

2DGS. See two-dimensional graphics statics (2DGS)	bending-dominated cellular materials, 468–469 BFS. <i>See</i> Breadth-First Search (BFS) algorithm
3D-printed, post-tensioned structural prototype, 503–504	biomimicry approach, 454, 456 black-box computational process, 13
3D-printed cellular samples, 476–477	Block, P., 360
3D-printed concrete structure, 497	bottom-up approach, 93
3D-printed concrete structure, 497 3D-printed polylactic acid (PLA), 348	boundary condition, effect, 138–139
5D-printed polylactic acid (LEA), 548	Bow, R. H., 6, 28
airplane wing design, 450–456	Breadth-First Search (BFS) algorithm, 369,
Akbarzadeh, M., 192, 380, 381, 407, 410, 421, 447 Âkesson, D., 360	375–376
algebraic approach, 185, 192, 410	Calder, A., 71, 72, 96
algebraic formulations, 359, 365–368	Calladine, C. R., 485, 487
2D form finding, 377–380	carbon emissions, 20
polyhedral reciprocal diagrams, 381–410	impact on, 508
algebraic PGS, applications, 410	carbon-absorbing 3D-printed recipe, 505–508
3D auxetic structures, 418	catenary geometry, 2
compression-tension combined form finding	cathode reaction, 479
by GFPs, 413	cellular material
shell structures, 411	architecture of, 468
spatial structures, 411–412	low-density, 469–474
using GDoF, 411–412	mimicking Schwarz P, 475–476
form finding	stretching <i>versus</i> bending dominated, 468–469
compression-only/tension-only, 410–411	cellular to shellular systems in architected
for loading scenarios, 418–420	materials, 466–468
manipulating form diagrams, 413–418	CGDoF. <i>See</i> constrained geometric degrees of
algorithmic design, 491–496	freedom (CGDoF)
Alic, V., 360, 458	Clapeyron, E., 5
Allen, E., 23	closed force polygon, construction, 28–29
anticlastic polyhedral surfaces, 207-208	closed force polyhedron, 3D
anticlastic shell, node to, 223–225	construction, 41–42
anticlastic subdivision, 225, 469	properties, 36–38
arc intersections, 62	closed funicular form, 80
area equation, 428–432	closed funicular polyhedron, 83–88
arearization (AR) algorithm, 511	closed polyhedron, 34
articulated compression-only forms, 175–233	and area-weighted normal, 34
auxetic metamaterials, 418	closedness, 82
axial stress, 100, 101	closing equations
	in 2D, 363–365
Baranyai, T., 444	constrained, 370–375
basic design (BD), 454	closing matrix, 366–368
Baumgart, B. G., 189	constrained, 400–403
Beghini, L. L., 458	closing plane, 110
bending, 516–522	closing string, 107

CNC. See computer numerical control (CNC)	MPI method, 3/1–3/3, 401
combined tensile-compressive nodal equilibrium	RREF, 374, 401-402
in 2D, 47–49	constrained equations system
in 3D, 49	analyzing, 428
face reciprocal to applied load, 50-51	for face, 427–428
force polyhedron, completing, 51–52	constrained form finding process
identifying faces, form diagram, 49	in 2D, 111–114
internal forces, direction, 53	in 3D, 114–118
point symmetry, 53	constrained funicular forms, 104–105, 150
subspaces around edges, 50	constrained geometric degrees of freedom
subspaces identification, form diagram, 49	(CGDoF), 427
tension/compression, multiple configurations,	constrained geometric degrees of freedom of the
53–54	face $(CGDoFf)$, 427–428
completeness, 516–522	constraint equations
complex face, 65–67	for edge lengths, 369
compression, multiple configurations, 53–54	for vertex locations, 369–370
	contact face geometries, 508
compression-only form finding, 99–174, 410–411	•
constraining height, funicular form, 163–170	continuous toolpath design, 463–466
controlling width/height, arch in 3D, 156–163	convex hull, 60–61
funicular systems, 99–105	convex polyhedron, 34
overlaying funicular solutions, 171	convex tessellation, 378–379
polyhedral funicular for subdivided system	Conzett, J., 297
loads, 147–150	Cremona, L., 6
simple constrained funicular	critical independent edge, 427, 429
in 2D, 105–108	cross-adjacencies, 62
in 3D, 108–111	cuboid force diagram, 470
subdividing applied loads, 141–147	Culmann, K., 6
and four supports, 150–156	curvature axes, shellular geometries, 226
for supports, 131–141	curvature planes, 208
compression-only node	angles, 215–217
in 2D, 33–34	cut and extrude method, 290-294
in 3D, 45–47	cycling direction, 27–28
compression-only polyhedral forms, 199-200	
compression-only shells, 196-197	D'Acunto, P., 439
compression-only structural form, 101-102	deformed Maxwell-Williot diagram, 526
compression-only systems, 101, 331	degrees of static indeterminacy, 56–57
unidirectional, 197–199	del Río, S., 215
compression/tension-only network, equilibrium,	dependent edges, 182, 307
102–104	determinate equilibrium, 55
computational approach, 185	diagram of forces, 26
computer numerical control (CNC), 19	Die Graphische Statik (Culmann), 6
milling, 485	Dieste, E., 215, 217
Computer-Aided Design (CAD), 512	disjointed force polyhedra, 444
concave profile, 356	disjointed force polyhedrons, network, 508–511
concurrent force systems, 74–79	displacement diagrams, 523
connectivity matrices, 387–389	
constrain face areas, 421	Divergence Theorem, 34 dual construction, 375–376
alternative approach of controlling, 440–443	in 3D, 403
form finding by controlling force diagram areas,	dual diagrams, 360, 385–386
435–440	
multiple faces, 434–435	duality, 31
quadratic formulation, 421–425	form and force diagrams, 178–179
	form and force polyhedrons, 186–187
to target area, 425–434	principle, 61
constrained closing equations/matrix, 370–375,	theory, 5–6
400–403	
linear programming approach, 374–375,	The Economics of Construction in Relation to
402–403	Framed Structures (Bow), 6, 28

edge lengths, constraint equations for, 369	finite element analysis (FEA), 492
edge vectors, 37	finite element method (FEM), 418, 494, 502
efficiency, 2, 335–337	flat sheet material, 18
EGI. See extended Gaussian image (EGI)	Föppl, A., 9
electrochemical healing approach, 477, 480,	force components parallel to resultant, 108
482–483	force density, 366
electrochemical plating, 479	force diagram, 8-10, 26, 361
electrochemistry, healing metals using, 479–480	by aggregating closed polyhedral cell, 11–12
electrodeposition approach, 479–480	algebraic representation, 400
embedded anticlastic geometries, 3D-printed	carving, 294–295
structure with, 496–497	constraints, 138–139
3D-printed, post-tensioned structural prototype,	cutting and extruding, 290–293
503–504	decomposing, 140–141
carbon-absorbing 3D-printed recipe, 505-508	faces, 39
embedding TPMS geometry, 497–500	for funicular form, 221–223
slicing and overhang analysis, 501–502	GDoF, 67, 309-324
structural analysis, 502–503	geometry of, 13
structural form finding, 497	nonconvex cells in, 277–286
equilibrium	orientation of cells in, 383–385
compression/tension-only network, 102–104	reconstructing wing's main network, 447
design, 89	scaling, 30
segmented funicular polygons, 92	superimposing form and, 230–231
subdividing/segmenting force polyhedron,	wing, 446–447
93–95	force equilibrium, 447
topology, system of forces, 89–91	force in boundary members, 449
various translation, 92–93	force loop, 521
determinate, 55	force optimization, 296–299
force, 447	force polygon
global, 176. See also global equilibrium	in 2D closed, 74–75
graphical, 71–74 indeterminate, 55	change rate, 106–107
	closing external, 238–239
in-plane, 448–449	construction, 48
moment, 114	global versus nodal, 246
nodal, 67–69, 103. <i>See also</i> nodal equilibrium	manipulated, 311
single force	Maxwell truss with self-intersecting, 278–281
in 2D, 72–73	nodal, 243–246
in 3D, 73–74	force polyhedrons
single node, 23–70	in 3D, closed, 75–79
system of forces, 71–96	change rate, 109–110
tensile/compressive node. See	closing, 58–59, 148–149, 159
tensile/compressive node equilibrium	combining form and, 133–137
extended Gaussian image (EGI), 59	completing, 51–52
algorithm, 511	controlling internal forces in 3D by, 43
indeterminate force polyhedrons from, 61–63	definition, 382
external cell, 191	EGI-based reconstruction, 64
external indeterminacy, 286	global, 186, 252–255, 262, 382
external vertices, 361	external cell <i>versus</i> , 191
extrusion location, 82–83	indeterminate, 59–67
	nodal, 186, 258–262, 382
face reciprocal, 50	internal cells versus, 191–192
face-adding process, 494	orientation
face-to-edge connectivity, 365	cells in force diagram, 383–385
FDM. See fused deposition modeling (FDM)	face in polyhedral cell, 382–383
FEM. See finite element method (FEM)	single cell, 383
fiber-reinforced materials, 463	segmenting, 93–95
Filipov, E. T., 485	subdividing, 93–95
finite element (FE), 454	triangulating open, 89

force system, determinacy, 55	nonconcurrent system loads
degrees of static indeterminacy, 56-57	in 2D, 118–124
GDoF, 55-56	in 3D, 124–130
indeterminate node in 3D, 57-59	polyhedral, 486
form and force diagrams, 5, 13-14	scenarios, 406–407
in 2D, topological relationship, 31-34	structural, 105, 497
in 3D, 48	tension-only, 410-411
topological relationship, 43-45	form graph, 360
duality, 178–179	form loop, 521
geometric construction, 8	form polyhedrons, 381
by PGS, 15	funicular construction technique, 79
topology, 262–264	funicular forms, 2, 8, 12, 14
in 2D, 177–178, 247–248	bridge, 161–163
form and force polyhedrons, duality, 186–187	and closed boundary polygon, 2D, 351-352
Form and Forces: Designing Efficient, Expressive	constraining height, 163–170
Structures (Allen and Zalewski), 23	extracting graph, 181
form diagrams, 26	force diagrams for, 221–223
in 2D, computational construction, 184-185	GDoF, 183–184
in 3D, computational construction, 192	nodal/global equilibrium in 2D, 176–177
alternative approach, controlling face areas,	funicular polygons, 5, 79, 82
440–442	closed, 79–83
GDoF, 348–350, 400	constructing, 80–82
2D funicular form and closed boundary	segmented, 92
polygon, 351–352	funicular structures, 23, 288
bidirectional transformation, 3D network,	funicular systems, 99–100
355–357	compression-only structural form, 101–102
form node and, 350–351	constrained forms, 104–105
unidirectional transformation, 2D form,	equilibrium, compression/tension-only network, 102–104
352–355	
identifying faces, 49	tension-only structural form, 100–101
manipulating, 413–418	funicular typologies and subdivision techniques, 192–193
solution space, 415–418 subspaces identification, 415–418	compression-only polyhedral forms, 199–200
form finding process, 362	compression-only shells, 196–197
2D algebraic graphic statics, 377–380	design techniques, 200–204
based on site conditions, 415	single-layered shells, 194–196
with boundary conditions, 377–378	spatial branching geometries, 193–194
compression-only, 99–174, 410–411	unidirectional compression-only systems,
compression-tension combined	197–199
by GFPs, 413	fused deposition modeling (FDM), 452
using GDoF, 411–412	rused deposition modernig (1 Divi), 432
constrained, for single applied load	Gordi A 75 76
in 2D, 111–114	Gaudi, A., 75, 76 Gaussian curvature, 204–205
in 3D, 114–118	Gaussian curvature, 204–203 Gaussian sphere, 61–62
by controlling force diagram areas,	GDoF. See geometric degrees of freedom (GDoF)
435–440	geometric degrees of freedom (GDoF), 55–56, 70,
graphical method, 8	79, 124, 182, 287, 371, 426, 447
for loading scenarios, 418–420	compression-tension combined form finding
for more than three supports, 131	using, 411–412
boundary condition, effect, 138–139	definition, 305–308
checking validity of solution, 137	different subdivisions, 318–319
combining form and force polyhedrons,	eliminating horizontal force by controlling,
133–137	330–331
decomposing force diagram, 140-141	face computing, 426
force diagram, constraints, 138–139	force diagram, 309–324
parallel loads and multiple closing planes,	force system, determinacy, 55–56
131–133	form diagram, 348–357, 400

geometric degrees of freedom (cont.)	polyhedral, xxiii, xxv, 12–15
funicular forms, 183–184	Graphical Analysis A Text Book In Graphic Statics
in funicular structure design, 309	(Wolfe), 107
global force polygon (2D), 315–318	graphical equilibrium, 71–74
global force polyhedron, 319–324	graphical methods
aggregating, 324–337	form finding, 8, 9
subdividing, 324, 324	material limitations, 11–12
Hedracrete project design by, 304	graphical/geometric approach, 26
manipulated force polygon, 311	ground truss optimization algorithm, 458
mathematical definition for, 308–309	Guastavino Vaulting, 209–210
nodal force polygon, 310–311	Guest, S. D., 485
nodal force polyhedron, 311–315	Guo, Y., 381
number load network, 146–147	,,
polyhedral load network, 144–146	Hablicsek, M., 380, 381, 386, 421
projecting polyhedral faces to, 337–348	half-edge, network, 246
geometric dependency, dual diagrams	half-face data structure, 189
in 2D, 180	healing-focused engineering design paradigm, 483
in 3D, 188	Hedracrete project, 304–305, 325–328, 331, 334
geometric stiffness, 299–302	holistic fabrication, 463
geometry, 2	Hooke, R., 2–3, 5, 34, 101
The Geometry of Structural Equilibrium, 517	hydrostatic nodes, 460
geometry of the force, 176	nydrostatic nodes, 400
GFP. See global force polygon (GFP); global force	independent edges, 307
polyhedron (GFP)	graph, 182–183
global equilibrium, 176	indeterminacy, 65–67, 286
in 2D, 236–243	•
funicular forms, 176–177	indeterminate equilibrium, 55 indeterminate force polyhedrons, 59–60
in 3D, 251–258	from EGIs, 61–64
for design purposes, subdividing 2D, 180	
computational construction, form diagram in	indeterminacy and self-intersecting faces, 65–67
2D, 184–185	iterative resizing of faces, 64
funicular geometries for single force	polyhedral reconstruction from force vectors, 60
distribution, 181–182	topology, 61
GDoF, funicular form, 183–184	in-plane equilibrium, 448–449
graph, funicular form, 181	integrated algorithm, 458–461
independent edges, graph, 182–183	internal face, 191
finding, 236, 251	internal forces
in polyhedral funicular forms, 185–186	boundary conditions effect on, 265–267
global force polygon (GFP), 103, 362	controlling in 3D by force polyhedron, 43
GDoF, 315–318	controlling magnitude, 31
global force polyhedron (GFP), 186, 191, 252–255,	direction
262, 382, 384–385	in 2D, 30–31
aggregating, 324–337	in 3D, 43, 53
compression-tension combined form finding by,	finding, 251
413	internal indeterminacy, 286
GDoF, 319–324	intersection of planes, applied load as, 38
subdividing, 324, 324	iterative approach, 185, 192, 410
graph	iterative methods, 64
data structure, 359–360	T : 1 1 1 2 2 4 511 510
funicular form, 181	Jessen icosahedral tensegrity structure, 511–512,
independent edges, 182–183	520, 530
graphic kinematics, xxiv	
	kern, 212
graphic statics, xix, 13, 458	kinematics, 447–517, 523
2D, xxiii–xxv, 6	indeterminacy, 488, 490–491
limitations, 9	King's College Chapel, fan vaults of, 217–223
history, 4–8	Koechlin, M., 9
modifications with, 461-463	Konstantatou, M., 444

labyrinths	natural structures, analyzing, 445-446
aggregating tetrahedrons to, 226	Nejur, A., 192, 407, 410, 447
possible, 233	Newton's Third Law, 72
properties, 227–230	NFP. See nodal force polygon (NFP); nodal force
role in design, 469–470	polyhedrons (NFP)
shellular geometries, 226	nodal cells, directions, 261-262
subdividing, 233	nodal equilibrium, 103, 176, 273-276
Lamè, G., 5	in 2D funicular forms, 176–177
layout and shape optimization, 458	constructing, 236
layout/truss topology optimization, 458	design, 67–69
Lee, J., 444, 508	in polyhedral funicular forms, 185–186
linear programming approach, 374–375,	nodal force cell, 258
402–403	nodal force polygon (NFP), 243-246, 361-362
load network, 144	GDoF, 310–311
design, 159	and internal force type, 244–246
funicular graph, 144	self-intersecting, 277–286
GDoF of polyhedral, 144–146	nodal force polyhedrons (NFP), 186, 192, 382, 385
load path, 2, 458	GDoF, 311–315
load-bearing capacity, 15	internal cells <i>versus</i> , 191–192
lower bound theorem of plasticity, 456	self-intersecting, 282–286
low-income housing, impact on, 508	node-based assembly, 348
	nonconcurrent force systems, 74, 79
machine learning models	closed funicular polygon, 79–83
feeding, 445–446	closed funicular polyhedron, 83–88
generating structural networks, 449	nonconcurrent system loads, form finding process
vector-based, 449	in 2D, 118
Maillart, R., 9, 100, 164, 167-170, 297	applied loads, 118
Manual of Applied Mechanics (Rankine), 5, 32	combining form/force diagrams, 122–124
master safe theorem of plasticity, 65	self-weight, 118
material limitations, graphical methods, 11-12	support locations and external determinacy,
materialization, 331-335, 346-348	118–119
matrix analysis method, 485-491	two parallel loads, 119–121
Maxwell, J. C., 5, 32, 263, 278–281, 361, 444, 445	in 3D, 124
Maxwell–Williot diagrams, 523–530	eliminating trial funicular construction,
McRobie, A., 444, 522	129–130
Mele, T. V., 360	load networks, 124
Minkowski addition in 3D, 264–265	number of supports, 124–126
Minkowski sum/dilation operation, 123, 248	parallel loads and supports, 126–129
Möbius, A. F., 5–6	noncritical independent edge, 429
modulus of elasticity, 11	nonfiber-reinforced materials, 463
Mohr, O. C., 522	nonfixed dependent edges, 429
moment equilibrium, 114	nonhomogeneous equation system, 434–435
Moni, S., 62	nonhomogeneous linear equation system,
monoclastic polyhedral surfaces, 209	368–370
Moore–Penrose inverse (MPI) method, 371–373,	nonmanifold geometry, 205
401	nonpolyhedral applications
Mozaffari, S., 463	2D and 3D combined structures, 512
MPI. See Moore–Penrose inverse (MPI) method	overlapping structures, 513
Müller-Breslau, H. F. B., 523	point load, 514–515
multilayer sheet-based lightweight funicular	structural typologies, 513
structures, 485–486	tributary area, 515
algorithmic design, 491–496	visualization for 3D graphic statics, 511–512
matrix analysis and adaptation, 486–491	nonpolyhedral structure, 508
polyhedral form finding, 486	nonpolyhedral structure, 508
multi-layered polyhedral shells, 212–215	disjointed force polyhedrons, network, 508–511
multi-material additive manufacturing, 463	nonpolyhedral applications, 511–515
multi-material information, 465	typologies, 513

554 Index

normal curvature, 204 for edge constraints, 394 Nouvelle Mécanique ou Statique (Varignon), 5 vertex constraints, 394-399 numerical approach, 25-26 algebraic representation, force diagram, 400 numerical methods, 8 closing matrix, 391-392 constrained, 400-403 with reduced dimension, 392-393 On Reciprocal Figures, Frames, and Diagrams of connectivity matrices, 387-389 Forces (Maxwell), 32, 278 optimization algorithms, 501 constrained linear closing equations, 399-400 O'Rourke, J., 421 detection, overconstraining, 403-404 overconstraining detection, 403-404 dual construction in 3D, 403 form and force polyhedrons, 381-385 overhang analysis, 501-502 form/force diagrams, topological relationship, overlapping force cells, 152-156 385-387 overlapping structures, 513 oxidation reaction, 479-480 GDoF, form diagram, 400 iterative approach, 407 tensile and compressive members, 404-407 P shellular, cellular material, 475-476 paradigm shift, 477-479 polyhedral reconstruction, 59 from force vectors, 60 Parylene C, 481 polyhedral surfaces, Gaussian curvature for, Pellegrino, S., 485-486, 488 204-205 Persson, K., 458 anticlastic, 207-208 PGS. See polyhedral graphic statics (PGS) monoclastic, 209 physical form-finding technique, 3 synclastic, 205-207 pin-jointed framework, 485 two-manifold polyhedral subsystem, 205 plasticity, master safe theorem, 65 polyhedron-based approach, 9 point load, 514-515 point masses, 61 Poncelet, J. V., 5 postprocessing, 465 point symmetry, 51, 53 primal force diagram, 360, 361, 385 polyhedral cells choosing, 362 direction of, 190-192 principal curvatures, 204 identification, 188-190 The Principle of the Equilibrium of Polyhedral polyhedral form finding, 486 Frames (Rankine), 10, 35-36 polyhedral graphic statics (PGS), xxiii, xxv, 12-15, "The Principles of the Art of Weighing" (Stevin), 4 37, 359, 466 projecting polyhedral faces to GDoF, 337-348 aerospace, impact on, 18 force diagram design, 337-339 algebraic applications, 410 materialization, 346-348 attesting structural efficiency, 14 removing horizontal reactions, 342-345 biomedical engineering, impact on, 18 Saltatur, 337-342 broader applications, 445-529 subdividing force polyhedron, 345-346 Calder design, 97 pseudoinverse, 371 cellular structures, 18-19 efficient fabrication, 13 quadratic form, 424-425 explicit optimization, 13 flat sheet material construction, 18-20 healing 3D-printed metallic shellular structure Rankine, M., 5, 10, 32, 35, 36, 361, 444 by, 481-483 Rankine incompleteness, 519 high-performance structures, impact on, 15 Rankine-Williot diagrams, 523-529 intuitive design, 13 Rao, H. F. B., 523 limitations of, 21 reaction forces, 272 material science, impact on, 18 reciprocal diagrams, 5, 9, 385 multi-layer spatial structures, 18-20 2D, 445 reducing carbon emissions, 20 algebraic construction, 359 uses, 12-15 geometric relationships, 360 valuable teaching tool, 13-14 topological relationships, 360-361 well-known minimal surfaces using, 470-471 3D, 10 polyhedral reciprocal diagrams, 10-11, 381-410 harnessing potentials, 288-296 3D closing equations for one face, 389-390 Maxwell's, 445-446 additional linear equations polyhedral, 10-11, 381-410

reciprocal figures, 6	numerical approach, 25-26
reciprocity, 32	objectives, 23–25
reduced row-echelon form (RREF), 374, 401-402	single-layered shells, 194–196
regular dodecahedron, 35	singular value decomposition (SVD), 489
Reid, D. R., 418	slicing analysis, 501–502
resiliency, 14	small-scale physical model, 495-496
resultant polygon, 89	Bristol paper, 20
right-hand rule, 28, 29	spatial branching geometries, 193-194
RREF. See reduced row-echelon form (RREF)	S-shaped shell, 217
	state of self-stress, 286–288
Salginatobel Bridge, 164, 171	statically determinate system, 118
Saltatur, 337–342	Stevin, S., 4
Schenk, M., 485	stiffening effect, 489
SDF. See signed distance function (SDF) modeling	STMs. See strut-and-tie models (STMs)
segmented funicular polygons, 92	Stokes' theorem, 383
self-healing metallic structures, repairable and	strength criterion, 67
electrochemistry, healing metals using, 479–480	stress, types of, 100
healing 3D-printed, 481–483	stress field approach, 456, 502-503
healing-focused engineering design paradigm,	stretching-dominated cellular materials, 468-469
483	structural analysis, 362, 502-503
paradigm shift, 477–479	structural design, xxiii
self-intersecting faces, 65–67	structural efficiency, 2–4
self-intersecting force cells, 152–156	attesting, 14
sheet-based structures, 18–19	structural form finding, 105, 328-330, 333, 497
sheet-based systems, 485	structural geometry, 209
shell structures, 196	curvature planes, angles, 215-217
shellular, 18	Guastavino Tile Vaults, 209–210
shellular funicular forms, 223	King's College Chapel, fan vaults of,
curvature axes/labyrinths in shellular geometries,	217–223
226	multi-layered polyhedral shells, 212-215
node to anticlastic shell, 223–225	undulating polyhedral shells, 215
translating cellular to, 226–233	strut-and-tie models (STMs), 456–458
signed distance function (SDF) modeling, 301, 500	integrated algorithm, 458-461
simple 2D truss system, 236–246	modifications with graphic statics, 461-463
global equilibrium in 2D, 236–243	multi-material additive manufacturing, 463
nodal force polygon, 243–246	translating stress fields into continuous toolpath
simple constrained funicular	design, 463–466
in 2D, 105–108	strut-based cellular to shellular unit cell,
change rate, force polygon, 106–107	translating, 470
closing string, 107	subdividing applied loads, 141–147
force components parallel to resultant, 108	and four supports, 150–156
height, 105–106	funicular graph, load network, 144
in 3D, 108–111	GDoF, polyhedral load network, 144–147
change rate, force polyhedron, 109–110	subdivision process, 345
closing plane, 110	force polyhedron, 93–95
force components parallel to resultant,	subspaces, 26
110–111	around edges, 41, 50
height, 108–109	around node, 39–40
simple truss in 3D, 250–262	identification, form diagram, 49
single force distribution, funicular geometries for,	SVD. See singular value decomposition (SVD)
181–182	symmetric matrix, 425
single force equilibrium	synclastic polyhedral surfaces, 205–207
in 2D, 72–73	system of forces, 72
in 3D, 73–74	equilibrium, 71–97
single node, equilibrium	topology, 89–91
assumptions, 25	system of loads, polyhedral funicular for,
graphical/geometric approach, 26	147–150
graphical geometric appioach, 20	

tensile structure, 23	nonconcurrent system loads, form finding
tensile/compressive members	process in, 124–130
identify, 404-407	number of supports, 124–126
-only form finding, 377	parallel loads and supports, 126-129
tensile/compressive node equilibrium	pedestrian bridge design, 158-163
in 2D, 26	printer, 463
closed force polygon construction, 28-29	reciprocal diagrams, 10
compression-only node, 33-34	reciprocal force polygon, 11
cycling direction, 27–28	simple constrained funicular in, 108-111
direction, internal forces, 30–31	single force equilibrium in, 73–74
form and force diagram, 31–34	tensile/compressive node equilibrium in, 35–47
graph representation, 26–27	combined, 49–54
internal forces, controlling magnitude, 31	three-hinged arch in, 167–170
scaling force diagram, 30	trial funicular construction, eliminating in,
in 3D, 35	129–130
applied load face, 38–39	truss system, 251
closed force polyhedron construction, 41–42	states of self-stress, 286–288
closed force polyhedron properties, 36–38	three-hinged arch, 164
compression-only node, 45–47	in 2D, 164–167
controlling internal forces by force	in 3D, 167–170
polyhedron, 43	three-point bending test, 465–466
direction, internal forces, 43	top-down approach, 93
form and force diagram, 43–45	topological duals, 31, 178
form diagram, faces, 39	topology
intersection of planes, 38	form/force diagrams
The Principle of the Equilibrium of	in 2D, 247–248
Polyhedral Frames, 35–36	in 3D, 262–263
subspaces around edge, 41	of the system, 89–91
subspaces around node, 39–40	Toruca, 213
tension	trial funicular construction process, 108, 114, 117,
multiple configurations, 53–54	149–150, 271
node in, 27	in 3D, 160
tension-only form finding, 410–411	eliminating, 129–130
tension-only structural form, 100–101	trial funicular polygon, 239–241
tension-only system, 100	trial funicular polyhedron, 255–256
components, 101	tributary area, 515
efficiency, 100–101	triply periodic minimal surfaces (TPMS), 301–302.
tetrahedral force, 232	497
three-dimensional (3D), 6, 71, 100	embedding geometry, 497–500
auxetic structures, 418	truss, force diagram, 6–7
bidirectional transformation, network,	truss models, 457, 487. See also strut-and-tie
355–357	models (STMs)
bridge structure, 24	truss systems, 236
closed force polyhedron in, 75–79	two-dimensional (2D), 72, 100
closing plane in, 268–276	and 3D combined structures, 512
combined structures, 2D and, 512	auxetic materials, 378–380
concurrent forces in, 75–79	bridge structure, 24
constrained form finding process in, 114–118	closed force polygon in, 74–75
controlling width/height, arch in 3D, 156–163	closing string in, 267–268
diagram of forces, 26	constrained form finding process in, 111–114
direction/magnitude, reaction forces, 256–258	diagram of forces, 26
equilibrium, single node, 23	direction/magnitude, reaction forces,
force optimization, 298–299	241–243
graphic statics, 9	equilibrium, single node, 23
indeterminate node in, 57–59	force optimization, 297–298
Minkowski addition in, 264–265	funicular form and closed boundary polygon,
nonconcurrent load networks, 124	351–352

Index 557

graphical statics, xxiii-xxv, 6 limitations, 9 Minkowski operation in, 248-250 nonconcurrent applied loads, 118 nonconcurrent system loads, form finding process in, 118-124 reciprocal diagrams algebraic construction, 359-360 geometric relationships, 361-362 topological relationships, 360-361 reciprocal force polygon, 11 simple constrained funicular in, 105-108 single force equilibrium in, 72-73 support locations and external determinacy, 118-119 tensile/compressive node equilibrium in, 26-34 combined, 47-49 three-hinged arch in, 167, 167 unidirectional transformation, 352-355 two-dimensional graphics statics (2DGS), 359, 360 two-manifold geometry, 205

undulating funicular beam, 355 undulating polyhedral shells, 215 unidirectional compression-only systems, 197–199 unidirectional transformation, 2D form, 352–355 unified diagram, 512
unit polyhedron, 63
US construction industry, impact on, 507–508

valuable teaching tool, 13
Varignon, P., 5, 8
vector-based approach, 9
vector-based machine learning model, 449
vertex locations, constraint equations for, 369–370
virtual faces, 512
virtual forces, 449
visualization for 3D graphic statics, 511–512

waste reduction, impact on, 508
WED. See winged-edge data structure (WED)
well-known minimal surfaces, PGS, 470–471
Williams–McRobie concept, 517

Zalewski, W., 23 zero kinematic degrees of freedom, 486 zero-point mass, 62–63 Zhang, T., 485, 489 Zheng, H., 449 Zuleta, G., 215

winged-edge data structure (WED), 189, 407

Williot, V.-J., 522

Wolfe, W. S., 107