## Contents

**Preface**  
page xiii

1 Basic Game Theory  
1.1 Strategic-Form Games and Nash Equilibrium  
1.2 Extensive-Form Games and Subgame-Perfect Nash Equilibrium  
1.3 Incomplete Information: Signal and Bayesian Equilibrium  
1.4 Repeated Games and Stochastic Games  

Part I Indirect Reciprocity  

2 Indirect Reciprocity Game in Cognitive Networks  
2.1 Introduction  
2.2 The System Model  
2.2.1 Social Norms  
2.2.2 Action Rules  
2.3 Optimal Action Rule  
2.3.1 Reputation Updating Policy  
2.3.2 Stationary Reputation Distribution  
2.3.3 Payoff Function  
2.3.4 Optimal Action Using an Alternative Algorithm  
2.4 Action Spreading Due to Natural Selection  
2.4.1 Action Spreading Algorithm Using the Wright–Fisher Model  
2.4.2 Action Spreading Algorithm Using the Replicator Dynamic Equation  
2.5 Evolutionarily Stable Strategy and Simulations  
2.5.1 Binary Reputation Scenario  
2.5.2 Multilevel Reputation Scenario  
2.6 Conclusion  
References  

3 Indirect Reciprocity Game for Dynamic Channel Access  
3.1 Introduction  
3.2 System Model
### Table of Contents

3.2.1 Action 31
3.2.2 Social Norm: How to Assign Reputation 31
3.2.3 Power Level and Relay Power 32
3.2.4 Channel Quality Distribution 33
3.3 Theoretical Analysis 33
3.3.1 Reputation Updating Policy 33
3.3.2 Power Detection and Power Detection Transition Matrix 35
3.3.3 Stationary Reputation Distribution 37
3.3.4 Payoff Function and Equilibrium of the Indirect Reciprocity Game 38
3.3.5 Stability of the Optimal Action Rule 41
3.4 Simulation 45
3.4.1 Evolutionary Stability of Optimal Action $a^2_2$ 45
3.4.2 System Performance 47
3.4.3 Different Social Norms 49
3.5 Conclusion 52
References 52

4 Multiuser Indirect Reciprocity Game for Cooperative Communications 55
4.1 Introduction 55
4.2 System Model 57
4.2.1 Physical Layer Model with Relay Selection 57
4.2.2 Incentive Schemes Based on the Indirect Reciprocity Game 59
4.2.3 Overheads of the Scheme 60
4.2.4 Payoff Functions 61
4.3 Steady-State Analysis Using Markov Decision Processes 62
4.3.1 Stationary Reputation Distribution 62
4.3.2 Long-Term Expected Payoffs at Steady States 63
4.3.3 Equilibrium Steady State 65
4.4 Evolutionary Modeling of the Indirect Reciprocity Game 69
4.4.1 Evolutionary Dynamics of the Indirect Reciprocity Game 69
4.4.2 Evolutionarily Stable Strategy 70
4.5 Energy Detection 70
4.6 Simulation Results 72
4.7 Discussion and Conclusion 77
References 78

5 Indirect Reciprocity Data Fusion Game and Application to Cooperative Spectrum Sensing 80
5.1 Introduction 80
5.2 Indirect Reciprocity Data Fusion Game 82
5.2.1 System Model 82
5.2.2 Action and Action Rule 83
5.2.3 Social Norm: How to Assign Reputation 84
5.2.4 Decision Consistency Matrix 84
5.2.5 Reputation Updating Policy 85
5.2.6 Payoff Function 87
5.2.7 Equilibrium of the Indirect Reciprocity Data Fusion Game 89
5.3 Application to Cooperative Spectrum Sensing 89
5.3.1 System Model 90
5.3.2 Fusion Game for the Single-Channel ($K = 1$) and Hard Fusion Case 91
5.3.3 Fusion Game for the Single-Channel ($K = 1$) and Soft Fusion Case 95
5.3.4 Fusion Game for the Multichannel ($K > 1$) Case 97
5.4 Simulation 99
5.4.1 The Optimal Action Rule and Its Evolutionary Stability 99
5.4.2 System Performance 101
5.4.3 Anticheating 103
5.5 Conclusion 104
References 105

Part II Evolutionary Games 107

6 Evolutionary Game for Cooperative Peer-to-Peer Streaming 109
6.1 Introduction 109
6.2 The System Model and Utility Functions 111
6.2.1 System Model 111
6.2.2 Utility Functions 112
6.3 Agent Selection within a Homogeneous Group 114
6.3.1 Centralized Agent Selection 114
6.3.2 Distributed Agent Selection 114
6.3.3 Evolutionary Cooperative Streaming Game 115
6.3.4 Analysis of the Cooperative Streaming Game 116
6.4 Agent Selection within a Heterogeneous Group 120
6.4.1 Two-Player Game 120
6.4.2 Multiplayer Game 122
6.5 A Distributed Learning Algorithm for an ESS 122
6.6 Simulation Results 123
6.7 Conclusion 128
References 128

7 Evolutionary Game for Spectrum Sensing and Access in Cognitive Networks 131
7.1 Introduction 131
7.2 System Model 133
7.2.1 Network Entity 133
## Contents

7.2.2 Spectrum Sensing Model 134  
7.2.3 Synchronous and Asynchronous Scenarios 135  
7.3 Evolutionary Game Formulation for the Synchronous Scenario 136  
  7.3.1 Evolutionary Game 136  
  7.3.2 Replicator Dynamics of Spectrum Sensing 138  
  7.3.3 Replicator Dynamics of Spectrum Access 138  
  7.3.4 Analysis of the ESS 139  
7.4 Evolutionary Game Formulation for the Asynchronous Scenario 143  
  7.4.1 ON–OFF Primary Channel Model 143  
  7.4.2 Analysis of SUs’ Access Time $T_a$ 144  
  7.4.3 Analysis of the ESS 146  
7.5 A Distributed Learning Algorithm for the ESSs 148  
7.6 Simulation Results 151  
  7.6.1 ESSs of the Synchronous and Asynchronous Scenarios 151  
  7.6.2 Stability of the ESSs 153  
  7.6.3 Performance Evaluation 154  
7.7 Conclusion 155  
References 155  

8 Graphical Evolutionary Game for Distributed Adaptive Networks 158  
8.1 Introduction 158  
8.2 Related Works 159  
8.3 Graphical Evolutionary Game Formulation 162  
  8.3.1 Introduction to the Graphical Evolutionary Game 162  
  8.3.2 Graphical Evolutionary Game Formulation 164  
  8.3.3 Relationship to Existing Distributed Adaptive Filtering Algorithms 166  
  8.3.4 Error-Aware Distributed Adaptive Filtering Algorithm 167  
8.4 Diffusion Analysis 169  
  8.4.1 Strategies and Utility Matrix 170  
  8.4.2 Dynamics of $p_m$ and $q_{m|m}$ 172  
  8.4.3 Diffusion Probability Analysis 174  
8.5 Evolutionarily Stable Strategy 176  
  8.5.1 ESS in Complete Graphs 177  
  8.5.2 ESS in Incomplete Graphs 177  
8.6 Simulation Results 178  
  8.6.1 Mean-Square Performance 179  
  8.6.2 Diffusion Probability 182  
  8.6.3 Evolutionarily Stable Strategy 182  
8.7 Conclusion 183  
References 183
## Table of Contents

### 9 Graphical Evolutionary Game for Information Diffusion in Social Networks
9.1 Introduction 186
9.2 Diffusion Dynamics over Complete Networks 189
   9.2.1 Basic Concepts of Evolutionary Game Theory 189
   9.2.2 Evolutionary Game Formulation 190
   9.2.3 Information Diffusion Dynamics over a Complete Network 191
9.3 Diffusion Dynamics over Uniform-Degree Networks 193
   9.3.1 Basic Concepts of Graphical EGT 193
   9.3.2 Graphical Evolutionary Game Formulation 194
   9.3.3 Diffusion Dynamics over Uniform-Degree Networks 195
9.4 Diffusion Dynamics over Nonuniform-Degree Networks 202
   9.4.1 General Case 202
   9.4.2 Two Special Cases 204
9.5 Experiments 205
   9.5.1 Synthetic Networks and a Real-World Network 205
   9.5.2 Twitter Hashtag Data Set Evaluation 208
9.6 Conclusion 213
References 213

### 10 Graphical Evolutionary Game for Information Diffusion in Heterogeneous Social Networks
10.1 Introduction 216
10.2 Heterogeneous System Model 218
   10.2.1 Basics of Evolutionary Game Theory 218
   10.2.2 Unknown User-Type Model 220
   10.2.3 Known User-Type Model 221
10.3 Theoretical Analysis for the Unknown User-Type Model 222
10.4 Theoretical Analysis for the Known User-Type Model 227
10.5 Experiments 232
   10.5.1 Synthetic Data Experiments 232
   10.5.2 Real Data Experiments 238
10.6 Discussion and Conclusion 242
References 244

### Part III Sequential Decision-Making

### 11 Introduction to Sequential Decision-Making
11.1 Decision-Making in Networks 249
11.2 Social Learning 250
11.3 Multiarmed Bandit 251
11.4 Reinforcement Learning 251
## Contents

### 12 Chinese Restaurant Game: Sequential Decision-Making in Static Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>253</td>
</tr>
<tr>
<td>12.2 System Model</td>
<td>256</td>
</tr>
<tr>
<td>12.3 Equilibrium Grouping and Advantage in Decision Order</td>
<td>258</td>
</tr>
<tr>
<td>12.3.1 Equilibrium Grouping</td>
<td>258</td>
</tr>
<tr>
<td>12.3.2 Subgame-Perfect Nash Equilibrium</td>
<td>260</td>
</tr>
<tr>
<td>12.4 Signals: Learning Unknown States</td>
<td>264</td>
</tr>
<tr>
<td>12.4.1 Best Response of Customers</td>
<td>265</td>
</tr>
<tr>
<td>12.4.2 Recursive Form of the Best Response</td>
<td>265</td>
</tr>
<tr>
<td>12.5 Simulation Results and Analysis</td>
<td>267</td>
</tr>
<tr>
<td>12.5.1 Advantage of Playing Positions vs. Signal Quality</td>
<td>268</td>
</tr>
<tr>
<td>12.5.2 Price of Anarchy</td>
<td>269</td>
</tr>
<tr>
<td>12.5.3 Case Study: Resource Pool and Availability Scenarios</td>
<td>270</td>
</tr>
<tr>
<td>12.6 Application: Cooperative Spectrum Access in Cognitive Radio Networks</td>
<td>273</td>
</tr>
<tr>
<td>12.6.1 System Model</td>
<td>273</td>
</tr>
<tr>
<td>12.6.2 Simulation Results</td>
<td>275</td>
</tr>
<tr>
<td>12.7 Conclusion</td>
<td>278</td>
</tr>
</tbody>
</table>

### 13 Dynamic Chinese Restaurant Game: Sequential Decision-Making in Dynamic Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>281</td>
</tr>
<tr>
<td>13.2 System Model</td>
<td>283</td>
</tr>
<tr>
<td>13.2.1 Bayesian Learning for the Restaurant State</td>
<td>284</td>
</tr>
<tr>
<td>13.3 Multidimensional MDP-based Table Selection</td>
<td>287</td>
</tr>
<tr>
<td>13.4 Application to Cognitive Radio Networks</td>
<td>292</td>
</tr>
<tr>
<td>13.4.1 System Model</td>
<td>293</td>
</tr>
<tr>
<td>13.4.2 Bayesian Channel Sensing</td>
<td>294</td>
</tr>
<tr>
<td>13.4.3 Belief State Transition Probability</td>
<td>297</td>
</tr>
<tr>
<td>13.4.4 Channel Access: Two Primary Channels Case</td>
<td>298</td>
</tr>
<tr>
<td>13.4.5 Channel Access: Multiple Primary Channels Case</td>
<td>301</td>
</tr>
<tr>
<td>13.4.6 Analysis of Interference to the PU</td>
<td>302</td>
</tr>
<tr>
<td>13.5 Simulation Results</td>
<td>303</td>
</tr>
<tr>
<td>13.5.1 Bayesian Channel Sensing</td>
<td>303</td>
</tr>
<tr>
<td>13.5.2 Channel Access in the Two Primary Channels Case</td>
<td>304</td>
</tr>
<tr>
<td>13.5.3 Fast Algorithm for Multichannel Access</td>
<td>306</td>
</tr>
<tr>
<td>13.5.4 Interference Performance</td>
<td>307</td>
</tr>
<tr>
<td>13.6 Conclusion</td>
<td>307</td>
</tr>
</tbody>
</table>

### 14 Indian Buffet Game for Multiple Choices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>310</td>
</tr>
<tr>
<td>14.2 System Model</td>
<td>312</td>
</tr>
<tr>
<td>14.2.1 Indian Buffet Game Formulation</td>
<td>312</td>
</tr>
</tbody>
</table>
## Table of Contents

14.2.2 Time Slot Structure of the Indian Buffet Game 314
14.3 Indian Buffet Game without Budget Constraints 316
   14.3.1 Recursive Best Response Algorithm 318
   14.3.2 Subgame-Perfect Nash Equilibrium 319
   14.3.3 Homogeneous Case 320
14.4 Indian Buffet Game with Budget Constraints 322
   14.4.1 Recursive Best Response Algorithm 322
   14.4.2 Subgame-Perfect Nash Equilibrium 325
   14.4.3 Homogeneous Case 325
14.5 Non-Bayesian Social Learning 327
14.6 Simulation Results 331
   14.6.1 Indian Buffet Game without Budget Constraints 332
   14.6.2 Indian Buffet Game with Budget Constraints 335
   14.6.3 Non-Bayesian Social Learning Performance 336
   14.6.4 Application in Relay Selection of Cooperative Communication 336
14.7 Conclusion 338
References 339

15 Hidden Chinese Restaurant Game: Learning from Actions 341
   15.1 Introduction 341
   15.2 System Models 344
      15.2.1 Customers: Naive and Rational 345
      15.2.2 Observable Information 346
   15.3 Hidden Chinese Restaurant Game 347
      15.3.1 System State Transition 350
      15.3.2 Grand Information Extraction 351
      15.3.3 Equilibrium Conditions 353
   15.4 Solutions 356
      15.4.1 Centralized Policy 356
      15.4.2 Nash Equilibrium 357
   15.5 Application: Channel Access in Cognitive Radio Networks 359
      15.5.1 Simulation Results 361
   15.6 Conclusion 365
   15.7 Literature Review 366
References 368

16 Wireless Network Access with Mechanism Design 370
   16.1 Introduction 370
   16.2 System Model and Problem Formulation 372
      16.2.1 System Model 372
      16.2.2 Expected Utility 375
      16.2.3 Best Response of Rational Users 376
   16.3 Modified Value Iteration Algorithm 376
   16.4 Threshold Structure of the Strategy Profile 378
## Table of Contents

16.5 Truthful Mechanism Design 380
   16.5.1 Solution 384
16.6 Numerical Simulation 386
16.7 Discussion 392
16.8 Conclusion 392
16.9 Literature Review 393
References 394

17 Deal Selection on Social Media with Behavior Prediction 397
   17.1 Introduction 397
   17.2 Cross-Social Media Data Set 400
   17.3 System Model 405
      17.3.1 External Information from Social Media 406
   17.4 Stochastic DSG 407
      17.4.1 Multidimensional Markov Decision Process 407
      17.4.2 State Transition 408
      17.4.3 Expected Utility and Strategy Profile 411
      17.4.4 Nash Equilibrium and Value Iteration Algorithm 412
   17.5 Simulation Results 414
      17.5.1 Review Accuracy 416
      17.5.2 Arrival Rate 416
   17.6 Experiments: Are Customers Rational? 417
   17.7 Conclusion 419
   17.8 Literature Review 420
References 421

18 Social Computing: Answer vs. Vote 423
   18.1 Introduction 423
   18.2 System Model 426
   18.3 Equilibrium Analysis 430
   18.4 Extensions to Endogenous Effort 437
   18.5 Empirical Evaluations 440
      18.5.1 Data Set Description 440
      18.5.2 Observations and Validations 441
   18.6 Numerical Simulations 443
      18.6.1 Simulation Settings 443
      18.6.2 Simulation Results for Homogeneous Effort 444
      18.6.3 Simulation Results for Endogenous Effort 447
   18.7 Conclusion 448
   18.8 Literature Review 449
References 450

Index 452