Advanced Data Analytics for Power Systems

Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.

Ali Tajer is an associate professor of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute.

Samir M. Perlaza is a chargé de recherche at INRIA, Centre de Recherche de Sophia Antipolis – Méditerranée, France.

H. Vincent Poor is the Michael Henry Strater University Professor of Electrical Engineering at Princeton University.

"There are only a few industries that generate an equally large amount of data with a comparable variety, and societal importance. Data analytics is thus rightfully at the heart of modern power systems operations and planning. Focusing on applications in power systems, this book gives an excellent account of recent developments and of the broad range of algorithms and tools in the area of data analytics, as well as of the applications of these tools for solving challenging problems from a novel angle. Covering a wide range of fundamental problems, from state estimation to load scheduling and anomaly detection, the book is not only an excellent source of inspiration, but can also serve as an extensive reference for the gamut of operational problems faced in the power industry."

György Dán, KTH Royal Institute of Technology

Cambridge University Press 978-1-108-49475-5 — Advanced Data Analytics for Power Systems Edited by Ali Tajer , Samir M. Perlaza , H. Vincent Poor Frontmatter <u>More Information</u>

Advanced Data Analytics for Power Systems

Edited by

ALI TAJER Rensselaer Polytechnic Institute, Troy, NY

SAMIR M. PERLAZA INRIA, Sophia Antipolis, France

H. VINCENT POOR Princeton University, Princeton, NJ

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108494755 DOI: 10.1017/9781108859806

© Cambridge University Press 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Tajer, Ali, editor. | Perlaza, Samir M., editor. | Poor, H. Vincent, editor. Title: Advanced data analytics for power systems / edited by Ali Tajer, Rensselaer Polytechnic

Institute, New York, Samir M. Perlaza, INRIA, H. Vincent Poor, Princeton University, New Jersey. Description: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2020. | Includes bibliographical references and index.

Identifiers: LCCN 2020013357 (print) | LCCN 2020013358 (ebook) | ISBN 9781108494755 (hardback) | ISBN 9781108859806 (epub)

Subjects: LCSH: Electric power systems-Mathematical models.

Classification: LCC TK1001 .A36 2020 (print) | LCC TK1001 (ebook) | DDC 621.3101/5118–dc23 LC record available at https://lccn.loc.gov/2020013357 LC ebook record available at https://lccn.loc.gov/2020013358

ISBN 978-1-108-49475-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of Contributors	<i>page</i> xvi
	Preface	xxi
Part I	Statistical Learning	1
1	Learning Power Grid Topologies	3
	Guido Cavraro, Vassilis Kekatos, Liang Zhang, and Georgios B. Giannakis	
	1.1 Introduction	3
	1.2 Grid Modeling	4
	1.3 Topology Detection Using Smart Meter Data	5
	1.3.1 A Maximum Likelihood Approach	5
	1.3.2 A Maximum a posteriori Probability Approach	7
	1.3.3 Numerical Tests on Topology Detection Using Smart	
	Meter Data	8
	1.4 Topology Detection Using Partial Correlations	9
	1.4.1 Nonlinear Partial Correlations	9
	1.4.2 A Frank–Wolfe–Based Solver	11
	1.4.3 Numerical Tests on Topology Detection Using Partial Correlation	ns 12
	1.5 Grid Probing for Topology Learning	13
	1.6 Identifiability Analysis of Grid Probing	14
	1.6.1 Topology Identifiability with Complete Voltage Data	15
	1.6.2 Topology Identifiability with Partial Voltage Data	17
	1.7 Graph Algorithms for Topology Identification Using Probing	18
	1.7.1 Topology Identification with Complete Voltage Data	18
	1.7.2 Topology Identification with Partial Voltage Data	19
	1.7.3 Graph Algorithms Operating under Noisy Data	20
	1.8 Topology Identification Using Probing through Convex Relaxation	21
	1.9 Numerical Tests on Topology Identification Using Probing	23
	1.10 Conclusion	24
2	Probabilistic Forecasting of Power System and Market Operations	28
	Yuting Ji, Lang Tong, and Weisi Deng	
	2.1 Introduction	28
	2.1.1 Related Work	29
		V

vi	Contents			
	2.1.2 Summary and Organization	31		
	2.2 Probabilistic Forecasting Using Monte Carlo Simulations	31		
	2.3 Models of System and Market Operations	32		
	2.3.1 A Multiparametric Model for Real-Time System and			
	Market Operations	33		
	2.3.2 Single-Period Economic Dispatch	34		
	2.3.3 Multiperiod Economic Dispatch with Ramping Products	35		
	2.3.4 Energy and Reserve Co-optimization	37		
	2.4 Structural Solutions of Multiparametric Program	39		
	2.4.1 Critical Region and Its Geometric Structure	39		
	2.4.2 A Dictionary Structure of MLP/MQP Solutions	40		
	2.5 Probabilistic Forecasting through Online Dictionary Learning	41		
	2.5.1 Complexity of Probabilistic Forecasting	42		
	2.5.2 An Online Dictionary Learning Approach to	10		
	Probabilistic Forecasting	42		
	2.6 Numerical Simulations	44		
	2.6.1 General Setup	44		
	2.6.2 The 3120-Bus System	45		
	2.6.3 The IEEE 118-Bus System	46		
	2.7 Conclusion	49		
3	Deep Learning in Power Systems	52		
	Yue Zhao and Baosen Zhang			
	3.1 Introduction	52		
	3.2 Energy Data Analytics with Deep Learning: Scenario Generation	53		
	3.2.1 Scenario Generation Using Generative Adversarial Networks	54		
	3.2.2 GANs with Wasserstein Distance	54		
	3.2.3 Training GANs	56		
	3.2.4 Examples	57		
	3.2.5 Quality of Generated Scenarios	59		
	3.3 Power System Monitoring with Deep Learning: Real-Time Inference	61		
	3.3.1 Model, Problems, and Challenges	62		
	3.3.2 A Machine Learning–Based Monitoring	64		
	3.3.3 Case Study 1: Multi-line Outage Identification	66		
	3.3.4 Case Study 2: Voltage Stability Margin Estimation	68		
	3.4 Conclusion	71		
4	Estimating the System State and Network Model Errors	74		
	Ali Abur, Murat Göl, and Yuzhang Lin			
	4.1 Introduction	74		
	4.2 Power System State Estimation Using SCADA Measurements	75		
	4.3 Network Observability	76		
	4.4 Bad Data Processing	77		
	4.5 Power System State Estimation in the Presence of PMUs	78		

	Contents	vii
	4.5.1 Phasor Measurement–Based State Estimation	79
	4.5.2 Observability and Criticality Analyses in the Presence of PMUs	81
	4.5.3 Hybrid State Estimation	82
16	4.5.4 PMU–Based Infee-Phase State Estimation	63 00
4.0	4.6.1 Detection Identification and Correction of Parameter Errors	00
	4.6.1 Detectability and Identifiability of Parameter Errors	01
	4.6.2 Use of Multiple Measurement Scans	92
	4.6.4 Robust State Estimation against Parameter and)2
	Measurement Errors	94
4.7	Conclusion	95
Jata Dr	iven Anemaly Detection	00
Jata-Dr	iven Anomaly Detection	99
Quic	kest Detection and Isolation of Transmission Line Outages	101
Venu	gopal V. Veeravalli and Alejandro Dominguez-Garcia	
5.1	Introduction	101
5.2	Quickest Change Detection Background	102
	5.2.1 Shewhart Test	104
	5.2.2 CuSum Test	104
	5.2.3 Optimization Criteria and Optimality of CuSum	105
	5.2.4 Incompletely Specified Observation Models	100
5 2	5.2.5 QCD under Transient Dynamics	107
5.5	5.3.1 Pre outage Model	100
	5.3.1 Instantaneous Change during Outage	108
	5.3.2 Instantaneous change during outage	111
	5.3.4 Measurement Model	111
5.4	Line Outage Detection Using OCD	112
011	5.4.1 Meanshift Test	112
	5.4.2 Generalized Shewhart Test	113
	5.4.3 Generalized CuSum Test	114
	5.4.4 Generalized Dynamic CuSum Test	114
5.5	Line Outage Identification	115
5.6	Numerical Results	116
	5.6.1 Line Statistic Evolution	116
	5.6.2 Delay Performance	118
	5.6.3 Probability of False Isolation	120
5.7	Conclusion	121
Activ	ve Sensing for Quickest Anomaly Detection	124
Ali Ta	jer and Javad Heydari	
6.1	Anomaly Detection	124
6.2	Need for Agile Detection of Anomalies	125
	4.6 4.7)ata-Dr Quic Venu 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Acti Ali Ta 6.1 6.2	 4.5.1 Phasor Measurement–Based State Estimation 4.5.2 Observability and Criticality Analyses in the Presence of PMUs 4.5.3 Hybrid State Estimation 4.5.4 PMU–Based Three-Phase State Estimation 4.6.1 Detection, Identification, and Correction of Parameter Errors 4.6.1 Detection, Identification, and Correction of Parameter Errors 4.6.2 Detectability and Identifiability of Parameter Errors 4.6.3 Use of Multiple Measurement Scans 4.6.4 Robust State Estimation against Parameter and Measurement Errors 4.7 Conclusion Data-Driven Anomaly Detection Data-Driven Anomaly Detection Data-Driven Anomaly Detection Data-Universational isolation of Transmission Line Outages Venugopal V. Veeravalli and Alejandro Dominguez-Garcia 5.1 Introduction 5.2 Quickest Change Detection Background 5.2.1 Shewhart Test 5.2.2 CuSum Test 5.2.3 Optimization Criteria and Optimality of CuSum 5.2.4 Incompletely Specified Observation Models 5.2.5 QCD under Transient Dynamics 5.3 Power System Model 5.3.1 Instantaneous Change during Outage 5.3.3 Post-outage 5.3.4 Measurement Model 5.4 Line Outage Detection Using QCD 5.4.1 Meanshift Test 5.4.2 Generalized Shewhart Test 5.4.3 Generalized Shewhart Test 5.4.4 Generalized Shewhart Test 5.4.3 Generalized Shewhart Test 5.4.4 Generalized Shewhart Test 5.4.3 Generalized Shewhart Test 5.4.4 Generalized Dynamic CuSum Test 5.5.1 Line Statistic Evolution 5.6.2 Delay Performance 5.6.3 Probability of False Isolation 5.7 Conclusion Auto State Extended Auto State Extended 6.1 Anomaly Detection 6.2 Need for Agile Detection of Anomalies

viii	Cont	ients		
	6.3	Introduction to Active Sensing	126	
	6.4	Active Sensing in Networks	128	
	6.5	Modeling Active Sensing in Power Systems	128	
		6.5.1 Sensor Measurement Model	129	
		6.5.2 Anomalous Event Model	130	
	6.6	Decision Rules and Algorithm	130	
		6.0.1 Bus Selection Rule	132	
	67	0.0.2 Termination Rule and Localization Decision	134	
	0.7	6.7.1 Adoptivity Coin	137	
		6.7.2 Multiple Outgoe	137	
		6.7.3 Tradeoff among Performance Measures	130	
		6.7.4 Scalability and Complexity	140	
		or it beautinty and complexity	110	
7	Ran	dom Matrix Theory for Analyzing Spatio-Temporal Data	144	
	RODE	Data Driven View of Crid Onegation and Its Matrix Form	144	
	/.1	7.1.1 Fundamental Pulse for Grid Network Operation	144	
		7.1.1 Fundamental Rules for Ond Network Operation 7.1.2 Jacobian Matrix	144	
		7.1.2 Jacobian Matrix 7.1.3 Power Flow Analysis and Theoretical Calculation	140	
	72	Random Matrix Theory: An Analytical Tool for Large-Scale Power Grids	147	
	7.2	7.2.1 When the Power Data Meets Large Random Matrices	148	
		7.2.2 Some Fundamental Results	149	
		7.2.3 On the Analytical Methods	150	
		7.2.4 Universality Principle of RMT	150	
		7.2.5 Random Matrix Tools for Power Systems	151	
		7.2.6 Linear Eigenvalue Statistics and Its Central Limit Theorem	151	
		7.2.7 Matrices Concatenation Operation	153	
		7.2.8 Data Observation from Power Systems	153	
		7.2.9 Empirical Spectrum Distribution of the Online		
		Monitoring Data	154	
		7.2.10 Residual Formulation and Discussion	155	
	7.3	Applications of RMT on Power Grids	156	
		7.3.1 Anomaly Detection Based on Factor Model	156	
		7.3.2 More Discussions about the Proposed Approach	159	
		7.3.3 Case Studies	160	
		7.3.4 Invisible Units Detection and Estimation	167	
		7.3.5 Estimation of Jacobian Matrix	171	
8	Grap	oh-Theoretic Analysis of Power Grid Robustness	175	
	Dorcas Ofori-Boateng, Asim Kumer Dey, Yulia R. Gel, and H. Vincent Poor			
	8.1	Introduction	175	
	8.2	Power Grid Network and Its Robustness	176	
	8.3	Failure Variations	177	

			Contents	ix
	8.4	Robus	tness Metrics	177
		8.4.1	Conventional Robustness Metrics under Failures	178
		8.4.2	Network Motifs as a Local Robustness Measure	179
		8.4.3	Persistent Homology as a Local Robustness Measure	180
		8.4.4	Statistical Inference for Local Higher-Order Topological	
			Features of a Network	183
	8.5	Analys	sis of Real-World Power Grid Networks	184
		8.5.1	Data Description	184
		8.5.2	Statistical Significance of Motifs and Betti Numbers	185
		8.5.3	Comparison of Robustness Metrics under Failure Scenarios	186
	8.6	Conclu	usion	188
	А	Appen	dix Resilience analysis – additional results	189
		A.1	Robustness metrics versus attack strategies: Romania & Poland	189
		A.2	Attack strategies versus robustness metrics: Romania & Poland	190
Part III	I Data Q	uality, lı	ntegrity, and Privacy	195
9	Data	a-Injectio	on Attacks	197
	lñaki	Esnaola, S	Samir M. Perlaza, and Ke Sun	
	9.1	Introdu	uction	197
	9.2	Systen	n Model	198
		9.2.1	Bayesian State Estimation	198
		9.2.2	Deterministic Attack Model	199
		9.2.3	Attack Detection	200
	9.3	Centra	lized Deterministic Attacks	201
		9.3.1	Minimum Probability of Detection Attacks	201
		9.3.2	Maximum Distortion Attacks	204
	9.4	Decen	tralized Deterministic Attacks	205
		9.4.1	Game Formulation	206
		9.4.2	Achievability of an NE	208
		9.4.3	Cardinality of the Set of NEs	208
	9.5	Inform	nation-Theoretic Attacks	210
		9.5.1	Random Attack Model	211
		9.5.2	Information-Theoretic Setting	212
		9.5.3	Generalized Stealth Attacks	213
		9.5.4	Probability of Detection of Generalized Stealth Attacks	215
		9.5.5	Numerical Evaluation of Stealth Attacks	219
	9.6	Attack	Construction with Estimated State Variable Statistics	222
		9.6.1	Learning the Second-Order Statistics of the State Variables	222
		9.6.2	Ergodic Stealth Attack Performance	223
	9.7	Conclu	usion	227

Х	Contents	
10	Smart Meter Data Privacy	230
	Giulio Giaconi, Deniz Gunduz, and H. Vincent Poor	220
	10.1 The SG Revolution	230
	10.2 ALM Techniques	231
	10.3 SM Privacy Concerns and Privacy-Preserving Techniques	232
	10.4 SMDM Techniques	234
	10.4.1 Data Aggregation Techniques	234
	10.4.2 Data Obtuscation Techniques	236
	10.4.3 Data Anonymization Techniques	237
	10.4.4 Data-Sharing Prevention Techniques	238
	10.4.5 Data-Downsampling Techniques	238
	10.5 UDS Techniques	238
	10.5.1 Heuristic Privacy Measures: Variations in the Grid Load Profile	241
	10.5.2 Theoretical Guarantees on SM Privacy	248
	10.6 Conclusion	255
11	Data Quality and Privacy Enhancement	261
	Meng Wang and Joe H. Chow	
	11.1 Introduction	261
	11.2 Low Dimensionality of PMU Data	262
	11.3 Missing PMU Data Recovery	263
	11.4 Bad Data Correction	267
	11.5 Location of Corrupted Devices	271
	11.6 Extensions in Data Recovery and Correction	273
	11.6.1 Data Recovery Using Time-Varying Low-Dimensional	
	Structures to Characterize Long-Range Temporal Correlations	273
	11.6.2 Data Recovery under Multiple Disturbances	274
	11.6.3 Online Data Recovery	275
	11.7 Data Recovery from Privacy-Preserving Measurements	275
	11.8 Conclusion	278
Part IV	Signal Processing	283
12	A Data Analytics Perspective of Fundamental Power Grid Analysis Techniques	285
	Danilo P. Mandic, Sithan Kanna, Yili Xia, and Anthony G. Constantinides	
	12.1 Introduction	285
	12.2 Problem Formulation	287
	12.3 Background: Tracking the Instantaneous Frequency	287
	12.3.1 Rate of Change of the Voltage Phase Angle	287
	12.3.2 Fixed Frequency Demodulation	288
	12.4 Frequency Estimation from Voltage Phase Angles versus Fre-	
	quency Demodulation	288
	12.5 Smart DFT-Based Frequency Estimation	291
	12.6 Maximum Likelihood Frequency Estimation	292

	Contents	xi
	12.7 Real-World Case Studies	293
	12.8 Meeting the Needs of Unbalanced Smart Grids: Smart Clarke and	
	Park Transforms	296
	12.9 Conclusion	308
13	Graph Signal Processing for the Power Grid	312
	Anna Scaglione, Raksha Ramakrishna, and Mahdi Jamei	212
	13.1 Preliminaries	312
	13.2 Graph Signal Processing for the Power Grid	314 216
	13.5 Complex- valued Graph Signal Processing	310
	13.4 Voltage Measurements as Graph Signals	318
	13.4 1 Coefficients of the Grid Graph Filter	319
	13.5 Sampling and Compression for Grid-Graph Signals	321
	13.5.1 Dimensionality Reduction of PMU Data	322
	13.5.2 Sampling and Recovery of PMU Grid-Graph Signals	325
	13.6 The Role of the Topology on Grid-GSP Data	328
	13.6.1 Fault Localization Using Undersampled Grid-Graph Signals	329
	13.6.2 Identification of Community Structure in the Electrical Grid	333
	13.7 Conclusion	336
14	A Sparse Representation Approach for Anomaly Identification	340
	Hao Zhu and Chen Chen	
	14.1 Introduction	340
	14.2 Power Grid Modeling	341
	14.3 Sparse Representations of Anomaly Events	342
	14.2.2 Fault Events	545 244
	14.3.2 Fault Events	344
	14.4 Efficient Solvers Using Compressed Sensing	345
	14.4 1 Greedy Anomaly Identification Using OMP	347
	14.4.2 Lassoing Anomalies Using CD	349
	14.5 Meter Placement	351
	14.5.1 A Greedy Search Method	352
	14.6 Uncertainty Quantification	354
	14.6.1 Optimal Decision Rules	355
	14.6.2 Effects of PMU Uncertainty on Bayesian Risk	356
	14.7 Conclusion	358
Part V	Large-Scale Optimization	361
15	Uncertainty-Aware Power Systems Operation	363
	Uaniel Bienstock	262
	15.1 Introduction: Power Systems Operations in Flux	363

xii	Contents	
	15.1.1 Power Engineering in Steady State	364
	15.1.2 Power-Flow Problems	367
	15.1.3 Three-Level Grid Control	368
	15.1.4 Responding to Changing Conditions	371
	15.2 Safe DC-OPF	374
	15.2.1 Specific Formulations	378
	15.2.2 The Gaussian Case	381
	15.2.3 Numerical Algorithmics	383
	15.2.4 Two-Tailed versus Single-Tailed Models	388
	15.2.5 Gaussian Data or Not?	389
	15.2.6 Robust Optimization	390
	15.2.7 The AC Case	391
	15.3 Data-Driven Models and Streaming Covariance Estimation	392
	15.4 Tools from Financial Analytics: Variance-Aware Models, Sharpe Ratios,	
	Value-at-Risk	394
	15.5 Conclusion	395
16	Distributed Optimization for Power and Energy Systems	400
	Emiliano Dall'Anese and Nikolaos Gatsis	
	16.1 Introduction	400
	16.2 General Problem Setup and Motivating Applications	401
	16.2.1 Notation and Assumptions	403
	16.2.2 Optimization of Power Distribution Systems	404
	16.2.3 Optimization of Power Transmission Systems	406
	16.2.4 Demand-Side Management	406
	16.2.5 State Estimation	407
	16.2.6 Optimization of Wind Farms	408
	16.3 Dual Methods for Constrained Convex Optimization	408
	16.3.1 Dual Method	409
	16.3.2 Further Reading: Cutting Plane and Bundle Methods	412
	16.4 Model-Based and Measurement-Based Primal-Dual Methods	413
	16.4.1 Model-Based Regularized Gradient Methods	414
	16.4.2 Measurement-Based Gradient Methods	415
	16.4.3 Further Reading	418
	16.5 Consensus-Based Distributed Optimization	418
	16.5.1 ADMM-Based Distributed Algorithms	421
	16.5.2 A More General Formulation	422
	16.5.3 Further Reading	424
	16.6 Further Reading	424
	16.6.1 Distributed Methods for Nonconvex Optimization	424
	16.6.2 Lyapunov Optimization	425
	16.6.3 Online Measurement-Based Optimization of Power Systems	425

	Contents	xiii
17	Distributed Load Management	431
	Changhong Zhao, Vijay Gupta, and Ufuk Topcu	
	17.1 Distributed Charging Protocols for Electric Vehicles	432
	17.2 An Online-Learning–Based Implementation	440
	17.3 Distributed Feedback Control of Networked Loads	446
18	Analytical Models for Emerging Energy Storage Applications	455
	I. Safak Bayram and Michael Devetsikiotis	
	18.1 Energy Storage Systems Landscape	456
	18.1.1 Energy Storage Classification	456
	18.1.2 Energy Storage Applications	459
	18.2 Comparing Energy Storage Solutions	461
	18.2.1 Technology Lock-In	462
	18.3 Analytical Problems in Energy Storage Systems	462
	18.4 Case Study: Sizing On-Site Storage Units in a Fast Plug-In Electric	
	Vehicle Charging Station	464
	18.4.1 Stochastic Model	465
	18.4.2 Numerical Examples	467
	18.5 Case Study: Community Energy Storage System Sizing	468
	18.5.1 Energy Storage Operational Dynamics	470
	18.5.2 Storage Sizing for Single Customer ($K = 1, N = 1$)	473
	18.5.3 Storage Sizing for Multiuser Case $(K = 1, N > 1)$	474
	18.5.4 Storage Sizing for the General Case $(K > 1, N > 1)$	475
	18.5.5 Numerical Results	477
	18.6 Conclusion	478
Part VI	Game Theory	481
19	Distributed Power Consumption Scheduling	483
	Samson Lasaulce, Olivier Beaude, and Mauricio González	
	19.1 Introduction	483
	19.2 When Consumption Profiles Have to Be Rectangular and Forecasting	
	Errors Are Ignored	484
	19.2.1 System Model	484
	19.2.2 Power Consumption Scheduling Game: Formulation and Analysis	487
	19.2.3 A Distributed Power Consumption Scheduling Algorithm	489
	19.2.4 Numerical Illustration	490
	19.3 When Consumption Profiles Are Arbitrary and Forecasting Errors	
	Are Ignored	491
	19.3.1 Introduction to a Dynamic Framework	492
	19.3.2 Distributed Strategies in This Dynamical Setting	492
	19.3.3 Numerical Illustration	494

xiv	Contents	
	19.4 When Forecasting Errors Are Accounted	496
	19.4.1 Markov Decision Process Modeling	497
	19.4.2 Relaxed Version of MDP Modeling	499
	19.4.3 Iterative MDP Solution Methodology	500
20	Electric Vehicles and Mean-Field	504
	Dario Bauso and Toru Namerikawa	
	20.1 Introduction	504
	20.1.1 Highlights of Contributions	505
	20.1.2 Literature Overview	505
	20.1.3 Notation	506
	20.2 Modeling EVs in Large Numbers	507
	20.2.1 Forecasting Based on Holt's Model	508
	20.2.2 Receding Horizon	509
	20.2.3 From Mean-Field Coupling to Linear Quadratic Problem	511
	20.3 Main Results	513
	20.3.1 Receding Horizon and Stability	513
	20.4 Numerical Studies	514
	20.5 Discussion	518
	20.6 Conclusion	519
21	Prosumer Behavior: Decision Making with Bounded Horizon	524
	Mohsen Rajabpour, Arnold Glass, Robert Mulligan, and Narayan B. Mandayam	
	21.1 Introduction	524
	21.2 Experimental Design: Simulation of an Energy Market	527
	21.3 Modeling Approaches	530
	21.3.1 Modeling Prosumer Behavior Using Expected Utility Theory	530
	21.3.2 Bounded Horizon Model of Prosumer Behavior	533
	21.4 Data Fitting, Results, and Analysis	536
	21.4.1 Data Fitting with Mean Deviation	537
	21.4.2 Data Fitting with Proportional Deviation	539
	21.5 Conclusion	541
22	Storage Allocation for Price Volatility Management in Electricity Markets	545
	Amin Masoumzadeh, Ehsan Nekouei, and Tansu Alpcan	
	22.1 Introduction	546
	22.1.1 Motivation	546
	22.1.2 Contributions	548
	22.2 Related Works	549
	22.3 System Model	550
	22.3.1 Inverse Demand (Price) Function	550
	22.3.2 Upper-Level Problem	552
	22.3.3 Lower-Level Problem	552

Contents	XV
22.4 Solution Approach	557
22.4.1 Game-Theoretic Analysis of the Lower-Level Problem	557
22.4.2 The Equivalent Single-Level Optimization Problem	559
22.5 Case Study and Simulation Results	560
22.5.1 One-Region Model Simulations in South Australia	561
22.5.2 Two-region Model Simulations in South Australia and Victoria	565
22.6 Conclusion	566
Index	571

Contributors

Ali Abur Northeastern University, Boston, MA, USA

Tansu Alpcan University of Melbourne, Melbourne, Australia

Dario Bauso University of Groningen, Groningen, the Netherlands; and University of Palermo, Palermo, Italy

I. Safak Bayram University of Strathclyde, Glasgow, UK

Olivier Beaude Électricité de France (EDF), Alaiseau, France

Daniel Bienstock Columbia University, New York, NY, USA

Guido Cavraro National Renewable Energy Laboratory, Golden, CO, USA

Chen Chen Argonne National Laboratory, Lemont, IL, USA

Joe H. Chow Rensselaer Polytechnic Institute, Troy, NY, USA

Lei Chu Shanghai Jiaotong University, Shanghai, China

Anthony G. Constantinides Imperial College London, London, UK

xvi

Cambridge University Press 978-1-108-49475-5 — Advanced Data Analytics for Power Systems Edited by Ali Tajer , Samir M. Perlaza , H. Vincent Poor Frontmatter More Information

List of Contributors

xvii

Emiliano Dall'Anese University of Colorado Boulder, Boulder, CO, USA

Weisi Deng China Southern Power Grid Co., Ltd, Guangzhou, China

Michael Devetsikiotis University of New Mexico, Albuquerque, NM, USA

Asim Kumer Dey University of Texas at Dallas, Richardson, TX, USA

Alejandro Dominguez-Garcia University of Illinois Urbana-Champaign, Urbana, IL, USA

Iñaki Esnaola University of Sheffield, Sheffield, UK

Nikolaos Gatsis University of Texas at San Antonio, San Antoni, TX, USA

Yulia R. Gel University of Texas at Dallas, Richardson, TX, USA

Giulio Giaconi BT Labs, Adastral Park, Martlesham Heath, Ipswich, Suffolk, UK

Georgios B. Giannakis University of Minnesota, Minneapolis, MN, USA

Arnold Glass Rutgers University, Piscataway, NJ, USA

Murat Göl Middle East Technical University, Ankara, Turkey

Mauricio González Université Paris-Saclay, Cachan, France

Deniz Gündüz Imperial College London, London, UK

Vijay Gupta University of Notre Dame, Notre Dame, IN, USA

xviii List of Contributors

Xing He Shanghai Jiaotong University, Shanghai, China

Javad Heydari LG Electronics, Santa Clara, CA, USA

Mahdi Jamei Invenia Labs, Cambridge, UK

Yuting Ji Stanford University, Stanford, CA, USA

Sithan Kanna Imperial College London, London, UK

Vassilis Kekatos Virginia Tech, Blacksburg, VA, USA

Samson Lasaulce CNRS, CentraleSupélec, Gif-sur-Yvette, France

Yuzhang Lin University of Massachusetts-Lowell, Lowell, MA, USA

Narayan B. Mandayam Rutgers University, North Brunswick, NJ, USA

Danilo P. Mandic Imperial College London, London, UK

Amin Masoumzadeh AGL Energy, Melbourne, VIC, Australia

Robert Mulligan The Kohl Group, Inc., Parsippany, NJ, USA

Toru Namerikawa Keio University, Yokohama, Japan

Ehsan Nekouei City University of Hong Kong, Kowloon Tong, Hong Kong

Dorcas Ofori-Boateng University of Texas at Dallas, Richardson, TX, USA

Cambridge University Press 978-1-108-49475-5 — Advanced Data Analytics for Power Systems Edited by Ali Tajer , Samir M. Perlaza , H. Vincent Poor Frontmatter More Information

List of Contributors

xix

Samir M. Perlaza INRIA, Sophia Antipolis, France

H. Vincent Poor Princeton University, Princeton, NJ, USA

Robert Qiu Tennessee Technological University, Cookeville, TN, USA

Mohsen Rajabpour Rutgers University, North Brunswick, NJ, USA

Raksha Ramakrishna Arizona State University, Tempe, AZ, USA

Anna Scaglione Arizona State University, Tempe, AZ, USA

Xin Shi Shanghai Jiaotong University, Shanghai, China

Ke Sun University of Sheffield, Sheffield, UK

Ali Tajer Rensselaer Polytechnic Institute, Troy, NY, USA

Lang Tong Cornell University, Ithaca, NY, USA

Ufuk Topcu University of Texas at Austin, Austin, TX, USA

Venugopal V. Veeravalli University of Illinois Urbana-Champaign, Urbana, IL, USA

Meng Wang Rensselaer Polytechnic Institute, Troy, NY, USA

Yili Xia Southeast University, Nanjing, China

Baosen Zhang University of Washington, Seattle, WA, USA

xx List of Contributors

Liang Zhang University of Minnesota, Minneapolis, MN, USA

Changhong Zhao National Renewable Energy Laboratory, Golden, CO, USA

Yue Zhao Stony Brook University, Stony Brook, NY, USA

Hao Zhu University of Texas at Austin, Austin, TX, USA

Preface

The existing power grids, being recognized as one of the most significant engineering accomplishments, work exceptionally well for the purposes they have been designed to achieve. Enabled by advances in sensing, computation, and communications, power grids are rapidly growing in scale, inter-connectivity, and complexity. Major paradigm shifts in power grids include departing producer-controlled structures and transforming to more decentralized and consumer-interactive ones, being more distributed in electricity generation, enhancing the coupling between the physical and cyber layers, and operating in more variable and stochastic conditions. Driven by these emerging needs, power grids are anticipated to be complex and smart networked platforms in which massive volumes of high-dimensional and complex data are routinely generated and processed for various monitoring, control, inferential, and dispatch purposes.

There has been growing recent interest in developing data analysis tools for designing or evaluating various operations and functions in power systems. Due to the complex nature of power systems, often the existing theories and methodologies cannot be directly borrowed, and there is a critical need for concurrently advancing the theories that are driven by the needs for analyzing various aspects of power systems. This has led to new research domains that lie at the intersection of applied mathematics and engineering. The research in these domains is often conducted by researchers who have expertise in developing theoretical foundations in data analytics, and at the same time are domain experts in power systems analysis. Some of these domains include large-scale and distributed optimization, statistical learning, high-dimensional signal processing, high-dimensional probability theory, and game theory.

Analyzing large-scale and complex data constitutes a pivotal role in the operations of modern power systems. The primary purpose of this book is to prepare a collection of the data analytics tools that prominent researchers have identified as the key tools that have critical roles in various aspects of power systems' reliability, efficiency, and security. Different chapters discuss the state of the art in different and complementary theoretical tools with in-depth discussions on their applications in power systems.

The focus of this book is at the interface of data analytics and modern power systems. While there is extensive literature on power systems, that on *modern* systems is rather limited. Furthermore, there is an explosive amount of literature being developed on data analytics by different scientific communities. Most of these techniques are being applied to various technological domains (including power systems) as they are being developed.

There is a growing need for having a coherent collection of topics that can serve as a main reference for researchers in power systems analysis.

This book brings together experts in both data analytics and power systems domains. The shared purpose in all the contributed chapters is maintaining a balance between introducing and discussing foundational and theoretical tools, as well as their applications to the engineering-level power system problems. These chapters, categorically, fall under the following six broad topics.

- **Part I: Statistical Learning:** The first part introduces cutting-edge learning techniques and their applications to power systems operations. It covers topics on topology learning, system forecasting and market operations, deep learning, and real-time monitoring.
- **Part II: Data-Driven Anomaly Detection:** The second part is focused on statistical inference techniques and their applications to agile and reliable detection of anomalous events in power systems. This part includes topics on change-point detection theory, active (control) sensing, random matrix theory, and graph-theoretic modeling of grid resilience.
- **Part III: Data Quality, Integrity, and Privacy:** The third part covers challenges pertinent to data reliability. This part includes topics on data integrity attacks and counter-measures, information-theoretic analysis of cyber attacks, and datadimension reduction methodologies for enhancing data quality and privacy.
- **Part IV: Signal Processing:** The fourth part discusses modern signal processing techniques and their applications to power system analysis. Specifically, it covers topics on graph signal processing, Fourier analysis of power system data, and compressive sensing.
- **Part V: Large-Scale Optimization:** The fifth part encompasses topics on large-scale power flow optimization when facing system uncertainties, distributed power flow optimization, load management, storage planning and optimization, and optimization techniques involved in integrating renewable resources and electric vehicles.
- **Part VI: Game Theory:** Finally, the sixth part focuses on the interactions of the different decision makers that are involved in the generation, transport, distribution, and consumption of energy using tools from game theory, mean fields, and prospect theory. This part includes the analysis of energy-storage, large populations of electrical vehicles, consumer behavior, and distributed power scheduling.

This book is designed to be primarily used as a reference by graduate students, academic researchers, and industrial researchers with backgrounds in electrical engineering, power systems engineering, computer science, and applied mathematics. While the primary emphasis is on the theoretical foundations, all the chapters address specific challenges in designing, operating, protecting, and controlling power systems.