

SYSTEMS OF FREQUENCY DISTRIBUTIONS FOR WATER AND ENVIRONMENTAL ENGINEERING

A multitude of processes in hydrology and environmental engineering are either random or entail random components that are characterized by random variables. These variables are described by frequency distributions. This book provides an overview of different systems of frequency distributions, their properties, and their applications to the fields of water resources and environmental engineering. A variety of systems are covered, including the Pearson system, the Burr system, and systems commonly applied in economics, such as the D'Addario, Dagum, Stoppa, and Esteban systems. The latter chapters focus on the Singh system and the frequency distributions deduced from Bessel functions, maximum entropy theory, and the transformations of random variables. The final chapter introduces the genetic theory of frequency distributions. Using real-world data, this book provides a valuable reference for researchers, graduate students, and professionals interested in frequency analysis.

VIJAY P. SINGH is a University Distinguished Professor, a Regents Professor, and Caroline and William N. Lehrer Distinguished Chair in Water Engineering at Texas A&M University. He has published more than 1,220 journal articles, 30 books, 70 edited reference books, 113 book chapters, and 314 conference papers in the areas of hydrology, groundwater, hydraulics, irrigation, pollutant transport, copulas, entropy, and water resources. He has received 95 national and international awards, including the Arid Lands Hydraulic Engineering Award; the Richard R. Torrens Award; the Norman Medal; the EWRI Lifetime Achievement Award given by the American Society of Civil Engineers (ASCE); the Ray K. Linsley Award and Founder's Award, given by the American Institute of Hydrology; the Crystal Drop Award and the Ven Te Chow Award, given by the International Water Resources Association; and three honorary doctorates. He is a Distinguished Member of ASCE, and a fellow of EWRI, AWRA, IWRS, ISAE, IASWC, and IE. He has served as President of the American Institute of Hydrology (AIH), serves on the editorial boards of more than 25 journals and 3 book series, and is President-Elect of AAWRE-ASCE.

LAN ZHANG currently works as Post-Doc Research Scholar in the Department of Agricultural and Biological Engineering at Texas A&M University. She received her BS in mechanical engineering from Dalian Polytechnic University, her MS in water resources sciences from Beijing Normal University, and her PhD in civil and environmental engineering from Louisiana State University. She has published more than 40 articles in the areas of hydrology, copulas, water quality, entropy, and water resources. She has been working on the copula and its applications in hydrology and water resource engineering for more than 10 years.

SYSTEMS OF FREQUENCY DISTRIBUTIONS FOR WATER AND ENVIRONMENTAL ENGINEERING

VIJAY P. SINGH

Texas A&M University

LAN ZHANG

Texas A&M University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108494649 DOI: 10.1017/9781108859530

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

 $A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library.$

ISBN 978-1-108-49464-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

VPS: wife Anita, son Vinay, daughter Arti, daughter-in-law Sonali, son-in-law Vamsi, and grandchildren Ronin, Kayden, and Davin

LZ: husband Bret Rath and son Caelan

Contents

Preface		page xiii	
Acl	Acknowledgments		xvi
1	Introduction		
	1.1 Rando	om Variables in Environmental and Water Engineering	1
	1.1.1	Rainfall	1
	1.1.2	Temperature	2
	1.1.3	Frost, Fog, and Sunshine Hours	3
	1.1.4	Wind	4
	1.1.5	Snowfall	4
	1.1.6	Runoff	4
	1.1.7	Flood	4
	1.1.8	Drought	5
	1.1.9	Hydrogeology	6
	1.1.10	Water Quality	6
	1.2 System	ns of Frequency Distributions	7
	1.2.1	Stoppa System	8
	1.2.2	Dagum System	8
	1.2.3	Johnson System	8
	1.2.4	General Classification	8
	1.3 Need	for Systems of Frequency Distributions	9
	1.4 Organ	ization of the Book	9
	References		9
2	Pearson System of Frequency Distributions		11
	2.1 Introduction		
	2.2 Differential Equation of Pearson System		
		alization of Pearson System	14

vii

viii Contents

	24	Pearso	n Distributions	16
	2.1		Nonnegative Discriminant	16
			Negative Discriminant	16
			Pearson Type 0 Distribution	17
			Pearson Type I Distribution	17
			Pearson Type II Distribution	18
			Pearson Type III Distribution	19
			Pearson Type IV Distribution	20
			Pearson Type V Distribution	21
			Pearson Type VI Distribution	22
			Pearson Type VII Distribution	22
			Pearson Type VIII Distribution	23
			Pearson Type IX Distribution	24
			Pearson Type X Distribution	25
			Pearson Type XI Distribution	25
		2.4.15	Pearson Type XII Distribution	25
	2.5	Graphi	ical Representation of Shapes Based on the	
		Relatio	on of α_3^2 versus d and α_3^2 versus α_4	26
			Graphical Representation of Pearson Distributions	26
		2.5.2	Type I(U): $d = -0.8$; $\alpha_3^2 = 3$	26
		2.5.3	Type III(B): $d = 0$; $\alpha_3^2 = 1.5$	32
			Type IV(B): $d = 0.2, \alpha_3^2 = 1$	32
		2.5.5	Type VI: $d = 0.2, \alpha_3^2 = 1.96$	33
	2.6	Applic	ation	34
	2.7	Conclu	asion	38
	Ref	erences		38
3	Buı	rr Syste	m of Frequency Distributions	40
	3.1	Introdu	action	40
	3.2	Charac	eteristics of Probability Distribution Functions	40
	3.3	Burr H	lypothesis	41
	3.4	Burr S	ystem of Frequency Distributions	43
		3.4.1	Burr I Distribution	44
		3.4.2	Burr II Distribution	44
		3.4.3	Burr III Distribution	46
		3.4.4	Burr IV Distribution	47
		3.4.5	Burr V Distribution	49
		3.4.6	Burr VI Distribution	50
		3.4.7	Burr VII Distribution	52
		3.4.8	Burr VIII Distribution	54

	Content	S	ix	
	3.4.9 Burr IX Distribution		55	
	3.4.10 Burr X Distribution		57	
	3.4.11 Burr XI Distribution		59	
	3.4.12 Burr XII Distribution		61	
	3.5 Parameter Estimation by Cumulativ	ve Moment Theory	62	
	3.6 Application		69	
	3.6.1 Peak Flow		73	
	3.6.2 Annual Rainfall Amount		73	
	3.6.3 Monthly Sediment Yield		77	
	3.6.4 Maximum Daily Precipitation	on	77	
	3.7 Conclusion		77	
	References		81	
4	D'Addario System of Frequency Distri	D'Addario System of Frequency Distributions		
	4.1 Introduction		82	
	4.2 D'Addario System		82	
	4.2.1 Pareto Type I Distribution		83	
	4.2.2 Pareto Type II Distribution		85	
	4.2.3 Lognormal (2-Parameter) D	istribution	86	
	4.2.4 Lognormal (3-Parameter) D	istribution	88	
	4.2.5 Davis Distribution		89	
	4.2.6 Amoroso Distribution		92	
	4.3 Application		105	
	4.3.1 Peak Flow		108	
	4.3.2 Monthly Discharge		108	
	4.3.3 Deseasonalized TPN		109	
	4.3.4 Daily Maximum Precipitation	on	111	
	4.4 Conclusion		114	
	References		114	
5	Dagum System of Frequency Distributi	ions	115	
	5.1 Introduction		115	
	5.2 Dagum System of Distributions		115	
	5.3 Derivation of Frequency Distributions		117	
	5.3.1 Pareto Type I Distribution		117	
	5.3.2 Pareto Type II Distribution		118	
	5.3.3 Pareto Type III Distribution	l	119	
	5.3.4 Benini Distribution		121	
	5.3.5 Weibull Distribution		122	
	5.3.6 Log-Gompertz Distribution		123	

x Contents

	5.3.7	Fisk Distribution	124	
		Singh-Maddala Distribution	125	
		Dagum I Distribution	126	
		0 Dagum II Distribution	127	
		1 Dagum III Distribution	129	
		5.4 Application		
	• •	Monthly Sediment Yield	130 134	
		Peak Flow	136	
	5.4.3	Maximum Daily Precipitation	138	
		Drought (Total Flow Deficit)	139	
	5.5 Conc		140	
	Reference	es	142	
6	Stoppa S	ystem of Frequency Distributions	143	
	6.1 Intro	duction	143	
	6.2 Stopp	oa System of Distributions	143	
	6.3 Deriv	vation of Frequency Distributions	145	
	6.3.1	Generalized Power Distribution (Stoppa Type I		
		Distribution)	145	
	6.3.2	Generalized Pareto Type II Distribution	145	
	6.3.3	Generalized Exponential Distribution (Type III		
		Distribution)	147	
		Stoppa Type IV Distribution	148	
		Stoppa Type V Distribution	149	
		Four-Parameter Generalized Pareto Distributions	150	
	6.4 Relation between Dagum and Stoppa Systems		151	
	6.5 Relations among Burr Distributions and Dagum and			
	Stoppa Systems		153	
	6.6 Appl		154	
		Monthly Suspended Sediment	155	
		Annual Rainfall Amount	156	
	6.6.3		157	
	6.6.4	J 1	158	
	6.6.5	2	158	
	6.7 Conc		159	
	Reference	es	160	
7	Esteban System of Frequency Distributions			
	7.1 Introduction			
	7.2 Esteban System of Distributions		161	

	Contents	X	
	7.2.1 Three-Parameter Gamma Distribution	162	
	7.2.2 Special Cases of Generalized Gamma Distribution	163	
	7.2.3 Generalized Beta Distribution of First Kind	169	
	7.2.4 Special Cases of GB1 Distribution	172	
	7.2.5 Generalized Beta Distribution of Second Kind	175	
	7.2.6 Special Cases of GB2 Distribution	176	
	7.3 Application	188	
	7.3.1 TPN	189	
	7.3.2 Peak Flow	190	
	7.3.3 Drought (Total Flow Deficit)	191	
	7.3.4 Annual Rainfall	191	
	7.4 Conclusion	193	
	References	193	
8	Singh System of Frequency Distributions		
	8.1 Introduction	194	
	8.2 Singh System of Distributions		
	8.3 Conclusion	206	
	References	206	
9	Systems of Frequency Distributions Using Bessel Functions and		
	Cumulants	207	
	9.1 Introduction	207	
	9.2 Bessel Function Distributions	207	
	9.2.1 Moments of Bessel Function Distributions	208	
	9.2.2 Bessel Function Line	209	
	9.2.3 Inverse Gaussian Distribution	210	
	9.2.4 Other Distributions	211	
	9.3 Frequency Distributions by Series Approximation	214	
	9.3.1 Chebyshev (Probabilists')-Hermite Polynomials	214	
	9.3.2 Cumulants	215	
	9.3.3 Basic Concept of Approximating Frequency		
	Distribution with Series Approximation	217	
	9.3.4 Gram-Charlier Type A Series	218	
	9.3.5 Edgeworth Series with Baseline Gaussian Distribution	219	
	9.3.6 Gram-Charlier/Edgeworth Series with Non-Gaussian		
	Distribution	222	
	9.4 Applications	227	
	9.5 Conclusion	228	
	References	230	

xii Contents

10	Frequency Distributions by Entropy Maximization		
	10.1	Introduction	231
	10.2	Entropy Maximization	231
	10.3	Application	244
		10.3.1 Peak Flow	244
		10.3.2 Monthly Sediment Yield	245
	10.4	Conclusion	246
	Refer	rences	247
11	Transformations for Frequency Distributions		248
	11.1	Introduction	248
	11.2	Transformation to Normal Distribution	248
	11.3	Transformation of Normal Distribution: The Johnson Family	250
	11.4	Transformation Based on the First Law of Laplace	253
	11.5	Transformation of Logistic Distribution	256
	11.6	Transformation of Beta Distribution	257
	11.7	Transformation of Gamma Distribution	263
	11.8	Transformation of Student-t Distribution	265
	11.9	Application	267
		11.9.1 Peak Flow and Maximum Daily Precipitation	268
		11.9.2 Monthly Sediment and Annual Rainfall	269
	11.10	Conclusions	269
	References		272
12	Gene	tic Theory of Frequency	274
	12.1	Basic Concept of Elementary Errors	274
	12.2	General Discussion of Charlier Type A and B Curves	274
	12.3	Charlier Type A Curve	275
	12.4	Charlier Type B Curve	276
	12.5		276
	References		
Арр	endix .	Datasets for Applications	282
Ind	dex		

Preface

A multitude of processes in hydrometeorology, hydrology, geohydrology, hydraulics, and environmental and water resources engineering are either random or entail random components that are characterized by random variables. These variables are described by frequency distributions that encompass a broad range. In text-books on statistical methods in hydrology and hydraulics, frequency distributions occupy a prominent place but there is seldom a discussion on where the distributions come from or how these distributions are derived. Statistical literature shows that there are different systems or families of distributions and the distributions used in hydrology and water and environmental engineering originate from one or the other of these systems. Understanding the origination of the distributions helps uncover their underlying hypotheses and may help estimate their parameters and make informed inferences. Currently, there does not appear to be a book covering these systems. This is what constituted the motivation for this book.

The subject matter of the book is divided into 12 chapters. Introducing the theme of the book in Chapter 1, the Pearson system is discussed in Chapter 2. This is the first system that was introduced almost a century and a quarter ago and can be considered as a foundational system, for the differential equation proposed for the system laid the seeds for some other systems. The Pearson system comprises 12 distributions some of which are frequently employed in environmental and water engineering. Each of these distributions is derived and estimation of their parameters is discussed.

Chapter 3 discusses the Burr system, which consists of a set of 12 distributions that exhibit different characteristics and some of these distributions are commonly used in environmental and water engineering. This system employs a hypothesis that relates the probability density function to the cumulative distribution function and its complement. Each distribution of the system is derived in the chapter and a method of parameter estimation is presented. An analogy is drawn between this system and the Pearson system.

xiii

xiv Preface

Chapter 4 presents the D'Addario system, which is comprised of six distributions that result from the integration of a probability-generating function and a transformation function. Examples of the distributions include Pareto type I, Pareto type II, lognormal type I, lognormal type II, Amoroso, and Davis distributions. The Amoroso distribution leads to 11 special cases. These distributions are derived in the chapter.

The subject matter of Chapter 5 is the Dagum system, which consists of a set of 11 frequency distributions, some of which are commonly employed in water engineering. The system is based on a hypothesis for the elasticity of the cumulative distribution function. A set of logical-empirical postulates, including parsimony, interpretation of parameters, efficiency of parameter estimation, model flexibility, goodness of fit, ease of computation, and algebraic manipulation that should be used for deriving distributions are also discussed.

The Stoppa system is discussed in Chapter 6. This system employs the elasticity of the cumulative distribution function and a differential equation. Its special cases consist of generalized power distribution, generalized exponential distribution, generalized Pareto distribution, and different Stoppa distributions. The generalized distributions consist of several distributions as special cases. The Stoppa system is a generalized system of distributions and is closely related to the Dagum system. Also, several Burr distributions can be derived from the Stoppa or the Dagum system.

Chapter 7 deals with the Esteban system, which uses a slightly different definition of distribution elasticity. The system comprises generalized gamma distribution, generalized beta distribution of first kind, and generalized beta distribution of second kind. These distributions include as special or limiting cases a wide spectrum of frequency distributions used in hydrologic, hydraulic, environmental, and water resources engineering.

The subject matter of Chapter 8 is the Singh system, which may be considered as the generalized Burr and Stoppa system. The system employs certain hypotheses on the relation between probability density function (PDF) and cumulative distribution function (CDF), based on empirical data. A large number of distributions can be derived from this system. The chapter discusses the derivation of CDFs of these distributions.

Chapter 9 deals with frequency distributions that are derived using Bessel functions and cumulants. Beginning with a discussion of Bessel function distributions, including moments of distributions, Bessel function line, inverse Gaussian distribution, and other distributions, the chapter goes on to discuss frequency distributions by series approximations, including Chebyshev-Hermite polynomials, cumulants, series approximation of a frequency distribution with Gram-Charlier

Preface xv

type A series, Edgeworth series with baseline Gaussian distribution, and Gram-Charlier/Edgeworth series with non-Gaussian distribution.

Chapter 10 employs the principle of maximum entropy. Entropy maximization provides a general framework for deriving any probability distribution subject to appropriate constraints. This chapter discusses this framework and derives a number of distributions that satisfy different constraints.

A wide spectrum of frequency distributions, used in hydrologic, hydraulic, environmental, and water resources engineering, are derived using transformations of some basic frequency distributions. The basic distributions that have been used are normal, logistic, beta, Laplace, and other distributions, and the transformations used are logarithmic, power, and exponential. Chapter 11 derives the distributions obtained by transformation and transformations applied to basic distributions.

The concluding Chapter 12 deals with the genetic theory of frequency distributions. Starting with the basic concept of elementary errors, the chapter discusses Charlier type A curve and Charlier type B curve. Then, it delves into the extensions that lead to different frequency distributions.

This book is meant for graduate students and faculty members who are in the fields of hydrology, hydraulics, geohydrology, water quality engineering, hydrometeorology, environmental engineering, and water resources engineering. It can also be used as a reference book for courses on statistical methods in environmental and water engineering. It is hoped that the book will help people understand frequency distributions and their application.

Acknowledgments

The subject matter of this book is based on the literature on mathematical statistics, econometrics, and environmental and water engineering. There are scores of researchers who have made seminal contributions in the area of frequency distributions without which the book would not have been possible. It is a pleasure to acknowledge their contributions as specifically as possible in the body of the text and any omission on our part has been entirely inadvertent and we offer our apologies in advance. We would be greatly benefitted and be obliged if the readers transmitted to us any errors, omissions, or criticisms.

We acknowledge our families for their love, support, sacrifices, patience, encouragement, and endurance. Without them, our lives would be less than meaningful. Vijay Singh acknowledges his wife Anita for her help in countless ways and allowing him to do his academic and professional work. Without her sense of caring and sacrifice each day it would have been impossible for him to accomplish what he does. His son Vinay is a bedrock of stability in the family and offers help and support without seeking any acknowledgment. His daughter Arti symbolizes caring, affection, and warmth. It is difficult to think of a more loving and caring daughter. His daughter-in-law Sonali symbolizes togetherness and unity and infectious smile. He is blessed to have her as his daughter-in-law. His son-inlaw Vamsi represents calmness, coolness, and concurrence, which are rare these days. His grandchildren Ronin, Kayden, and Davin bring joy and meaning to his life and represent his hope and future. He is grateful to all of them for what they are and what they bring to him. This book is humbly dedicated to them and is a small acknowledgment of what they mean to him. Lan Zhang acknowledges her husband Brett and son Caelan for their love and support.

xvi