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One-Dimensional Viscoelasticity 

The behavior of many materials under an applied load may be approximated by 

specifying a relationship between the applied load or stress and the resultant 

deformation or strain. In the case of elastic materials this relationship, identified as 

Hooke’s Law, states that the strain is proportional to the applied stress, with the 

resultant strain occurring instantaneously. In the case of viscous materials, the 

relationship states that the stress is proportional to the strain rate, with the resultant 

displacement dependent on the entire history of loading. Boltzmann (1874) 

proposed a general relationship between stress and strain that could be used to 

characterize elastic as well as viscous material behavior. He proposed a general 

constitutive law that could be used to describe an infinite number of elastic and 

linear anelastic material behaviors derivable from various configurations of elastic 

and viscous elements. His formulation, as later rigorously formulated in terms of 

an integral equation between stress and strain, characterizes all linear material 

behavior. The formulation, termed linear viscoelasticity, is used herein as a general 

framework for the derivation of solutions for various wave-propagation problems 

valid for elastic as well as for an infinite number of linear anelastic media. 

Consideration of material behaviour in one dimension in this chapter, as might 

occur when a tensile force is applied at one end of a rod, will introduce some of the 

well-known concepts associated with linear viscoelastic behaviour. It will provide 

a general stress-strain relation from which stored and dissipated energies associated 

with harmonic behaviour can be inferred for the response of an infinite number of 

viscoelastic models. It will permit the derivation of solutions for one-dimensional 

viscoelastic waves as a basis for comparison with those for two- and three-

dimensional waves to be derived in subsequent chapters as initially derived by 

Borcherdt (1971). 

1.1 Constitutive Law 

A general linear viscoelastic response in one spatial dimension is defined 

mathematically as one for which a function ( )r t  of time exists such that the 

constitutive equation relating strain to stress is given by 
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 ( ) ( ) ( ),
t

p t r t de 
−

= −  (1.1.1) 

where ( )p t  denotes stress or force per unit area as a function of time, ( )e t  denotes 

strain or displacement per unit displacement as a function of time, and ( )r t , termed 

a relaxation function, is causal and does not depend on the spatial coordinate. 

The physical principle of causality imposed on the relaxation function ( )r t  

implies the function is zero for negative time, hence the constitutive relation may 

be written using a Riemann-Stieltjes integral as 

 ( ) ( ) ( )p t r t de 


−

= −  (1.1.2) 

or more compactly in terms of a convolution operator as 

 p r de=  . (1.1.3) 

Properties of the convolution operator are summarized in Appendix 1. 

A corresponding constitutive equation relating stress to strain is one defined 

mathematically for which a causal spatially independent function ( )c t , termed a 

creep function, exists such that the corresponding strain time history may be 

inferred from the following convolution integral 

 ( ) ( ) ( )e t c t dp 


−

= − , (1.1.4) 

which may be written compactly in terms of the convolution operator as 

 e c dp=  . (1.1.5) 

Linear material behaviour is behaviour in which a linear superposition of stresses 

leads to a corresponding linear superposition of strains and vice versa. Such a 

material response is often referred to as one which obeys Boltzmann’s 
superposition principle. Boltzmann’s formulation of the constitutive relation 
between stress and strain as expressed by the convolution integrals (1.1.2) and 

(1.1.4) is general in the sense that all linear behaviour may be characterized by such 

a relation. Conversely, if the material response is characterized by one of the 

convolution integrals then Boltzmann’s superposition principle is valid. To show 
this result explicitly, consider the following arbitrary linear superposition of strains 

 ( ) ( )
1

n

i i

i

e t b e t
=

= , (1.1.6) 

where ib  corresponds to an arbitrary but fixed constant independent of time. 

Substitution of this expression into (1.1.3) and using the distributive property of the 
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 1.1 Constitutive law  3 

 

convolution operator, which immediately follows from the corresponding property 

for the Riemann-Stieltjes integral (see Appendix 1), readily implies the desired 

result that the resultant stress is a linear superposition of the stresses corresponding 

to the given linear superposition of strains, namely 

 ( )
1 1 1

* *
n n n

i i i i i i

i i i

p b p b r de r d b e
= = =

 
= = =  

 
   . (1.1.7) 

Similarly, (1.1.4) implies that a linear superposition of stresses leads to a linear 

superposition of strains. 

The term relaxation function used for the function ( )r t  derives from physical 

observations of the stress response of a linear system to a constant applied strain. 

To show that this physical definition of a relaxation function is consistent with that 

defined mathematically, consider the stress response to a unit strain applied at some 

time, say 0t = , to a material characterized by (1.1.3). Specifically, replace ( )e t  in 

(1.1.3) with the Heaviside function 

 ( )
0 for 0

1 for 0

t
h t

t

 
   

. (1.1.8) 

The fifth property of the Riemann-Stieltjes convolution operator stated in Appendix 

1 implies that (1.1.3) simplifies to 

 ( ) ( ) ( ) ( ) ( )
0

0

t
h

p t e r t r t d


 
+


= + + −

 , (1.1.9) 

hence, 

 ( ) ( )p t r t= . (1.1.10) 

Similarly, the creep function ( )c t defined mathematically may be shown to 

represent the strain response of a linear system to a unit stress applied at 0t = . 

To consider harmonic behaviour of a linear viscoelastic material, assume 

sufficient time has elapsed for the effect of initial conditions to be negligible. Using 

the complex representation for harmonic functions let 

 ( ) i tp t Pe =  (1.1.11) 

and 

 ( ) i te t Ee = , (1.1.12) 

where P  and E  are complex constants independent of time with the physical stress 

and strain functions determined by the real parts of the corresponding complex 
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numbers. Substitution of (1.1.11) and (1.1.12) into (1.1.2) and (1.1.4), respectively, 

shows that the corresponding constitutive relations may be written as 

 ( )P i R E =  (1.1.13) 

and 

 ( )E i C P = , (1.1.14) 

where ( )R   and ( )C   are given by the Fourier transforms 

 ( ) ( ) iR r e d  


−

−

=   (1.1.15) 

and 

 ( ) ( ) iC c e d  


−

−

=  . (1.1.16) 

In analogy with the definitions given for elastic media the complex Modulus   

is defined as 

 ( ) ( )P
i R

E
    = . (1.1.17) 

The complex compliance is defined as 

 ( ) ( )E
J i C

P
   = , (1.1.18) 

from which it follows that the complex modulus is the reciprocal of the complex 

compliance, that is, 

 ( ) ( )
1

J
 


=  (1.1.19) 

and the product of the Fourier transforms of the relaxation function and the creep 

function is given by the negative reciprocal of the circular frequency squared, that 

is, 

 ( ) ( ) ( ) 2
R C i   −= . (1.1.20) 

A parameter useful for quantifying the anelasticity of a viscoelastic material is 

the phase angle  by which the strain lags the stress. This phase angle is given from 

(1.1.17) by
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 1.2 Stored and dissipated energies  5 

 

 tan
I

R




=  (1.1.21) 

where the subscripts " "I  and " "R  denote imaginary and real parts of the complex 

modulus. 

1.2 Stored and Dissipated Energy 

Energy in a linear viscoelastic system under a cycle of forced harmonic oscillation 

is partially dissipated and partially alternately twice stored and returned. To account 

for the energy in a linear viscoelastic system under a harmonic stress excitation as 

characterized by a general constitutive relation of the form (1.1.13), consider the 

complex strain given by 

 e Jp= . (1.2.1) 

The time rate of change of energy in the system is given by the product of the 

physical stress and the physical strain rate, namely, 

 R Rp e , (1.2.2) 

where the dot on Re  denotes the derivative with respect to time and the subscript 

R  denotes the real part of the strain rate. Solving (1.2.1) for p , then taking real 

parts of the resulting equation implies that the physical stress can be expressed as 

 
2

R R I I
R

J e J e
p

J

+
= . (1.2.3) 

For harmonic excitation 

 R
I

e
e


= − . (1.2.4) 

Substitution of (1.2.3) and (1.2.4) into (1.2.2) shows that the desired expression for 

the time rate of change of energy in the one-dimensional system is given by 

 
2 2

2 2

1 1

2

R I
R R R R

J J
p e e e

t J J

       = −
       

. (1.2.5) 

Integrating (1.2.5) over one cycle shows that the total rate of change of energy over 

one cycle equals the integral of the second term on the right-hand side of the 

equation. Hence, the second term of (1.2.5) represents the rate at which energy is 

dissipated and the first term represents the time rate of change of the potential 

energy in the system, that is, the rate at which energy is alternately stored and 

returned. The second law of thermodynamics requires that the total amount of 

energy dissipated increase with time, hence the second term in (1.2.5) implies that 
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 0IJ  . (1.2.6) 

A dimensionless parameter, which is useful for describing the amount of energy 

dissipated, is the fractional energy loss per cycle of forced oscillation or the ratio 

of the energy dissipated to the peak energy stored during the cycle. Integrating 

(1.2.5) over one cycle shows that the energy dissipated per cycle as denoted by 

cycleE  is given by 

 
2

IP J
cycle


= −

E
. (1.2.7) 

The first term on the right-hand side of (1.2.5) shows that the peak energy stored 

during a cycle or the maximum potential energy during a cycle as denoted by 

 max P  is given by 

   21
max

2
RP J=P , (1.2.8) 

where 0RJ  . Hence, the fractional energy loss for a general linear system may 

be expressed in terms of the ratio of the imaginary and real parts of the complex 

compliance or the complex modulus. as 

  max 2 2
I I

R R

J

cycle J

 


−
= =

E
P . (1.2.9) 

Normalization of the fractional energy loss by 2 yields another parameter often 

used to characterize anelastic behavior, namely the reciprocal of the quality factor, 

which may be formally defined as 

  
1 1

2 max

cycle
Q


− 


E

P
. (1.2.10) 

1Q−  for a one-dimensional linear system under forced oscillation is from (1.2.9) 

given by 

 
1 I I

R R

J
Q

J




− −
= = . (1.2.11) 

Examination of (1.1.21) shows that 1Q−  also represents the tangent of the angle 

by which the strain lags the stress, that is, 

 1 tanQ − = . (1.2.12) 

Another parameter often used to characterize anelastic response is damping ratio

  , which may be specified in terms of 1Q−  as
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1

2

Q
−

= . (1.2.13) 

For the special case of an elastic system 0I IJ = = , hence 1 tan 0.Q  − = = =  

1.3 Physical Models 

The characterization of one-dimensional linear material behavior as defined 

mathematically and presented in the previous sections is general. The 

considerations apply to any linear behavior for which a relaxation function exists 

such that the material behavior may be characterized by a convolution integral of 

the form (1.1.1). Alternatively, the considerations apply to any linear material 

behavior for which a complex modulus exists such that (1.1.17) is a valid for 

characterization of harmonic behavior. Specification of the complex modulus for a 

particular physical model of viscoelastic behavior allows each model to be treated 

as a special case of the general linear formulation. 

The basic physical elements used to represent viscoelastic behaviour are an 

elastic spring and a viscous dashpot. Schematics illustrating springs and dashpots 

in various series and parallel configurations are shown in Figures (1.3.5)a through 

(1.3.5)h. In order to derive the viscoelastic response of each configuration one end 

is assumed anchored with a force applied as a function of time at the other end. 

Forces are assumed to be applied to a unit cross-sectional area with the resultant 

elongation represented per unit length, so that force and extension may be used 

interchangeably with stress and strain. 

The elongation of an elastic spring element is assumed to be instantaneous and 

proportional to the applied load. Upon elimination of the load the spring is assumed 

to return to its initial state. The constitutive equation for an elastic spring as first 

proposed by Hooke in 1660 is specified by 

 p e= , (1.3.1) 

where   is a constant independent of time. The assumption that the response of an 

elastic spring is instantaneous implies that for an initial load applied at time 0t =  

the strain at time 0t =  is (0) (0)e p = . Hence, the creep and relaxation functions 

for the special case of an elastic model are ( )h t   and ( )h t . For harmonic 

behavior substitution of (1.1.11) and (1.1.12) into (1.3.1) implies the complex 

compliance and modulus as specified by (1.1.18) and (1.1.17) are given by 1  and

 , where the imaginary parts of each are zero. Hence, 1Q−  as specified by (1.2.11) 

for an elastic model is zero. 

The rate at which a viscous dashpot element is assumed to elongate is assumed 

to be proportional to the applied force, with the resultant elongation dependent on 
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8 One-dimensional viscoelasticity 

 

the entire past history of loading. The constitutive equation for a viscous element 

is given by 

 p e= , (1.3.2) 

where e  denotes the derivative of strain with respect to time or the velocity of the 

elongation with respect to unit length. The viscous element is assumed not to 

respond instantaneously, hence its elongation due to an instantaneous load applied 

at time 0t =  is (0) 0e = . Integration of (1.3.2) implies the creep and relaxation 

functions for the special case of a viscous element are given by 

 

Figure (1.3.5). Schematics showing elastic spring and viscous dashpot elements in 

series and parallel configurations for various models of linear viscoelasticity. 
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 1.3 Physical models 9 

 

 ( ) ( )c t t h t =  (1.3.3) 

and 

 ( ) ( )r t t= , (1.3.4) 

where ( )t  denotes the Dirac-delta function, whose integral is unity and whose 

non-zero values are zero. Substitution of (1.1.11) and (1.1.12) into (1.3.2) implies 

the complex compliance and modulus for a viscous element are ( ) ( )1J i =  

and ( ) i  = . Equation (1.2.11) implies 1Q−  is infinite, because no energy is 

alternately stored and returned in a viscous element. 

An infinite number of viscoelastic models may be derived from various serial 

and parallel configurations of elastic springs and viscous dashpots. Schematics for 

common models are shown in Figure (1.3.5). Three fundamental viscoelastic 

models are the Maxwell model, which assumes the basic elements are in series, the 

Voigt model, which assumes the basic elements are in parallel, and a Standard 

Linear model, which assumes a spring in series with a Voigt element or a spring in 

parallel with a Maxwell element. Generalizations of these models are the 

Generalized Voigt model and the Generalized Maxwell model. The Generalized 

Voigt model includes a Maxwell model in series with a sequence of Voigt elements 

in series. The Generalized Maxwell model includes a Voigt element in parallel with 

a sequence of Maxwell elements in parallel. A Standard Linear model may be 

considered as a special case of a Generalized Voigt model with 
1

12 and 0n −= = . 

The two configurations shown for a Standard Linear model (Figures (1.3.5)e and 

f) are equivalent in that the parameters of the elements may be adjusted to give the 

same response. Similarly, the configuration of springs and dashpots for any model 

involving more than two of these elements is not unique, in that other 

configurations of springs and dashpots in series and parallel will yield the same 

response. 

For the Maxwell model the strain resulting from an applied load is the sum of the 

strains associated with the individual elements in series. Hence, the resultant strain 

rate is given by 

 1 2
p p

e e e
 

= + = + , (1.3.6) 

where the initial strain, as implied by the assumed instantaneous response of the 

spring, is (0) (0)e p = . Integration of (1.3.6) and substitution of a unit stress 

implies that the creep function for a Maxwell model is 

 ( ) ( )1 1
c t t h t

 
 

= + 
 

. (1.3.7) 
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Similarly, integration and substitution of a unit strain implies the relaxation 

function for a Maxwell model is 

 ( ) ( ) ( )expr t t h t  = −   . (1.3.8) 

Substitution of (1.1.11) and (1.1.12) into (1.3.6) together with (1.1.17) and (1.1.18) 

implies that the complex compliance and complex modulus for a Maxwell model 

are given by ( ) ( )1J i  = −  and ( ) ( )( ) 1
1 i    −

= − , from which 

(1.2.11) implies ( )1Q  − = . 

For a Voigt model the applied stress is the sum of the stress associated with each 

of the elements in parallel. Hence the applied stress is given by 

 p e e = + , (1.3.9) 

where the initial strain is (0) 0e = . The creep and relaxation functions inferred from 

(1.3.9) for the Voigt model are 

 ( ) ( )( ) ( )1
1 expc t t h t 


= − −    (1.3.10) 

and 

 ( ) ( ) ( )r t t h t = + . (1.3.11) 

Substitution of (1.1.11) and (1.1.12) into (1.3.9) implies the complex compliance 

and modulus for a Voigt model are ( ) ( )1J i  = +  and ( ) i   = + . 

Hence, (1.2.11) implies 1Q  − = . 

For a Standard Linear model with an applied load, the resultant strain is the sum 

of the strains associated with the spring in series with the Voigt element, while the 

applied stress is the same for the spring and Voigt elements in series. The resulting 

equations for configuration “e” shown in Figure (1.3.3) are 

 1 1 1 1 2 2p e e e  = + =  (1.3.12) 

and 

 1 2e e e= + , (1.3.13) 

which upon simplification may be written as 

 ( )p r ep p e e  + = + , (1.3.14) 

where p  is the stress relaxation time under constant strain defined by 

 
1

1 2
p


 


+

, (1.3.15) 
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