Reciprocity, Evolution, and Decision Games in Network and Data Science

Learn how to analyze and manage evolutionary and sequential user behaviors in modern networks, and how to optimize network performance by using indirect reciprocity, evolutionary games, and sequential decision-making. Understand the latest theory without the need to go through the details of traditional game theory. With practical management tools to regulate user behavior and simulations and experiments with real data sets, this is an ideal tool for graduate students and researchers working in networking, communications, and signal processing.

Yan Chen is a professor at the School of Cyberspace Security, University of Science and Technology of China.

Chih-Yu Wang is an associate research fellow at the Research Center for Information Technology Innovation, Academia Sinica.

Chunxiao Jiang is an associate professor at the School of Information Science and Technology at Tsinghua University.

K. J. Ray Liu is Distinguished University Professor at the University of Maryland, College Park. A highly cited researcher, he is a fellow of the IEEE, the American Association for the Advancement of Science (AAAS), and the National Academy of Inventors. He is the 2021 IEEE president elect. He is a recipient of the IEEE Fourier Award for Signal Processing, the IEEE Leon K. Kirchmayer Graduate Teaching Award, the IEEE Signal Processing Society 2014 Society Award, and the IEEE Signal Processing Society 2009 Technical Achievement Award. He has also co-authored several books, including Wireless AI (Cambridge, 2019).
Reciprocity, Evolution, and
Decision Games in Network
and Data Science

YAN CHEN
University of Science and Technology of China

CHIH-YU WANG
Academia Sinica

CHUNXIAO JIANG
Tsinghua University

K. J. RAY LIU
University of Maryland, College Park
Contents

Preface xiii

1 Basic Game Theory 1
1.1 Strategic-Form Games and Nash Equilibrium 1
1.2 Extensive-Form Games and Subgame-Perfect Nash Equilibrium 2
1.3 Incomplete Information: Signal and Bayesian Equilibrium 4
1.4 Repeated Games and Stochastic Games 5

Part I Indirect Reciprocity 7

2 Indirect Reciprocity Game in Cognitive Networks 9
2.1 Introduction 9
2.2 The System Model 11
 2.2.1 Social Norms 12
 2.2.2 Action Rules 13
2.3 Optimal Action Rule 13
 2.3.1 Reputation Updating Policy 13
 2.3.2 Stationary Reputation Distribution 15
 2.3.3 Payoff Function 16
 2.3.4 Optimal Action Using an Alternative Algorithm 17
2.4 Action Spreading Due to Natural Selection 18
 2.4.1 Action Spreading Algorithm Using the Wright–Fisher Model 19
 2.4.2 Action Spreading Algorithm Using the Replicator Dynamic Equation 19
2.5 Evolutionarily Stable Strategy and Simulations 20
 2.5.1 Binary Reputation Scenario 21
 2.5.2 Multilevel Reputation Scenario 22
2.6 Conclusion 25
References 26

3 Indirect Reciprocity Game for Dynamic Channel Access 28
3.1 Introduction 28
3.2 System Model 30
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Action</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2 Social Norm: How to Assign Reputation</td>
<td>31</td>
</tr>
<tr>
<td>3.2.3 Power Level and Relay Power</td>
<td>32</td>
</tr>
<tr>
<td>3.2.4 Channel Quality Distribution</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Theoretical Analysis</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Reputation Updating Policy</td>
<td>33</td>
</tr>
<tr>
<td>3.3.2 Power Detection and Power Detection Transition Matrix</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3 Stationary Reputation Distribution</td>
<td>37</td>
</tr>
<tr>
<td>3.3.4 Payoff Function and Equilibrium of the Indirect Reciprocity Game</td>
<td>38</td>
</tr>
<tr>
<td>3.3.5 Stability of the Optimal Action Rule</td>
<td>41</td>
</tr>
<tr>
<td>3.4 Simulation</td>
<td>45</td>
</tr>
<tr>
<td>3.4.1 Evolutionary Stability of Optimal Action a^*_2</td>
<td>45</td>
</tr>
<tr>
<td>3.4.2 System Performance</td>
<td>47</td>
</tr>
<tr>
<td>3.4.3 Different Social Norms</td>
<td>49</td>
</tr>
<tr>
<td>3.5 Conclusion</td>
<td>52</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

4 Multiuser Indirect Reciprocity Game for Cooperative Communications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>55</td>
</tr>
<tr>
<td>4.2 System Model</td>
<td>57</td>
</tr>
<tr>
<td>4.2.1 Physical Layer Model with Relay Selection</td>
<td>57</td>
</tr>
<tr>
<td>4.2.2 Incentive Schemes Based on the Indirect Reciprocity Game</td>
<td>59</td>
</tr>
<tr>
<td>4.2.3 Overheads of the Scheme</td>
<td>60</td>
</tr>
<tr>
<td>4.2.4 Payoff Functions</td>
<td>61</td>
</tr>
<tr>
<td>4.3 Steady-State Analysis Using Markov Decision Processes</td>
<td>62</td>
</tr>
<tr>
<td>4.3.1 Stationary Reputation Distribution</td>
<td>62</td>
</tr>
<tr>
<td>4.3.2 Long-Term Expected Payoffs at Steady States</td>
<td>63</td>
</tr>
<tr>
<td>4.3.3 Equilibrium Steady State</td>
<td>65</td>
</tr>
<tr>
<td>4.4 Evolutionary Modeling of the Indirect Reciprocity Game</td>
<td>69</td>
</tr>
<tr>
<td>4.4.1 Evolutionary Dynamics of the Indirect Reciprocity Game</td>
<td>69</td>
</tr>
<tr>
<td>4.4.2 Evolutionarily Stable Strategy</td>
<td>70</td>
</tr>
<tr>
<td>4.5 Energy Detection</td>
<td>70</td>
</tr>
<tr>
<td>4.6 Simulation Results</td>
<td>72</td>
</tr>
<tr>
<td>4.7 Discussion and Conclusion</td>
<td>77</td>
</tr>
<tr>
<td>References</td>
<td>78</td>
</tr>
</tbody>
</table>

5 Indirect Reciprocity Data Fusion Game and Application to Cooperative Spectrum Sensing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>80</td>
</tr>
<tr>
<td>5.2 Indirect Reciprocity Data Fusion Game</td>
<td>82</td>
</tr>
<tr>
<td>5.2.1 System Model</td>
<td>82</td>
</tr>
<tr>
<td>5.2.2 Action and Action Rule</td>
<td>83</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3 Social Norm: How to Assign Reputation</td>
<td>84</td>
</tr>
<tr>
<td>5.2.4 Decision Consistency Matrix</td>
<td>84</td>
</tr>
<tr>
<td>5.2.5 Reputation Updating Policy</td>
<td>85</td>
</tr>
<tr>
<td>5.2.6 Payoff Function</td>
<td>87</td>
</tr>
<tr>
<td>5.2.7 Equilibrium of the Indirect Reciprocity Data Fusion Game</td>
<td>89</td>
</tr>
<tr>
<td>5.3 Application to Cooperative Spectrum Sensing</td>
<td>89</td>
</tr>
<tr>
<td>5.3.1 System Model</td>
<td>90</td>
</tr>
<tr>
<td>5.3.2 Fusion Game for the Single-Channel ((K = 1)) and Hard Fusion Case</td>
<td>91</td>
</tr>
<tr>
<td>5.3.3 Fusion Game for the Single-Channel ((K = 1)) and Soft Fusion Case</td>
<td>95</td>
</tr>
<tr>
<td>5.3.4 Fusion Game for the Multichannel ((K > 1)) Case</td>
<td>97</td>
</tr>
<tr>
<td>5.4 Simulation</td>
<td>99</td>
</tr>
<tr>
<td>5.4.1 The Optimal Action Rule and Its Evolutionary Stability</td>
<td>99</td>
</tr>
<tr>
<td>5.4.2 System Performance</td>
<td>101</td>
</tr>
<tr>
<td>5.4.3 Anticheating</td>
<td>103</td>
</tr>
<tr>
<td>5.5 Conclusion</td>
<td>104</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
</tbody>
</table>

Part II Evolutionary Games

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Evolutionary Game for Cooperative Peer-to-Peer Streaming</td>
<td>109</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>109</td>
</tr>
<tr>
<td>6.2 The System Model and Utility Functions</td>
<td>111</td>
</tr>
<tr>
<td>6.2.1 System Model</td>
<td>111</td>
</tr>
<tr>
<td>6.2.2 Utility Functions</td>
<td>112</td>
</tr>
<tr>
<td>6.3 Agent Selection within a Homogeneous Group</td>
<td>114</td>
</tr>
<tr>
<td>6.3.1 Centralized Agent Selection</td>
<td>114</td>
</tr>
<tr>
<td>6.3.2 Distributed Agent Selection</td>
<td>114</td>
</tr>
<tr>
<td>6.3.3 Evolutionary Cooperative Streaming Game</td>
<td>115</td>
</tr>
<tr>
<td>6.3.4 Analysis of the Cooperative Streaming Game</td>
<td>116</td>
</tr>
<tr>
<td>6.4 Agent Selection within a Heterogeneous Group</td>
<td>120</td>
</tr>
<tr>
<td>6.4.1 Two-Player Game</td>
<td>120</td>
</tr>
<tr>
<td>6.4.2 Multiplayer Game</td>
<td>122</td>
</tr>
<tr>
<td>6.5 A Distributed Learning Algorithm for an ESS</td>
<td>122</td>
</tr>
<tr>
<td>6.6 Simulation Results</td>
<td>123</td>
</tr>
<tr>
<td>6.7 Conclusion</td>
<td>128</td>
</tr>
<tr>
<td>References</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Evolutionary Game for Spectrum Sensing and Access in Cognitive Networks</td>
<td>131</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>131</td>
</tr>
<tr>
<td>7.2 System Model</td>
<td>133</td>
</tr>
<tr>
<td>7.2.1 Network Entity</td>
<td>133</td>
</tr>
</tbody>
</table>
Contents

7.2.2 Spectrum Sensing Model 134
7.2.3 Synchronous and Asynchronous Scenarios 135
7.3 Evolutionary Game Formulation for the Synchronous Scenario 136
 7.3.1 Evolutionary Game 136
 7.3.2 Replicator Dynamics of Spectrum Sensing 138
 7.3.3 Replicator Dynamics of Spectrum Access 138
 7.3.4 Analysis of the ESS 139
7.4 Evolutionary Game Formulation for the Asynchronous Scenario 143
 7.4.1 ON–OFF Primary Channel Model 143
 7.4.2 Analysis of SUs’ Access Time T_a 144
 7.4.3 Analysis of the ESS 146
7.5 A Distributed Learning Algorithm for the ESSs 148
7.6 Simulation Results 151
 7.6.1 ESSs of the Synchronous and Asynchronous Scenarios 151
 7.6.2 Stability of the ESSs 153
 7.6.3 Performance Evaluation 154
7.7 Conclusion 155
References 155

8 Graphical Evolutionary Game for Distributed Adaptive Networks 158
 8.1 Introduction 158
 8.2 Related Works 159
 8.3 Graphical Evolutionary Game Formulation 162
 8.3.1 Introduction to the Graphical Evolutionary Game 162
 8.3.2 Graphical Evolutionary Game Formulation 164
 8.3.3 Relationship to Existing Distributed Adaptive Filtering Algorithms 166
 8.3.4 Error-Aware Distributed Adaptive Filtering Algorithm 167
 8.4 Diffusion Analysis 169
 8.4.1 Strategies and Utility Matrix 170
 8.4.2 Dynamics of p_m and $q_{m|m}$ 172
 8.4.3 Diffusion Probability Analysis 174
 8.5 Evolutionarily Stable Strategy 176
 8.5.1 ESS in Complete Graphs 177
 8.5.2 ESS in Incomplete Graphs 177
 8.6 Simulation Results 178
 8.6.1 Mean-Square Performance 179
 8.6.2 Diffusion Probability 182
 8.6.3 Evolutionarily Stable Strategy 182
 8.7 Conclusion 183
References 183
Contents

9 Graphical Evolutionary Game for Information Diffusion in Social Networks 186

9.1 Introduction 186

9.2 Diffusion Dynamics over Complete Networks 189
 9.2.1 Basic Concepts of Evolutionary Game Theory 189
 9.2.2 Evolutionary Game Formulation 190
 9.2.3 Information Diffusion Dynamics over a Complete Network 191

9.3 Diffusion Dynamics over Uniform-Degree Networks 193
 9.3.1 Basic Concepts of Graphical EGT 193
 9.3.2 Graphical Evolutionary Game Formulation 194
 9.3.3 Diffusion Dynamics over Uniform-Degree Networks 195

9.4 Diffusion Dynamics over Nonuniform-Degree Networks 202
 9.4.1 General Case 202
 9.4.2 Two Special Cases 204

9.5 Experiments 205
 9.5.1 Synthetic Networks and a Real-World Network 205
 9.5.2 Twitter Hashtag Data Set Evaluation 208

9.6 Conclusion 213

References 213

10 Graphical Evolutionary Game for Information Diffusion in Heterogeneous Social Networks 216

10.1 Introduction 216

10.2 Heterogeneous System Model 218
 10.2.1 Basics of Evolutionary Game Theory 218
 10.2.2 Unknown User-Type Model 220
 10.2.3 Known User-Type Model 221

10.3 Theoretical Analysis for the Unknown User-Type Model 222

10.4 Theoretical Analysis for the Known User-Type Model 227

10.5 Experiments 232
 10.5.1 Synthetic Data Experiments 232
 10.5.2 Real Data Experiments 238

10.6 Discussion and Conclusion 242

References 244

Part III Sequential Decision-Making 247

11 Introduction to Sequential Decision-Making 249

11.1 Decision-Making in Networks 249

11.2 Social Learning 250

11.3 Multiarmed Bandit 251

11.4 Reinforcement Learning 251
Contents

12 **Chinese Restaurant Game: Sequential Decision-Making in Static Systems**

12.1 Introduction 253
12.2 System Model 256
12.3 Equilibrium Grouping and Advantage in Decision Order 258
 12.3.1 Equilibrium Grouping 258
 12.3.2 Subgame-Perfect Nash Equilibrium 260
12.4 Signals: Learning Unknown States 264
 12.4.1 Best Response of Customers 265
 12.4.2 Recursive Form of the Best Response 265
12.5 Simulation Results and Analysis 267
 12.5.1 Advantage of Playing Positions vs. Signal Quality 268
 12.5.2 Price of Anarchy 269
 12.5.3 Case Study: Resource Pool and Availability Scenarios 270
12.6 Application: Cooperative Spectrum Access in Cognitive Radio Networks 273
 12.6.1 System Model 273
 12.6.2 Simulation Results 275
12.7 Conclusion 278
References 279

13 **Dynamic Chinese Restaurant Game: Sequential Decision-Making in Dynamic Systems**

13.1 Introduction 281
13.2 System Model 283
 13.2.1 Bayesian Learning for the Restaurant State 284
13.3 Multidimensional MDP-based Table Selection 287
13.4 Application to Cognitive Radio Networks 292
 13.4.1 System Model 293
 13.4.2 Bayesian Channel Sensing 294
 13.4.3 Belief State Transition Probability 297
 13.4.4 Channel Access: Two Primary Channels Case 298
 13.4.5 Channel Access: Multiple Primary Channels Case 301
 13.4.6 Analysis of Interference to the PU 302
13.5 Simulation Results 303
 13.5.1 Bayesian Channel Sensing 303
 13.5.2 Channel Access in the Two Primary Channels Case 304
 13.5.3 Fast Algorithm for Multichannel Access 306
 13.5.4 Interference Performance 307
13.6 Conclusion 307
References 308

14 **Indian Buffet Game for Multiple Choices**

14.1 Introduction 310
14.2 System Model 312
 14.2.1 Indian Buffet Game Formulation 312
Contents

14.2.2 Time Slot Structure of the Indian Buffet Game 314

14.3 Indian Buffet Game without Budget Constraints 316
 14.3.1 Recursive Best Response Algorithm 318
 14.3.2 Subgame-Perfect Nash Equilibrium 319
 14.3.3 Homogeneous Case 320

14.4 Indian Buffet Game with Budget Constraints 322
 14.4.1 Recursive Best Response Algorithm 322
 14.4.2 Subgame-Perfect Nash Equilibrium 325
 14.4.3 Homogeneous Case 325

14.5 Non-Bayesian Social Learning 327

14.6 Simulation Results 331
 14.6.1 Indian Buffet Game without Budget Constraints 332
 14.6.2 Indian Buffet Game with Budget Constraints 335
 14.6.3 Non-Bayesian Social Learning Performance 336
 14.6.4 Application in Relay Selection of Cooperative Communication 336

14.7 Conclusion 338

References 339

15 Hidden Chinese Restaurant Game: Learning from Actions 341

15.1 Introduction 341

15.2 System Models 344
 15.2.1 Customers: Naive and Rational 345
 15.2.2 Observable Information 346

15.3 Hidden Chinese Restaurant Game 347
 15.3.1 System State Transition 350
 15.3.2 Grand Information Extraction 351
 15.3.3 Equilibrium Conditions 353

15.4 Solutions 356
 15.4.1 Centralized Policy 356
 15.4.2 Nash Equilibrium 357

15.5 Application: Channel Access in Cognitive Radio Networks 359
 15.5.1 Simulation Results 361

15.6 Conclusion 365

15.7 Literature Review 366

References 368

16 Wireless Network Access with Mechanism Design 370

16.1 Introduction 370

16.2 System Model and Problem Formulation 372
 16.2.1 System Model 372
 16.2.2 Expected Utility 375
 16.2.3 Best Response of Rational Users 376

16.3 Modified Value Iteration Algorithm 376

16.4 Threshold Structure of the Strategy Profile 378
16.5 Truthful Mechanism Design
16.5.1 Solution
16.6 Numerical Simulation
16.7 Discussion
16.8 Conclusion
16.9 Literature Review
References

17 Deal Selection on Social Media with Behavior Prediction
17.1 Introduction
17.2 Cross-Social Media Data Set
17.3 System Model
17.3.1 External Information from Social Media
17.4 Stochastic DSG
17.4.1 Multidimensional Markov Decision Process
17.4.2 State Transition
17.4.3 Expected Utility and Strategy Profile
17.4.4 Nash Equilibrium and Value Iteration Algorithm
17.5 Simulation Results
17.5.1 Review Accuracy
17.5.2 Arrival Rate
17.6 Experiments: Are Customers Rational?
17.7 Conclusion
17.8 Literature Review
References

18 Social Computing: Answer vs. Vote
18.1 Introduction
18.2 System Model
18.3 Equilibrium Analysis
18.4 Extensions to Endogenous Effort
18.5 Empirical Evaluations
18.5.1 Data Set Description
18.5.2 Observations and Validations
18.6 Numerical Simulations
18.6.1 Simulation Settings
18.6.2 Simulation Results for Homogeneous Effort
18.6.3 Simulation Results for Endogenous Effort
18.7 Conclusion
18.8 Literature Review
References

Index
Preface

Human-like behaviors commonly exist in various networks, such as wireless and social networks. Smartphones compete with each other to access wireless networks. Social agents cooperate with each other to provide discount deals on social media, and collaborate with each other to provide answers to various questions on social computing networks. These behaviors could be analyzed using traditional game theory, which has been proven to be a great success over the decades. Nevertheless, existing studies based on traditional game theory have reached their limit when it comes to more realistic settings in modern networks, including repetitive interactions, indirect relationships, information asymmetry, network externality, and so on.

These challenges call for modern game theory, which extends traditional game theory and is inspired by the study of human social behaviors in the social sciences and biological evolution in nature. To resolve the indirect relationship challenge, indirect reciprocity with the key concept “I help you not because you have helped me, but because you have helped others” could be borrowed from the social sciences in order to build up a reputation and social judgment system, while in order to model the evolution of repetitive interactions, we could bring in evolutionary games from evolutionary biology to capture the idea of “survival of the fittest.” In this book we discuss how to utilize modern game theory to study behaviors in network and data science, particularly addressing the analysis and prediction of the competitive and/or cooperative behaviors of agents in a complex social and information-related network.

In the wireless networks access problem, for instance, mobile users may access a network at different times with different requirements. Rational users tend to select the best wireless network with the greatest transmission quality. The information regarding the wireless network could be more accurate when these users share their collected information with each other. This advantage potentially leads to cooperative behaviors. However, due to network externality, the more users select the same network, the less access time each user may receive. This suggests that competitive behaviors among users also exist. In addition, each user may be facing different network statuses, since some users may have selected certain networks and some may become inactive and leave the networks – this is known as information asymmetry.

Another example is the information diffusion problem, where users repeatedly decide whether to post information or not on social networks. This information forwarding is often not unconditional. One has to make a decision as to whether or not to share this information based on many factors, such as whether the information is
exciting or whether one’s friends are interested in it. Moreover, due to their selfish nature, users will act to pursue their own interests, which often conflicts with the system designers’ goal. How can system designers create incentives to steer users toward behaving in the way that the system designers desire, especially when the relationship among users is indirect?

These critical characteristics should be addressed as a whole when studying networks. Nevertheless, they are only partly addressed, if not ignored entirely, in the existing studies based on traditional game theory. A full understanding of the process of rational, repetitive, sequential, indirect, information-asymmetric, and dynamic-aware decision-making based on modern game theory is necessary to investigate the potential influence of these networks on the overall system, and proper regulation and management solutions can then be proposed to improve the overall network performance.

The main goal of this book is to summarize the recent progress in both the theoretical analysis and the applications of modern game theory. Three branches of modern game theory – indirect reciprocity, evolutionary games, and sequential decision-making – are presented and studied in this volume. For each branch, a series of game-theoretic frameworks will be introduced, and through the evolution of the frameworks, the critical characteristics of each branch will be captured. Given the foundations in theoretical analysis, practical management tools for regulating the behaviors of users will be discussed. In summary, both in-depth theoretical analysis and data-driven experimental results on various applications will be presented.

In Chapter 1, the fundamental concepts of game theory, which include the basic settings, game models, and corresponding solution concepts and their applications, are introduced. Then, the three main parts of this book (i.e., indirect reciprocity, evolutionary games, and sequential decision-making) are discussed.

In the first part of this book, the first branch of modern game theory – indirect reciprocity – is studied. Chapter 2 introduces the basic model to illustrate the concepts and characteristics of indirect reciprocity. The application to cognitive networks is also highlighted. Chapter 3 studies the application of indirect reciprocity to dynamic channel access with a theoretical analysis of reputation updating policy and stationary reputation distribution. In Chapter 4 an indirect reciprocity game for cooperative wireless communication is presented. Stability analysis based on Markov decision processes is provided in this chapter. Finally, Chapter 5 introduces a new form of indirect reciprocity game for general data fusion problems. Its application for improving the accuracy of dynamic channel access is presented.

In the second part of this book, the second branch of modern game theory – evolutionary games – is studied. In Chapter 6 the basic evolutionary game model for peer-to-peer streaming is presented for studying cooperative behavior. The basic approach for analyzing the evolutionarily stable strategy in this evolutionary game is discussed. In Chapter 7 we extend the evolutionary game to solve the problems of spectrum sensing and access in cognitive radio networks. Chapter 8 introduces an advanced graphical evolutionary game for distributed adaptive networks in signal processing. Chapter 9 introduces the graphical evolutionary game formulation for information diffusion in
social networks. The characteristics of information diffusion in different types of networks are studied. The results are also verified with experiments based on real social network data. Finally, in Chapter 10, an extended graphical evolutionary game for information diffusion in heterogeneous social networks is presented. The influence of heterogeneous user types, either known or unknown, is studied theoretically.

In the third part of this book, the third branch of modern game theory – sequential decision-making – is presented. In Chapter 11 the motivation of sequential decision-making is presented using several examples from real-world systems. The important components in sequential decision-making, such as network externality, information asymmetry, and user rationality, are presented and defined. The limitations of the existing approaches, such as social learning, multiarmed bandit problems, and reinforcement learning, are also presented. In Chapter 12 the sequential decision-making problem is analyzed in a static system. Network externality and the Bayesian learning model are presented to formulate how rational users learn about the uncertain system state through the observed signals shared by others. Chapter 13 analyzes the sequential decision-making problem in a dynamic system. A stochastic game-theoretic model called the Dynamic Chinese Restaurant Game is introduced to consider the uncertainty in both the network externality and the system state. Chapter 14 presents the first extension of the Chinese Restaurant Game, which considers the case in which one agent may make multiple decisions simultaneously in sequential order. The non-Bayesian learning approach is also considered in this extension. In Chapter 15 the signal-based information space is extended to an action-based information space in the Hidden Chinese Restaurant Game to show that actions are as informative as signals in the learning process. This extension prevents extra overheads in signal exchanges and gets rid of the assumption of reliable signal exchange protocols. Chapter 16 presents the wireless access point selection problem as the first application of the Chinese Restaurant Game framework. A mechanism design is presented to regulate the access decisions of rational users in order to improve the overall system performance within the sequential decision-making scenario. In Chapter 17, the second application – the deal selection problem and cross-media learning behavior in social media – is presented. The experimental results in real social media networks verify the rationality assumption of the model. Finally, Chapter 18 presents the third application: rationality analysis of the heterogeneous actions (answer vs. vote) of users in social computing systems. The experimental results based on user behavior data collected from Stack Overflow confirm the correctness of the model.

This book is aimed at graduate students and researchers who work/study electrical engineering or computer science, especially in the area of network and data science. This book can be used as a graduate-level course textbook in courses focused on modern game theory in network and data science. Readers should have prior knowledge of probability and wireless communications.

This book would not have been possible without the contributions of the following people: Biling Zhang, Yang Gao, Yu-Han Yang, and Xuanyu Cao. We also would like to thank them for their technical assistance during the preparation of this book.