Keynes & Aidley's Nerve and Muscle

Fifth edition

This well-established and acclaimed textbook introducing the rapidly growing field of nerve and muscle function has been completely revised and updated. Written with undergraduate students in mind, it begins with the fundamental principles demonstrated by the pioneering electrophysiological experiments on cell excitability. This leads to more challenging material recounting recent discoveries from applying modern biochemical, genetic, physiological and biophysical, experimental and mathematical analysis. The resulting interdisciplinary approach conveys a unified contemporary understanding of nerve, and skeletal, cardiac and smooth muscle, function at the molecular, cellular and systems levels. Emphasis on important strategic experiments throughout clarifies the basis for our current scientific views, highlights the excitement and challenge of biomedical discovery, and suggests directions for future advance. These fundamental ideas are then translated into discussions of related disease conditions and their clinical management. Now including colour illustrations, it is an invaluable text for students of physiology, neuroscience, cell biology and biophysics.

Christopher L.-H. Huang is Professor of Cell Physiology at the University of Cambridge, UK. He made scientific contributions in excitationcontraction coupling, cell electrolyte homeostasis, migraine aura and cardiac arrhythmogenesis, whilst directing medical studies as Fellow of Murray Edwards College. He has been Editor of the *Journal of Physiology*, *Biological Reviews, Monographs of the Physiological Society* and *Europace*, and Director of Hutchison China Meditech and Hutchison Biofilm Medical Solutions. The first three editions of this book were authored by Professor R. D. Keynes (1919-2010), Professor of Physiology (1973-1987) and Fellow of Churchill College, Cambridge (1961-2010) and D. J. Aidley (1947-2000), Senior Lecturer and Fellow (1979-2000) in the School of Biological Sciences at the University of East Anglia, in the United Kingdom.

Keynes & Aidley's Nerve and Muscle

Fifth edition

Christopher L.-H. Huang University of Cambridge

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314—321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi-110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108495059 DOI: 10.1017/9781108860789

© Cambridge University Press 1981, 1991, 2001, 2021 © The Estate of Richard D. Keynes, Christopher L.-H. Huang and the Estate of David J. Aidley 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1981 Second edition 1991 Third edition 2001 Fourth edition 2011 Fifth edition 2021

Printed in the United Kingdom by TJ Books Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49505-9 Hardback

ISBN 978-1-108-81687-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To friends and teachers: In Memoriam Absentium, in Salutem Praesentium:
Charles Michel and Morrin Acheson: The Queen's College, Oxford.
David Weatherall and John Ledingham: Nuffield Department of Medicine, University of Oxford.
Richard Adrian: Physiological Laboratory, University of Cambridge.
For at the first she will walk with him by crooked ways, and bring fear and dread upon him, and torment him with her discipline, until she may trust his soul, and try him by her laws. Then will she return the straight way unto him, and comfort him, and shew him her secrets.
Ecclesiasticus 4:17-18: King James Version (KJV)

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

Contents

Preface Acknowledgements List of Abbreviations	page xiii xiv xv
I Structural Organisation of the Nervous System	1
1.1 Nervous Systems	1
1.2 The Anatomy of a Neuron	2
1.3 Unmyelinated Nerve Fibres	2
1.4 Myelinated Nerve Fibres	4
1.5 Nerve Fibre Responses to Injury	8
2 Resting and Action Potentials	10
2.1 Electrophysiological Recording Methods	10
2.2 Intracellular Recording of the Membrane Potential	13
2.3 Extracellular Recording of the Nervous Impulse	14
2.4 Excitation	17
3 Background Ionic Homeostasis of Excitable Cells	22
3.1 Structure of the Cell Membrane	22
3.2 Ion Distributions in Nerve and Muscle	25
3.3 The Genesis of Resting Potentials	26
3.4 The Donnan Equilibrium System in Muscle	28
3.5 Direct Tests of the Donnan Hypothesis	31
3.6 The Active Transport of Ions	32
3.7 Quantitative Reconstruction of Resting Cellular Ionic	
Homeostasis	38
4 Membrane Permeability Changes During Excitation	41
4.1 Impedance Changes During the Spike	41
4.2 The Sodium Hypothesis	41
4.3 Predictions of the Sodium Hypothesis	43
4.4 Voltage Clamp Experiments	46
4.5 Equivalent Electrical Circuit Description of the Nerve	
Membrane	47
4.6 Separation of Ionic Current Components in Response to	
Voltage Change	49
4.7 Mathematical Reconstruction of Ionic Current Properties	5 52
5 Voltage-Gated Ion Channels	55
5.1 cDNA Sequencing Studies	55
5.2 The Structure of Voltage-Gated Ion Channels	55

CONTENTS		
	5.3 Biophysical Measurements of Channel Protein	
	Conformational Changes	60
	5.4 Charge Movements in Excitable Cell Membranes	62
	5.5 The Sodium Channel Gating Mechanism	66
	5.6 The Ionic Selectivity of Voltage-Gated Channels	68
	5.7 Effect of Ion Occupancy on Channel Permeation:	
	The Independence Principle	69
	6 Cable Theory and Saltatory Conduction	73
	6.1 The Spread of Voltage Changes in a Cable System	73
	6.2 Passive Spread of Voltage Changes Along an	
	Unmyelinated Nerve	75
	6.3 Spread of Excitation in an Unmyelinated Nerve	76
	6.4 Action Potential Conduction Velocity and Direction	
	6.5 Saltatory Conduction in Myelinated Nerves	79
	6.6 Factors Affecting Conduction Velocity	84
	6.7 Factors Affecting the Threshold for Excitation	85
	6.8 After-potentials	87
	-	
	7 Neuromuscular Transmission	88
	7.1 The Motor Unit	88
	7.2 Presynaptic Transmitter Release	89
	7.3 Graded and Regenerative Components of	
	the Postsynaptic Response	91
	7.4 The Quantal Nature of Presynaptic Events	94
	7.5 Ionic Current Flows Underlying the End-Plate	
	Potential	97
	7.6 Patch Clamp Studies	99
	7.7 The Nicotinic Acetylcholine Receptor	101
	7.8 Specific Pharmacological Properties of the	
	Neuromuscular Junction	103
	8 Synaptic Transmission in the Nervous System	106
	8.1 Synaptic Excitation in Motor Neurons	106
	8.2 Excitatory Postsynaptic Potentials	107
	8.3 Inhibition in Motor Neurons	109
	8.4 Interaction of IPSPs with EPSPs	110
	8.5 Presynaptic Inhibition	111
	8.6 Slow Synaptic Potentials	111
	8.7 G-Protein-Linked Receptors	114
	8.8 Electrical Synapses	116
	8.9 Long-Term Potentiation and Depression	117
	8.10 Glial Buffering of the Interstitial Space	
	Following Neuronal Activity	118
	2 on only 1 contract the contra	110

CONTENTS

9	The Mechanism of Contraction in Skeletal Muscle	121
9.1	Anatomy	121
9.2	The Structure of the Myofibril	123
9.3	The Sliding-Filament Theory	124
9.4	The Lengths of the Filaments	125
9.5	The Relation Between Sarcomere Length and Isometric	
	Tension	125
9.6	The Molecular Basis of Contraction	127
9.7	Myosin	127
9.8	Actin	129
9.9	Interactions Between Actin, Myosin and ATP	130
	The Molecular Basis of Activation	131
9.11	Maintenance of Structural Integrity in Contracting	
	Sarcomeres	132
10	The Activation of Skeletal Muscle	135
10.1	Background Conductances in Skeletal Muscle	
10.1	Membranes	135
10.2	Ionic Currents Mediating Skeletal Muscle Membrane	135
10.2	Activation	137
10.3	The Surface and Transverse Tubular Membrane Systems in	157
10.0	Skeletal Muscle	141
104	Surface and Transverse Tubular Components of the Muscle	1 1 1
10.1	Action Potential	143
10.5	Partial Separation of Surface and Transverse Tubular	
	Electrophysiological Activity	145
10.6	Electrophysiological Relationships Between Surface and	
	Transverse Tubular Propagation of Excitation	147
10.7	Physiological Modulation of Surface and Transverse Tubular	
	Membrane Function	150
10.8	Reconstruction of Transverse Tubular Functional Changes	
	During Exercise	152
10.9	Functional and Clinical Implications of Altered Transverse	
	Tubular Membrane Properties	153
	Excitation Contraction Coupling in Skaletal Musels	15
	Excitation–Contraction Coupling in Skeletal Muscle	154
11.1	Dependence of Excitation–Contraction Coupling on	
	Membrane Potential	154
11.2	Involvement of Intracellular Ca ²⁺ in Excitation–Contraction	
	Coupling	155
	The Measurement of Intracellular Ca ²⁺	156
11.4	Voltage-Dependent Release of Intracellularly Stored	
	Ca ²⁺ in Excitation–Contraction Coupling	158
11.5	Triad Complexes Between the Transverse Tubular and	
	Sarcoplasmic Reticular Membranes	160

ix

CONTENTS		
	11.6 Triggering Molecules for the Release of Sarcoplasmic	
	Reticular Ca ²⁺	162
	11.7 Tubular Voltage Detection Mechanisms Triggering	102
	Excitation–Contraction Coupling	164
	11.8 Sarcoplasmic Reticular Ca ²⁺ Release Through the	104
	Ryanodine Receptor	167
	11.9 Structural Evidence for DHPR-RyR Coupling	169
	11.10 Physiological Evidence for DHPR-RyR Configurational	109
	Coupling	170
	11.11 Cooperative DHPR-RyR Interactions	170
	11.12 Malignant Hyperthermia as an Inherited RyR1	175
	Defect	174
	11.13 Restoration of Sarcoplasmic Reticular Ca ²⁺ Following	1/4
	Repolarisation	175
	11.14 Ryanodine Receptor-Na ⁺ Channel Feedback Interactions	175
		170
	Related to Excitation–Contraction Coupling	176
	12 Contractile Function in Skeletal Muscle	180
	12.1 Isometric and Isotonic Contractions	180
	12.2 Isometric Twitch and Tetanus	181
	12.3 Isotonic Contractions	183
	12.4 Energetics of Contraction	185
	12.5 Work and Power Output by Muscle	186
	12.6 Heat Production During Muscle Activity	187
	12.7 Muscle Efficiency	187
	12.8 The Energy Source for Muscle Contraction	188
	12.9 Energy Balances During Muscular Exercise	190
	12.10 Muscle Fatigue	192
	12.11 Generation of Osmotically Active Metabolites During	
	Muscular Exercise	192
	12.12 Osmotic Stabilisation by Cellular H ⁺ Buffering	
	Mechanisms	193
	12.13 Intrinsic Osmotic Consequences of Altered	
	Ion Balances During Exercise	195
	12.14 Cellular Ionic Regulatory Mechanisms	
	Ensuring Ion and Osmotic Balances During	
	Exercise	197
	12.15 Trophic Changes in Skeletal Muscle	197
	12.16 Age-Related Sarcopaenia	198
	13 Cardiac Muscle	200
	13.1 Structure and Organisation of Cardiac Muscle Cells	200
	13.2 Electrical Initiation of the Heartbeat	200
	13.3 The Cardiac Action Potential	201
	13.4 Extracellular Measurement of Cardiac	202
	Electrophysiological Activity	203
	13.5 Physiological Interpretation of the Electrocardiogram	205

CONTENTS

xi

13.6	Ionic Currents in Cardiac Muscle	206
13.7	Pacemaker Activity in Specialised Cardiac Regions	207
13.8	Phase 0 Depolarisation and Early Phase 1 Repolarisation:	
	Na ⁺ and Transient Outward K ⁺ Currents	208
13.9	The Phase 2 Plateau: Inward Ca ²⁺ Current	209
13.10	Phase 3 Repolarisation: Voltage-Dependent Outward K ⁺	
	Currents	210
13.11	Phase 4 Electrical Diastole: Inward Rectifying K ⁺	
10.10	Currents	210
	The Prolonged Refractory Period in Cardiac Muscle	211
13.13	Varying Ionic Current Contributions in Different	011
10 14	Cardiomyocyte Types	211
	Cardiac Excitation–Contraction Coupling Forms of Ca ²⁺ -Induced Ca ²⁺ Release in Cardiac Myocyte	212
15.15	Subtypes	214
13 16	Cardiomyocyte Recovery from Excitation	214
	Cardiac and Skeletal Myocyte Activation Characteristics	215
10.17	Compared	216
13.18	Nervous Control of the Heart: Feedforward Modulation	218
13.19	Feedback Actions on Excitation–Contraction Coupling	
	Related to Ca ²⁺ Homeostasis	221
13.20	Feedback Actions on Excitation–Contraction Coupling	
	Related to Cellular Energetics	222
13.21	Recapitulation	224
14	Ion Channel Function and Cardiac Arrhythmogenesis	225
14.1	Experimental Studies of Cardiac Arrhythmogenesis	226
14.1 14.2	Experimental Studies of Cardiac Arrhythmogenesis Arrhythmic Substrate Arising from Spatial Heterogeneities	226
		226
	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level	226 228
	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial	
14.2	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the	
14.2 14.3	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level	
14.2	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal	228
14.2 14.3	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the	228 230
14.2 14.3 14.4	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level	228 230 231
14.214.314.414.5	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level	228 230
14.2 14.3 14.4	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities:	228 230 231 233
 14.2 14.3 14.4 14.5 14.6 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia	228 230 231
14.214.314.414.5	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities:	228 230 231 233
 14.2 14.3 14.4 14.5 14.6 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Ventricular	2228 230 231 233 235
 14.2 14.3 14.4 14.5 14.6 14.7 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Ventricular Arrhythmia	228 230 231 233
 14.2 14.3 14.4 14.5 14.6 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Ventricular Arrhythmia Action Potential Repolarisation Abnormalities: Long QT	2228 230 231 233 235 236
 14.2 14.3 14.4 14.5 14.6 14.7 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Ventricular Arrhythmia Action Potential Repolarisation Abnormalities: Long QT Syndromes and Ventricular Arrhythmia	2228 230 231 233 235
 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Ventricular Arrhythmia Action Potential Repolarisation Abnormalities: Long QT	2228 2300 2311 2333 2335 2336 2336
 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 	Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Generation and Propagation at the Tissue Level Arrhythmic Substrate Arising from Spatial Heterogeneities in Action Potential Recovery at the Tissue Level Arrhythmic Substrate Arising from Temporal Electrophysiological Heterogeneities at the Tissue Level Arrhythmic Triggers at the Cellular Level Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Atrial Arrhythmia Action Potential Activation and Conduction Abnormalities: Impaired Na ⁺ Channel Function and Ventricular Arrhythmia Action Potential Repolarisation Abnormalities: Long QT Syndromes and Ventricular Arrhythmia Gain of Na ⁺ Channel Function: LQTS3	2228 2300 2311 2333 2335 2336 2336

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter More Information

CONTENTS		
	14.11 Loss of V ⁺ Channel Function, Use also and Music	
	14.11 Loss of K ⁺ Channel Function: Hypokalaemic Murine	
	Models for Acquired LQTS	242
	14.12 Congenital LQTS Related to Loss of K ⁺ Channel	
	Function	243
	14.13 Pro-Arrhythmic Perturbations in Intracellular Ca ²⁺	
	Homeostasis	244
	14.14 Altered Intracellular Ca ²⁺ Homeostasis: Catecholaminergic	
	Polymorphic Ventricular Tachycardia	245
	14.15 Mechanistic Schemes for Ca ²⁺ -Mediated Arrhythmias	247
	14.16 Pro-Arrhythmic Consequences of Compromised Cellular	
	Energetics	248
	14.17 Pro-Arrhythmic Structural Remodelling Resulting from	
	Upstream Pathophysiological Changes	249
	14.18 Translation of Mechanistic Insights into Therapeutic	
	Strategy	249
	I5 Smooth Muscle	252
	15.1 Structure of Smooth Muscle Cells	252
	15.2 Functional Features of Smooth Muscle	253
	15.3 Interstitial Cell of Cajal Networks	254
	15.4 Pacing Properties of Interstitial Cells of Cajal	255
	15.5 Propagation of Interstitial Cell of Cajal Pacing Events	258
	15.6 Electrical Coupling Between Interstitial Cells of Cajal and	
	Smooth Muscle Cells	258
	15.7 Membrane Excitation in Smooth Muscle Cells	259
	15.8 Excitation–Contraction Coupling in Smooth	
	Muscle Cells	260
	15.9 Pharmacomechanical Coupling in Smooth	
	Muscle Cells	262
	15.10 Store-Operated and Mechanosensitive Ion Channels	
	in Smooth Muscle Cells	265
	15.11 Ca ²⁺ -Mediated Contractile Activation	265
	15.12 Effects of Myosin Light Chain Phosphorylation Levels	267
	15.13 Mechanical Properties of Smooth Muscle	268
	15.14 Propagation of Excitation and Contraction in Smooth	
	Muscle	269
	Further Reading	271
	References	274

Colour plates can be found between pages 140 and 141.

Preface

Initiation of movement, whether voluntary action by skeletal muscle or contraction of cardiac or smooth muscle, is the clearest observable physiological manifestation of animal life. It inevitably involves activation of contractile tissue initiated or modulated by altered activity in its nerve supply or signalling by its chemical modulators. An appreciation of structure and function in both nerve and muscle, and of the functional relationships between them, is fundamental to our physiological understanding. These processes, and their regulation and abnormalities, now also assume increasing applicability to the understanding and clinical management of disease processes.

This book introduces this important biological area in a form suitable for students taking university courses in physiology, cell biology or medicine. It gives a straightforward account of the fundamentals of this subject, whilst including some of the strategic classical and recent experimental evidence underpinning our current understanding.

Besides providing rewritten and reorganised chapters, this fifth edition covers major advances in this important and rapidly developing area of study. It includes contributions from recent molecular structural insights, opportunities arising from genetic manipulation, novel single-cell and multi-channel electrophysiological and optical recording techniques, and physical and mathematical analysis. It extends our appreciation of the implications of these molecular and cellular findings to the systems level. Many of these developments were prompted by their applicability to clinical medicine that itself has both inspired and become increasingly amenable to physiological analysis. They have led to major new insights from the resulting exciting and important discoveries concerning the molecules involved in electrical activity, activation of skeletal muscle and the function of cardiac and smooth muscle. This edition increases emphasis on new findings in excitation-contraction coupling, cardiac electrophysiology and arrhythmogenesis, and the cellular physiology of smooth muscle.

Nevertheless, in the spirit of previous editions, the earlier as well as introductory sections of the subsequent chapters in this revision first emphasise fundamental physiological principles prior to narrating more challenging recent material. In the course of this revision, I am particularly grateful to my current collaborators, Drs. Antony Jackson, Kamalan Jeevaratnam, Ming Lei, Hugh Matthews, James Fraser and Samantha Salvage, as well as undergraduate and postgraduate students in my college and laboratory, for stimulating pedagogical insights and continued scientific dialogue. I am also grateful for a visiting professorship generously awarded by the University of Surrey in the course of this revision.

Acknowledgements

The author is grateful for permission to reprint illustrative material, cited by the figure legends, conveyed through Copyright Clearance Center, Inc. or a Creative Commons Attribution 4.0 International License (CC–BY) in the course of preparing this new edition, to:

Prof. William F. Gilly, Hopkins Marine Station, CA, USA (Figure 5.4). American Physiological Society: American Journal of Physiology (Plate 19); Physiological Reviews (Plates 21 and 22, Figure 5.3). American Society for Biochemistry and Molecular Biology: Journal of Biological Chemistry (Plate 1); Company of Biologists Ltd.: Journal of Cell Science (Figure 14.7). Elsevier BV: Advances in Surgery (Figure 1.8); Brain Research Reviews (Figure 8.13); Cardiovascular Research (Plate 20); Cell (Plate 2); Mechanisms of Ageing and Development (Plate 18); Neuroscience (Figure 7.1); Progress in Biophysics and Molecular Biology (Plate 5). Federation of European Biochemical Societies (FEBS) Press: FEBS Letters (Plate 3). Frontiers Media SA: Frontiers in Physiology (Plates 11 and 16). John Wiley & Sons Inc: Acta Physiologica (Plates 20 and 24; Figure 14.6); Biological Reviews of the Cambridge Philosophical Society (Figure 8.13); Clinical and Experimental Pharmacology and Physiology (Plate 14); Experimental Physiology (Plate 24); Journal of Anatomy (Plate 4, Figure 10.7); Journal of Cardiovascular Electrophysiology (Figure 14.8); Journal of Physiology (Plate 5, 7, 10 and 17, and Figures 3.7, 3.13, 5.4, 7.3, 7.4, 7.7-7.9, 10.1-10.5, 10.10, 11.1, 11.3, 11.4, 11.12, 11.14, 12.16, 13.8, 14.2, 15.3, 15.5-15.7 and 15.9); Protein Science (Plates 8 and 9). Proceedings of the National Academy of Sciences USA (PNAS) (Plate 2). Rockefeller University Press: Biophysical Journal (Figure 10.6); Journal of General Physiology (Plate 7; Figures 10.12, 10.13). Society for Neuroscience: Journal of Neuroscience (Figure 7.1). Royal Society (Great Britain): Open Biology (Plate 18); Bibliographical Memoirs of the Royal Society (Figure 11.2). Springer-Nature: Pflugers Archiv-European Journal of Physiology (Plate 14, Figure 12.17); Scientific Reports (Figure 11.16).

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

Abbreviations used in the text

Notes:

- (1) Units provided to give indication of unit dimensions are those frequently encountered in the physiological literature.
- (2) Ion channel α -subunits, their currents and their encoding genes are summarised in Plates 6 and 13.

a	constant in the Hill equation
A	actin
αAR	α-adrenergic receptor
A-band	anisotropic band
AC	adenylyl cyclase
ACh	acetylcholine
AChR	acetylcholine receptor
A-curve	action potential restitution: dependence of APD
	on BCL
ADP	adenosine diphosphate
AF	atrial fibrillation
AgCl	silver chloride
α_h	Hodgkin–Huxley, <i>h</i> -variable, forward rate
	constant (/sec)
α_m	Hodgkin–Huxley, <i>m</i> -variable, forward rate
	constant (/sec)
α_n	Hodgkin–Huxley, <i>n</i> -variable, forward rate
	constant (/sec)
-AM	acetomethoxy (ester)
AMPA	α-amino-3-hydroxy-5-methyl-4-
	isoxazolepropionate
Ano1	gene encoding anoctamin-1 (Ca ²⁺ -activated Cl ⁻
	channel)
2-APB	2-aminoethoxydiphenylborate (IP ₃ R blocker)
APD	action potential duration (ms)
APD ₉₀	action potential duration to 90% full
	repolarisation (ms)
ARVC	arrhythmogenic right ventricular
	cardiomyopathy
ATP	adenosine triphosphate
ATP/ADP	ATP/ADP ratio
AV	atrioventricular
aVF	electrocardiogram recording between left leg
	and combined two remaining leads
aVL	electrocardiogram recording between left arm
	and combined two remaining leads
AVN	atrioventricular node

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

xvi | ABBREVIATIONS USED IN THE TEXT

aVR	electrocardiogram recording between right arm and combined two remaining leads
Αα	peripheral nerve fibre subtype; conduction velocity ~100 m/s
Αβ	peripheral nerve fibre subtype; conduction velocity ~60 m/s
Αγ	peripheral nerve fibre subtype; conduction velocity ~40 m/s
b	constant in the Hill equation
B	peripheral nerve fibre subtype; conduction
2	velocity ~10 m/s
Ba ²⁺	barium ion
ВАРТА	1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-
2	tetraacetic acid tetrakis-acetoxymethyl ester
βAR	β -adrenergic receptor
BCL	basic cycle length (ms)
BDNF	brain-derived neurotrophic factor
β_h	Hodgkin–Huxley, <i>h</i> -variable, backward rate
Pn	constant (/sec)
β_m	Hodgkin–Huxley, <i>m</i> -variable, backward rate
Pm	constant (/sec)
β_n	Hodgkin–Huxley, <i>n</i> -variable, backward rate
Pn	constant (/sec)
ВК	large-conductance, Ca ²⁺ -activated K ⁺
DK	channel (maxiK)
BrS	Brugada syndrome
C	peripheral nerve fibre subtype; conduction
C	velocity $\sim 2 \text{ m/s}$
CACNA1C-G402S	L-type Ca ²⁺ channel mutation involving the
01010110-04023	junction between DI/S6 and the I-II loop of
	Cav1.2
CACNA1C-G406R	L-type Ca2+ channel mutation involving the
CACIMATC-G400K	junction between DI/S6 and the I-II loop of
	Cav1.2
Cacna1g	gene encoding T-type Ca _v 3.2 channel
Cacna1h	gene encoding T-type Ca _V 3.2 channel
$[Ca^{2+}]_i$.	intracellular free Ca $^{2+}$ concentration (mmol/L)
$[Ca^{2+}]_{0}$	extracellular Ca ²⁺ concentration (mmol/L)
CaM	$Ca^{2+}/calmodulin$
CaMK	CaM-dependent kinase
CaMKII	calmodulin kinase II
cAMP	cyclic 3',5',-adenosine monophosphate
CASQ	calsequestrin
CASQ2	calsequestrin type 2, cardiac isoform
Cav1.1	L-type Ca ²⁺ channel type 1, skeletal muscle
Sut 1.1	isoform
Cav1.2	L-type Ca ²⁺ channel type 2, cardiac muscle
∪u # 1.2	isoform
Ca _v 3.2	T-type Ca ²⁺ channel
Guy0.2	i type ou chamier

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

ABBREVIATIONS USED IN THE TEXT

xvii

-CH₃ methyl-CH₃-NH₃⁺ methylamine ion chloride ion Cl^{-} $[Cl^-]_i$ intracellular Cl⁻ concentration (mMol/L) extracellular Cl⁻ concentration (mMol/L) $[Cl^-]_o$ ClC-1 Cl⁻ conducting channel CLIC2 chloride intracellular channel protein 2 capacitance of unit length of fibre (μ F/cm) $c_{\rm m}$ specific membrane capacitance of unit surface $C_{\rm m}$ area $(\mu F/cm^2)$ CN calcineurin CN^{-} cvanide ion CPVT catecholaminergic polymorphic ventricular tachvcardia 8-CPT 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (Epac activator) Cr creatine CrP creatine phosphate cryo-electronmicroscope cryo-EM Cs^+ caesium ion CSD cortical spreading depression tubular membrane capacitance (µF/cm) \mathcal{C}_{T} CT crista terminalis Cx connexin Cx40 connexin type 40 Cx43 connexin type 43 membrane thickness (nm) d D600 methoxyverapamil DAD delayed after-depolarisation DAG diacylglycerol transmural action potential duration ΔAPD gradient (ms) ΔAPD_{90} transmural repolarisation gradient in action potential duration to 90% recovery (ms) DHPR dihydropyridine receptor DHPR1 dihyropyridine receptor type 1, skeletal muscle isoform, Cav1.1 dihyropyridine receptor type 2, cardiac muscle DHPR2 isoform, Cav1.2 DI diastolic interval (ms) di-4-ANEPPS 3-(4-{2-[6-(dibutylamino)naphthalen-2yl]ethenyl}pyridinium-1-yl)propane-1-sulfonate 3-[4-[(E)-2-[6-(dioctylamino)naphthalen-2di-8-ANEPPS yl]ethenyl]pyridin-1-ium-1-yl]propane-1sulfonate critical DI where the restitution A-curve shows DIcrit unity slope (ms) DI voltage-gated ion channel domain I voltage-gated ion channel domain II DII

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

xviii ABBREVIATIONS USED IN THE TEXT

DIII	voltage-gated ion channel domain III
DIV	voltage-gated ion channel domain IV
D-line	action potential restitution (consequence for DI
	of varying APD)
DNP	2,4-dinitrophenol
ΔV_{c}	cell volume change (µL)
dV/dt	action potential upstroke velocity (mV/ms)
$(dV/dt)_{max}$	maximum action potential upstroke velocity
(arraymax	(mV/ms)
dV/dx	voltage drop with respect to distance along the
avian	intracellular space (mV/cm)
∂Vl∂x	voltage gradient along length of fibre (mV/cm)
e	electron charge (C)
E	membrane potential (mV)
Ê	transmembrane electric field (V/m)
	permittivity (F/m)
3	dielectric constant
ε _r EAD	
ECG	early after-depolarisation
	electrocardiogram Ca ²⁺ binding protein motif
EF-hand	
EGTA	ethylene glycol-bis(β-aminoethyl ether)-N,N,N', N'-tetraacetic acid
Б	
E _K ELC	K ⁺ Nernst equilibrium potential (mV)
	essential myosin light chain
E _m	membrane potential (mV)
EMF	electromotive force (mV)
E _{Na}	Na ⁺ Nernst equilibrium potential (mV)
Epac	exchange protein directly activated by cAMP
EPP	end-plate potential
EPSC	excitatory postsynaptic current
EPSP	excitatory postsynaptic potential
ERP	effective refractory period (ms)
F	Faraday constant (C/mol)
ξ	fraction of the total voltage drop <i>V</i> across the
	membrane
FDNB	1-fluoro-2,4-dinitrobenzene
FK506	tacrolimus; fujimycin
FKBP	FK506 binding protein
FKBP12	FK506 binding protein type 12
G-protein	guanosine triphosphate binding protein
$G_1(V)$	energy of channel resting state (J/mol)
$G_2(V)$	energy of channel activated state (J/mol)
$G_{\rm a}(V)$	energy of transition state (J/mol)
GABA	gamma-amino butyric acid
g _{Ca}	membrane Ca ²⁺ conductance (mS/cm ²)
GDP	guanosine diphosphate
g _f	membrane HCN channel conductance (mS/cm ²)
GFP	green fluorescent protein
GH	growth hormone

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

ABBREVIATIONS USED IN THE TEXT

xix

Gi	adenylyl cyclase inhibitory G-protein
G _{i2}	adenylyl cyclase inhibitory G-protein
G _{i/o}	adenylyl cyclase inhibitory G-protein
gк	membrane K ⁺ conductance (mS/cm ²)
$ar{g}_{ extsf{K}}$	maximum K ⁺ conductance (mS/cm ²)
$g_{ m leak}$	membrane leak conductance (mS/cm ²)
$g_{ m Na}$	membrane Na ⁺ conductance (mS/cm ²)
$ar{g}_{ m Na}$	maximum Na ⁺ conductance (mS/cm ²)
Gq	phospholipase C activating G-protein
Group I	myelinated sensory fibre subtype, diameter
	20 to 12 μm
Group II	myelinated sensory fibre subtype, diameter
-	12 to 4 µm
Group III	myelinated sensory fibre subtype, diameter $<4\mu m$
G _s	adenylyl cyclase stimulatory G-protein
GTP	guanosine triphosphate
G _α	GTP binding subunit of trimeric G-protein
Gβγ	βγ component of trimeric G-protein
h	Hodgkin–Huxley, Na ⁺ conductance
12	inactivation variable
H^{+}	hydrogen ion
HCN	hyperpolarisation-induced cyclic nucleotide-
nerv	activated channel
HCS	hydrophobic constriction site, Na ⁺ channel
HEK293	Human embryonic kidney 293
HgCl	mercuric chloride
HMM	
	heavy meromyosin
5-HT	5-hydroxytryptamine
¹ H-NMR	proton nuclear magnetic resonance
² H-NMR	deuterium nuclear magnetic resonance
H-zone	Heller zone (German 'heller': brighter).
θ	action potential propagation velocity (m/s)
I	current
I(V,t)	charge movement (if normalised to
	background membrane capacitance: μA/μF)
Io	current electrode; three-microelectrode voltage
	clamp (mA)
$I_0(t)$	current delivered to control voltage at V_1 ;
	three-microelectrode voltage clamp (mA)
$i_{ m a}$	axial current flow along the length, <i>x</i> , of a
	fibre (mA)
$i_{\rm a}(t)$	axial intracellular current; three-
	microelectrode voltage clamp (mA)
I-band	isotropic band
I _{Ca}	Ca ²⁺ current
I _{CaL}	voltage-gated L-type Ca ²⁺ current carried by
	Cav1.1 or Cav1.2
I _{CaT}	voltage-gated T-type Ca ²⁺ current carried by
	Cav3.1 or Cav3.2

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

xx

ABBREVIATIONS USED IN THE TEXT

Ŧ	
I _{cat}	cationic current
ICC	interstitial cells of Cajal
ICC-CM	interstitial cells of Cajal within gastrointestinal
	circular muscle
ICC-DMP	interstitial cells of Cajal within deep muscular
	plexus between small intestinal inner and
	outer circular muscle sublayers
ICC-LM	interstitial cells of Cajal within gastrointestinal
	longitudinal muscle
ICC-MP or ICC MY	interstitial cells of Cajal between the circular
	and longitudinal muscle layers
ICC-SM	interstitial cells of Cajal between submucosa
	and circular muscle
ICC-SMP	submucosal interstitial cells of Cajal
ICC-SS	interstitial cells of Cajal within the subserosal
10000	connective tissue space
I _{Cl(Ca)}	Ca ²⁺ -activated Cl ⁻ current
I _{crac}	Ca ²⁺ -release-activated (capacitative) current
I _{dr}	delayed rectifying K ⁺ current
IFMT	inactivation amino acid sequence, Na ⁺ channel
IGF-1	insulin-like growth factor 1
I.	ionic current (mA/cm ²)
I ₁ I _K	K ⁺ current
i _K	K ⁺ current per unit length of fibre (mA/cm)
	acetylcholine-gated K ⁺ current carried by Kir3.1
I _{K(ACh)}	inward ('anomalous') rectifying K ⁺ current
I_{K1}	carried by Kir2.1, Kir2.2 and Kir2.3
т	-
I _{K2p}	2-pore domain K ⁺ leak current carried by TWIK1 or TASK1
т	
I _{KATP}	adenosine triphosphate (ATP)-sensitive K ⁺
т	current carried by Kir6.2
I _{KCa}	Ca ²⁺ activated K ⁺ current carried by KCa1.1
I _{Kp}	two-pore domain K ⁺ channel mediated K ⁺
T	current carried by TWIK1 or TASK1
I _{Kr}	voltage-gated rapidly activating outward K ⁺
-	current carried by Kv11.1
I _{Ks}	voltage-gated slowly activating outward K ⁺
_	current carried by Kv7.1
I _{Kur}	voltage-gated ultra-rapidly activating atrial
	outward K ⁺ current carried by Kv1.5
Im	membrane current (mA/cm ²)
i _m	transmembrane current per unit length of
	fibre (mA/cm ²)
$i_{\rm m}(t)$	membrane current in the fibre segment
	extending a distance 3l/2 from end; three-
	microelectrode voltage clamp (mA/cm);
	<i>l</i> , electrode distancing.
I _{maxK}	Ca ²⁺ -activated K ⁺ current

ABBREVIATIONS USED IN THE TEXT

I _{Na}	voltage-gated Na ⁺ current carried by Nav1.1,
	Nav1.4, Nav1.5
i _{Na}	Na ⁺ current per unit length of fibre (mA/cm)
I _{NaL}	late Na ⁺ current
I _{NCX}	Na ⁺ –Ca ²⁺ exchanger current
IP ₃	inositol trisphosphate
IP ₃ R	inositol 1,4,5-trisphosphate receptor
IPSP	inhibitory postsynaptic potential
IQ domain	isoleucine-glutamine Ca ²⁺ /calmodulin binding
	domain
I _{sac}	stretch-activated current
I _{ti}	transient inward current
I _{to}	early transient outward K ⁺ current
I _{to,f}	voltage-gated fast transient outward current
	carried by K _v 4.2, Kv4.3
I _{to,s}	voltage-gated slow transient outward K ⁺
	current carried by K _v 1,4
IVC	inferior venacava
JNK	c-Jun N-terminal kinase
k	Boltzmann constant (J/K)
k	steepness factor, Boltzmann equation (mV)
K ⁺	potassium ion
$[K^+]_i$	intracellular K ⁺ concentration (mmol/L)
[K ⁺] _o	extracellular K ⁺ concentration (mmol/L)
K _{ATP}	ATP-sensitive K ⁺ channel
KChIP2	K ⁺ channel interacting protein 2
KCNH2	encoding gene for protein carrying $I_{\rm Kr}$
KCNQ1	encoding gene for protein carrying <i>I</i> _{Ks}
K _{dr}	delayed rectifier K ⁺ channel
Kir	inwardly rectifying K ⁺ channel
Kir1.x, Kir4.x,	inwardly rectifying K ⁺ channel variants
Kir5.x, Kir7.x	
Kir2.1, Kir2.2, Kir2.3	K^+ channels carrying I_{K1}
Kir2.x	persistently active inwardly rectifying K ⁺
	channel
Kir3.x	G-protein-receptor-coupled inwardly rectifying
	K ⁺ channel
Kir6.2	inward rectifying K ⁺ channel carrying I _{KATP}
Kir6.x	ATP- sensitive inwardly rectifying K ⁺ channel
KN-93	N-[2-[N-(4-chlorocinnamyl)-N-
	methylaminomethyl]phenyl]-N-(2-
	hydroxyethyl)-4-methoxybenzenesulfonamide
	(CaMK II inhibitor)
Kv4.2	K^+ channel, carrying $I_{to,f}$
Kv4.3	K^+ channel, carrying $I_{to,f}$
L	channel number density (channels/µm ²)
Λ	action potential wavelength (mm)
λ	dynamic space constant (mm)

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

xxii ABBREVIATIONS USED IN THE TEXT

$\lambda(\infty)$	steady-state space constant (mm)
Λ '	action potential wavelength (mm)
Λ_0 '	action potential resting wavelength (mm)
[(lactate) [–]] _i	intracellular lactate ion concentration (mmol/L)
[(lactate) [_]] _o	extracellular lactate ion concentration
	(mmol/L)
Lead I	electrocardiogram recording between right and
	left arm
Lead II	electrocardiogram recording between right
	arm and left leg
Lead III	electrocardiogram recording between left arm
	and left leg
LMM	light meromyosin
LQTS	long QT syndrome
LQTS1	long QT syndrome, related to KCNQ1-mediated
	I _{Ks}
LQTS2	long QT syndrome, related to KCNH2-mediated
	I _{Kr}
LQTS3	long QT syndrome type 3 related to SCN5A-
	mediated I _{Na}
LQTS8	long QT syndrome type 8 related to CACNA1c-
	mediated I _{CaL} (Timothy syndrome)
LTD	long-term depression
LTP	long-term potentiation
LV	left ventricle
т	Hodgkin–Huxley, Na ⁺ conductance activation
	variable
М	myosin
т	quantal content (mean number of quanta
	released during an EPP)
M ₂	muscarinic receptor type 2
M ₃	muscarinic receptor type 3
MAP	monophasic action potential
maxiK	large-conductance, Ca ²⁺ -activated K ⁺
141	channel (BK)
Mdg	muscular dysgenic
MEPP	miniature end-plate potential
$[Mg^{2+}]_{o}$	extracellular Mg ²⁺ concentration (mmol/L)
mGluR	metabotropic glutamate receptor
Mkk4	mitogen-activated protein kinase kinase 4
Mkk4-acko	conditional <i>Mkk4</i> knockout
Mkk4-f/f	Mkk4 control
MLC	myosin light chain
MLCK M line	myosin light-chain kinase Mittalashaiba lina (Carman: 'Mittal': middla:
M-line	Mittelscheibe line (German: 'Mittel': middle;
Mn ²⁺	'scheibe': disc)
	manganese ion
MRI mRNA	magnetic resonance imaging messenger ribonucleic acid
	messenger ribonuciele delu

ABBREVIATIONS USED IN THE TEXT

xxiii

n	Hodgkin–Huxley, K ⁺ conductance activation variable
Ν	membrane density of a specified channel or
	transporter
N2B	cardiac-specific titin element
NA	noradrenaline
Na ⁺	sodium ion
[Na ⁺] _i	intracellular Na ⁺ concentration (mmol/L)
[Na ⁺] _o	extracellular Na ⁺ concentration (mmol/L)
NAD ⁺	oxidized nicotinamide adenine dinucleotide
NADH	reduced nicotinamide adenine dinucleotide
Nav1.1	α -subunit voltage-dependent Na ⁺ channel,
	neuronal isoform
Na _v 1.1, Na _v 1.2,	central nervous system α -subunit voltage-
$Na_v 1.3, Na_v 1.6$	dependent Na ⁺ channel isoforms
$Na_v 1.4$	skeletal muscle α -subunit voltage-dependent
1,00,1.1	Na ⁺ channel isoform
Na _v 1.5	cardiac muscle α-subunit voltage-dependent
144/1.0	Na ⁺ channel isoform
Na _v 1.7, Na _v 1.8, and	peripheral nervous system α -subunit voltage-
Na _v 1.9 Na _v 1.0, and Na _v 1.9	dependent Na ⁺ channel isoforms
NCX	Na ⁺ –Ca ²⁺ exchanger
NFAT	nuclear factor of activated T cells
-NH ₂	amino-
$NH_2 - NH_3^+$	hydrazine
NK_1	neurokinin receptor type 1
NK ₃	neurokinin receptor type 3
NKCC1	Na ⁺ -K ⁺ -Cl ⁻ cotransporter type 1
NMDA	N–methyl-D-aspartate
nNOS	neuronal nitric oxide synthase
NO	nitric oxide
-OH	hydroxyl-
OH–NH ₃ ⁺	hydroxylamine
P	force exerted by the muscle in the Hill
1	equation (N)
Po	isometric tension in the Hill equation (N)
P1	voltage-gated ion channel p-loop helix 1
P2	voltage-gated ion channel p-loop helix 1
P2XR	ionotropic P2X purinergic receptor
P2YR	metabotropic purinergic receptor
Pak1	p21 activated kinase-1
Pak1-/-	murine p21 activated kinase-1 knockout
Pak1-cko	murine p21 activated kinase-1 knockout
	knockout
$P_{\rm Cl}$	membrane permeability to Cl^{-} (m/s)
PEVK	domains rich in proline (P), glutamate (E),
	valine (V), and lysine (K)
PGC-1α	peroxisome proliferator-activated receptor-y
	coactivator-1α

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

xxiv | ABBREVIATIONS USED IN THE TEXT

PGC-1β	peroxisome proliferator-activated receptor-γ
	coactivator-1β
Pgc-1β ^{-/-}	murine PGC-1β knockout
pH	negative logarithm to base 10 of [H ⁺]
Phase 0	cardiac action potential rapid
	depolarisation phase
Phase 1	cardiac action potential initial brief rapid
	repolarisation phase
Phase 2	cardiac action potential plateau phase
Phase 3	cardiac action potential terminal
	repolarisation phase
Phase 4	cardiac action potential electrical diastole
рН _і	logarithm to base 10 of intracellular [H ⁺]
PIP ₂	phosphatidylinositol 4,5- <i>bis</i> phosphate
$P_{\rm K}$	membrane permeability to K ⁺ (m/s)
P_k	probability of an EPP containing k quanta
рК _а	negative logarithm of dissociation constant
PKA	phosphokinase A
РКС	phosphokinase C
$P_{\text{Lac}-}$	membrane permeability to lactate ion (m/s)
P _{LacH}	membrane permeability to lactate acid
	(un-ionised) (m/s)
PLC	phospholipase C
PLN	phospholamban
PM	voltage-gated ion channel pore module
PMCA	sarcolemmal Ca ²⁺ -ATPase
$P_{\rm Na}$	membrane permeability to Na ⁺ (m/s)
PP1	protein phosphatase isoform 1
PP2A	protein phosphatase isoform 2
PPA1	protein phosphatase 1
$[Pr^{z-}]$	protein concentration (mmol/L)
P-wave	electrocardiogram recording, initial atrial
	depolarisation-related wave
<q></q>	microscopic charge movement (if normalised
*	to background membrane capacitance: $nC/\mu F$)
Q(V, t)	charge movement (if normalised to
	background membrane capacitance: nC/µF)
$Q(V,\infty)$	steady state charge (if normalised to
	background membrane capacitance: nC/μF)
$Q_0(V)$	lipid bilayer charge (if normalised to
	background membrane capacitance: nC/µF)
Q _{max}	maximum charge (if normalised to background
Chax	membrane capacitance: nC/µF)
qPCR	quantitative reverse transcriptase polymerase
1	chain reaction
QRS-complex	major ventricular-related ECG deflection
R	universal gas constant (J/(K mol))
R _a	cytoplasmic resistivity (Ω cm)
u	

ABBREVIATIONS USED IN THE TEXT

xxv

r _a	intracellular resistance of unit fibre length
	$(k\Omega/cm)$
r _a	intracellular resistance of unit length (k Ω .cm)
RA	right atrium
r _{ac}	tubular access resistance (kΩ cm)
RH237	(N-(4-sulfobutyl)-4-(6-(4-(dibutylamino)phenyl)
	hexatrienyl)pyridinium [styryl membrane
	voltage indicator]
Rhod-2	1-[2-amino-5-(3-dimethylamino-6-dimethyl-
	ammonio-9-xanthenyl)phenoxy-2-(2-amino-5-
	methylphenoxy)-ethane-N,N,N',N'-tetraaacetic
	acid (BAPTA-derived Ca ²⁺ -sensitive dye)
R _K	membrane resistance attributable to K ⁺
	conductance (k Ω cm ²)
$r_{ m L}$	tubular luminal resistance (kΩ/cm)
RLC	regulatory myosin light chain
R _{leak}	membrane resistance attributable to leak
	conductance (k Ω cm ²)
r _m	resistance of unit length of fibre (k Ω cm)
R _m	specific membrane resistance (k Ω cm ²)
r _m	surface membrane resistance of unit length of
	fibre (kΩ cm)
R _{Na}	membrane resistance attributable to Na ⁺
	conductance (k Ω cm ²)
RNA	ribonucleic acid
r _o	extracellular fluid resistance of unit length of
	nerve fibre (kΩ/cm)
ROCC	receptor-operated cation channel
ROS	reactive oxygen species
R _{patch}	resistance of membrane within the patch (M Ω);
	loose patch electrode recording
R _{pip}	loose patch clamp electrode resistance (M Ω);
	loose patch electrode recording
R _{seal}	seal resistance between loose patch electrode
	and external membrane surface (M Ω); loose
	patch electrode recording
r_{T}	tubular membrane resistance (kΩ/cm)
RV	right ventricle
RVOT	right ventricular outflow tract
RyR1	ryanodine receptor type 1, skeletal muscle
	isoform
RyR2	ryanodine receptor type 2, cardiac muscle
D D0 D	isoform
RyR2-P2328S	RyR2 mutation exemplar
$RyR2^{S/+}$	murine heterozygotic <i>Ry</i> R2-P2328S mutant
RyR2 ^{S/S}	murine homozygotic RyR2-P2328S mutant
RyR3	ryanodine receptor type 3, neuronal isoform
S1	myosin subfragment 2

Cambridge University Press 978-1-108-49505-9 — Keynes & Aidley's Nerve and Muscle Christopher L.-H. Huang Frontmatter <u>More Information</u>

xxvi | ABBREVIATIONS USED IN THE TEXT

S1	pacing stimulus
S1-S6	transmembrane segments in voltage-gated ion
	channel domains
S2	extrasystolic stimulus
S2	myosin subfragment 2
SAC	mechanosensitive, stretch-activated, channel
SAN	sino-atrial node
sarcK _{ATP}	sarcolemmal ATP-sensitive K ⁺ channel
SCF	stem cell factor
Scn5a+/-	heterozygotic Nav1.5 deficient genotype
Scn5a+/ Δ KPQ	gain of function cardiac Na ⁺ channel genotype
Scn5a-1798insD	gain of function cardiac Na ⁺ channel genotype
SEM	standard error of the mean
SEP	atrial septum
SERCA	sarcoplasmic reticular Ca ²⁺ ATPase
SERCA1	sarcoplasmic reticular Ca ²⁺ -ATPase type 1,
SERCAT	skeletal muscle isoform
CED CAD	
SERCA2	sarcoplasmic reticular Ca ²⁺ -ATPase type 2,
6P	cardiac muscle isoform
SF	ion channel selectivity filter
Slc12a2	gene encoding Na ⁺ -K ⁺ -Cl ⁻ cotransporter type 1
SOCC	store-operated Ca ²⁺ channel
SR	sarcoplasmic reticulum
Sr ²⁺	strontium ion
STD	spontaneous transient depolarization events/ unitary potentials
STIC	spontaneous transient inward current
SVC	superior vena cava
Т	absolute temperature (K)
t	time (ms)
Т-	transverse
τ	time constant (ms)
TdP	torsades de pointes (French: 'twisting of the
	peaks')
TGF-β ₁	transforming growth factor β type 1
TM	tropomyosin
Tris	tris-hydroxyaminomethane
TRP	transient receptor potential channel
TRPC1	transient receptor potential channel protein
	type 1
TRPC3	transient receptor potential channel protein
	type 3
TRPC6	transient receptor potential channel protein
110.00	type 6
TTCC	T-type Ca ²⁺ channels
T-tubule	transverse tubule
TTX	tetrodotoxin
T-wave	
1-Marc	electrocardiogram recording, ventricular-
	repolarisation-related wave

ABBREVIATIONS USED IN THE TEXT

xxvii

V	membrane voltage (mV)
V	velocity of shortening in the Hill equation (cm/s)
V	voltage (V)
V(t)	membrane voltage at time t (mV)
V(x)	membrane voltage at position x (mV)
V(x, t)	membrane voltage as a function of x and t (mV)
V*	membrane voltage at which energies of G_1 and
·	G_2 are equal (mV)
V1-V6	electrocardiogram recording: chest leads 1–6.
V_{c}	cell volume (µL)
VE	ventricular ectopic
VERP	ventricular ERP (ms)
VF	ventricular fibrillation
VIP	vasoactive intestinal polypeptide
VIP ₁	vasoactive intestinal peptide type 1
$V_{ m pip}$	voltage at the back end of the pipette (mV);
1 1	loose patch electrode recording
V _{rest}	external voltage of patched membrane (mV);
	loose patch electrode recording
VSM	voltage-sensing module, voltage-gated ion
	channel
VT	ventricular tachycardia
WT	wild type
x	position along length of a nerve (mm)
Ζ	charge valency
Z-line	Zwischenscheibe line (German: 'Zwischen':
	spacer; 'scheibe': disk)
$Z_{\mathbf{x}}$	effective valency