted SII, 148
reflection, transmission, coefficients, 149
SII' transition window, defined, 147
inhomogeneous SII, incident, 152
energy interaction coefficients, 196
emergence angles, 153-4
speed, phase, energy 153
reflection, transmission, coefficients, 155
reciprocal Q, reflected, transmitted SII, 154
reflection solutions, free surface, incident general SI, P, and SII waves, 172, 191, 200
analytic solutions
propagation, attenuation vectors 173-4, 193, 201
amplitude and phase, 172-3, 192, 201
volumetric strain, 178, 194
boundary-condition equations, 171-3, 192, 201
Generalized Snell's Law, 174, 194, 201
incident wave, 170, 172, 191, 200
inhomogeneity, conditions, 175-6, 193, 201
reflection coefficients
displacement components, 179-80, 194
volumetric strain, 178, 181, 194
Pierre Shale low-loss boundary, 182
ergy interaction coefficients, 186, 196
emergence angles, attenuation, energy flux, phase, 183-4, 195
inhomogeneity, reflected waves, 183, 193
particle motion, axis ratio, tilt, 185
reciprocal Q, 184
reflection coefficients 186-190, 197-9
volumetric strain, reflected P, 187, 197-8
response, multiple layers, incident general SII wave
analytic solution, viscoelastic layers 242-9
elastic layers, (Thompson-Haskell) 241, 249
viscoelastic layer, 249-50
Voigt layers, 248-9
boundary-condition equations, 242
response models, for, Soil, Rock, Earth’s crust, near elastic layers
Index

488

homogeneous wave, normal incidence, 252
inhomogeneous wave, normal incidence, 253
inhomogeneous wave, normal to grazing incidence, 255
reflected viscoelastic waves
see reflection and reflection-refraction solutions
transmitted (refracted) viscoelastic waves
see reflection and reflection-refraction solutions
relaxation function, defined, 2
elastic, 8
Generalized Maxwell, 12, 13
Maxwell, 10, 13
Standard Linear, 11, 13
tensorial, 19-20
viscous, 9, 13
Voigt, 10, 13
relaxed elastic modulus, 11
Riemann-Stieltjes integral, convolution, 2-3, 20, 433
scalar displacement potential, 32-3
see also general P and SI waves;
Rayleigh-Type surface wave
scalar displacement potential identities, 433
scalar triple product, 433
sediments, water-saturated, 144-5
see also moderate-loss viscoelastic boundary
separation of variables, method of, 435-8
shear modulus, complex, 24, 58-9
see also modulus
SI' transition window, 157, 159-63, 168
see also transition window, defined
SI wave
see general SI wave
SIII' transition window, 147, 150-1
see also transition window, defined
SIII wave
see general SI wave
simultaneous measurements, displacement and volumetric strain, 93-6
single-boundary reflection–refraction problems framework, 98–106
Snell's Law
see Generalized Snell's Law
spring, 7–8
squared complex Rayleigh equation, roots, 205, 438–40
slope amplitude attenuation curves, SII, viscoelastic horizontal layers, 305
half space, vertical gradient, 351
spherical layers, 373
sphere, radial gradient, 393
slope travel-time curves, SII, viscoelastic horizontal layers, 300
half space, vertical gradient, 349
spherical layers, 370
sphere, radial gradient, 390
slowness, SII, viscoelastic horizontal layers, 296
half space, vertical gradient, 347
spherical layers, 368
sphere, radial gradient, 388
stainless steel, material parameters, 157
Standard Linear model, 8-11, 13-4
Love-Type surface wave, 273-4
P, SI, SII waves, 84-6
see also compliance: modulus: creep function: relaxation function
steady-state motion,
one dimensional viscoelasticity 16-7
HILV continuum, 23–4
steady-state viscoelastic radiation field, 49, 50
stored energy, 5-6, 9, 12, 27, 29, 55
see also potential energy density, mean;
potential energy density per cycle, maximum
strain tensor, 19, 21-2, 108
stress–strain notation, three-dimensional viscoelasticity, 20–3
stress tensor, 19, 21, 108, 170
physical, 49–50
surface waves
see Love-Type: Rayleigh-Type
SH wave, elastic, 248
SV wave, elastic, 37, 121, 129
S wave
see general SI; general SII; homogeneous S

tensorial creep function, 20
tensorial relaxation function, 19–20
three-dimensional viscoelasticity
constitutive equations, 19–20, 24
correspondence principle, 25–6
energy, harmonic oscillation
energy balance, 26–9
energy intensity (flux), 27-9
kinetic energy density, 27-9
potential energy density, 27-9
rate of energy dissipated per unit volume, 27-9
equation of motion, 23–5
solutions, 32-7
see also Helmholtz equations; scalar potential; vector potential
material parameters
bulk modulus, complex, 24
density, 23
intrinsic material absorption as characterized by \(Q_{HS}^{1,1} \), 57-9,
59-63, 63-84, 86-95
intrinsic material wave speed as characterized by \(v_{HS}^{1,1} \), 57-9,
59-63, 63-84, 86-95
Lame parameters, complex, 24
Poisson’s ratio, complex, 24
shear modulus, complex, 24
velocities, complex, 33
Young’s modulus, complex, 24
stress–strain notation, 20–3
viscoelastic waves
see general P; general SI; general SII; Love-Type; Rayleigh-Type
total energy density, mean
general waves
P, SI, SII, 51-2, 70-1, 78
homogeneous waves
P, S, 52, 67-8, 71
transition window, defined, 147
P, 182, 184
P’, 157-8
SII’, 157, 159-63, 168
SII’, 147, 150-1

SII, 22, 321
transmitted (refracted) viscoelastic waves
see reflected solutions, reflected-refracted solutions, and viscoelastic ray paths
travel distances, general SII, viscoelastic horizontal layers, 294-6, 298, 302
half space, vertical gradient, 348
spherical layers, 366, 369-70
sphere, radial gradient, 389
travel times, general SII, viscoelastic horizontal layers, 297-9, 302
half space, vertical gradient, 349-50
spherical layers, 370-1
sphere, radial gradient, 389-90
travel time, reduced, general SII, viscoelastic horizontal layers, 299
half space, vertical gradient, 349
spherical layers, 371
sphere, radial gradient, 390
Type-I S wave, (SI wave)
see general SI wave
Type-II S wave, (SII wave)
see general SII wave
vector, complex, 41-3, 45, 101-2
velocity, complex, 16
velocity field, complex, 38, 42
vector displacement potential, 24
See also general SI wave; general SII wave
vector displacement potential identities, 434
vector quadruple product, 434
vector identities, 433-4
vector triple product, 433
velocity See phase velocity; energy velocity
viscoelastic material parameters
see three-dimensional viscoelasticity
viscoelastic wave and intrinsic material parameter identities, 61-3
viscoelastic models
elastic, 7-8, 13-4
Generalized Maxwell, 9, 11-4
Index

Generalized Voigt, 9, 11-4
Maxwell, 9-10, 13-4
Standard Linear, 9-11, 13-4
viscoelastic, general, 2, 4, 19-20, 24
viscous, 8-9, 13-4
Voigt, 9-10, 13-4

viscoelastic ray path, general SII wave,
characteristics
amplitude attenuation, 302-6, 350-2, 371-3, 394-6
attenuation coefficient, maximum, 291-2, 343, 363, 383
attenuation ray parameter, 289-90, 342, 361-4, 382-3
attenuation vector, 291-2, 343, 362, 367, 383, 387
energy flux, intensity, mean, 298, 348, 368, 388
inhomogeneity, 296, 347, 366-7, 388
phase velocity (speed), 296, 347, 367-9
phase ray parameter, 288, 290, 342, 362-4, 382, 382
propagation vector, 291, 343, 363, 368, 383, 387
ray paths, 279, 294-5, 341, 345-6, 364-6, 381, 384-6
slowness, 296, 348, 369, 388
distance, 298, 348, 369-70, 389
travel times, 299, 348-9, 370-1, 390

viscoelastic waves, defined
general waves, 34
homogenous waves, 34
inhomogeneous waves, 34
see also general P, SI, SII waves; Love-Type wave; Rayleigh-Type wave
viscoelastic wave-propagation theory, laboratory evidence, 163-5

viscoelasticity
see one-dimensional viscoelasticity; three-dimensional viscoelasticity

viscous dashpots, 7–12
viscous model, 8-9, 13-4
see also compliance; modulus; creep function; relaxation function; Generalized Voigt model
Voigt model, 8-10, 13-4

see also compliance; modulus; creep function; relaxation function; Generalized Voigt model

volumetric strain, defined, 33
amplitude reflection coefficient, free surface
incident general P wave, 196, 199
incident general SI wave, 181, 188
general P wave, 38, 92-3
maximum per cycle, 94-5

phase reflection coefficient (phase shift), free surface
incident general P wave, 198-9
incident general SI wave, 188, 190
Rayleigh-Type surface wave, 215-6, 221

water-stainless-steel boundary, viscoelastic material parameters, 157

wave number, complex
general P, SI, SII waves, 32, 36, 58-9
homogeneous P, S waves, 37, 97,99
incident general waves single boundary
P, 105, 124, 192
SI, 105, 110
SII, 105, 130-1, 173

Love-Type surface wave, 260
one dimensional wave, 16
Rayleigh-Type surface wave, 204-7
reflected, transmitted waves, 105, 112-3, 125-6, 132, 174, 193
viscoelastic ray paths, general SII wave in
horizontal layers, 288
half space, vertical gradient, 342
spherical layers, 362
sphere, radial gradient, 382

wave numbers, material, k_P, k_S
defined, complex velocities, 32
determined, intrinsic wave speed (v_{HS}, v_{HP}) and absorption $(Q_{HS}^{-1}, Q_{HP}^{-1})$, 61

wave propagation
see viscoelastic waves
wave speed
see phase speed
wave vector, complex
P wave, general, 38, 100
Index

S wave, general, 41, 100
WAVES (computer code), 143, 156
welded boundary, 107, 112, 124-5, 130-5
wide angle of incidence, defined, 332
wide-angle refracted wave, defined, SII, 332
amplitude, 334
attenuation coefficient, 334
energy flux direction, 334
ray path, 333
travel-time curves, 335
wave speed, 334
Young's modulus, 24