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PART I

On a fundamental level, all forms of quantum matter can be formulated

in terms of a many-body Hamiltonian for a macroscopically large number

of constituent particles. However, in contrast with many other areas

of physics, the structure of this operator conveys as much information

about the properties of the system as, say, the knowledge of the basic

chemical constituents tells us about the behavior of a living organism.

Rather, it has been a long-standing tenet that the degrees of freedom

relevant to the low-energy properties of a system usually are not the

microscopic ones. It is a hallmark of many “deep” problems of modern

condensed matter physics that the passage between the microscopic and

the effective degrees of freedom involves complex and, at times, even

controversial mappings. To understand why, it is helpful to review the

process of theory building in this field of physics.

The development of early condensed matter physics often hinged on

the “unreasonable” success of non-interacting theories. The impotency

of interactions observed in a wide range of physical systems reflects a

principle known as adiabatic continuityadiabatic

continuity
: the quantum numbers char-

acterizing an (interacting) many-body system are determined by funda-

mental symmetries – translational, rotational, particle exchange, etc. As

long as these symmetries are maintained, the system’s elementary exci-

tations, or quasi-particles, can usually be traced back “adiabatically” to

the bare particles of the non-interacting limit. This principle, embodied

in Landau’s Fermi-liquid theory, has provided a platform for the investi-

gation of a wide range of systems, from conventional metals to 3helium

fluids and cold atomic Fermi gases.

However, being contingent on symmetry, it must be abandoned at phase

transitions, where interactions effect a rearrangement of the many-body

ground state into a state of different, or “broken” symmetry. Symmetry-

broken phases generically show excitations different from those of the

parent non-interacting phase. They either require classification in terms

of new species of quasi-particles, or they may be collective modes engag-

ing the cooperative motion of many bare particles. For example, when

atoms condense from a liquid into a solid phase, translational symmetry
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is broken and the elementary excitations (phonons) involve the motion

of many individual bare particles.

In this way, each phase of matter is associated with a unique “non-

interacting” reference state with its own characteristic quasi-particle ex-

citations – a product of only the relevant symmetries. Within each in-

dividual phase, a continuity principle keeps the effects of interactions at

bay. This hierarchical picture delivers two profound implications. First,

within the quasi-particle framework, the underlying “bare” or elemen-

tary particles remain invisible. (To quote from P. W. Anderson’s famous

article More is different, Science 177, 393 (1972), “The ability to re-

duce everything to simple fundamental laws does not imply the ability

to start from those laws and reconstruct the universe.”) Second, while

one may conceive an almost unlimited spectrum of interactions, there

are comparatively few non-interacting or free theories, constrained by

the set of fundamental symmetries. These arguments go a long way in

explaining the principle of “universality” observed in condensed matter.

How can these concepts be embedded into a concrete theoretical frame-

work? At first sight, problems with macroscopically many particles seem

overwhelmingly daunting. However, our discussion above indicates that

representations of manageable complexity may be obtained by focusing

on symmetries and restricted sets of excitations. Quantum field theory

provides the keys to making this reduction concrete. Starting from an ef-

ficient microscopic formulation of the many-body problem, it allows one

to systematically develop effective theories for collective degrees of free-

dom. Such representations afford a classification of interacting systems

into a small number of universality classes defined by their fundamen-

tal symmetries. This form of complexity reduction has become a potent

source of unification in modern theoretical physics. Indeed, several sub-

fields of theoretical physics (such as conformal field theory, random ma-

trix theory, etc.) now define themselves not so much through any specific

application as by a certain conceptual or methodological framework.

As mentioned in the preface, the first part of this text is a primer

aimed at elevating graduate students to a level where they can engage in

independent research. While the discussion of conceptual aspects stands

in the foreground, we have endeavored to keep the text firmly rooted

in experimental application. As well as routine exercises, it includes

extended problems meant to train research-oriented thinking. Some of

these answered problems are deliberately designed to challenge. (We all

know from experience that the intuitive understanding of formal struc-

tures can be acquired only by persistent, and at times even frustrating

training.)
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1 From Particles to Fields

SYNOPSIS To introduce some basic concepts of field theory, we begin by considering two
simple model systems – a one-dimensional “caricature” of a solid and a freely propagating
electromagnetic wave. As well as exemplifying the transition from discrete to continuous
degrees of freedom, these examples introduce the basic formalism of classical and quantum
field theory as well as the notions of elementary excitations, collective modes, symmetries
and universality – concepts that will pervade the rest of the text.

One of the appealing facets of condensed matter physics is that phenomenology of

remarkable complexity can emerge from a Hamiltonian of comparative simplicity.

Indeed, microscopic “condensed matter Hamiltonians” of high generality can be

constructed straightforwardly. For example, a prototypical metal or insulator may

be described by the many-particle Hamiltonian
many-

particle

Hamil-

tonian

, H = He + Hi + Hei, where

He =
∑

i

p2
i

2m
+

∑

i<j

Vee(ri − rj),

Hi =
∑

I

P2
I

2M
+

∑

I<J

Vii(RI − RJ),

Hei =
∑

iI

Vei(RI − ri).

(1.1)

Here, ri (RI) denotes the coordinates of va-

lence electrons (ion cores), while He, Hi, and

Hei describe the dynamics of electrons, ions and

the interaction of electrons and ions, respec-

tively (see the figure). Of course, the Hamilto-

nian (1.1) can be made more realistic by, for

example, remembering that electrons and ions

carry spin, adding potential disorder, or intro-

ducing host lattices with multi-atomic unit cells. However, for developing our

present line of thought, the prototype Hamiltonian H will suffice.

The fact that a seemingly innocuous Hamiltonian like Eq. (1.1) is capable of

generating a plethora of phenomenology can be read in reverse: normally, one

will not be able to make progress theoretically by approaching the problem in an
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4 1 From Particles to Fields

“ab initioab initio

approach

” manner, i.e., by an approach that treats all microscopic constituents as

equally relevant degrees of freedom. How, then, can successful analytical approaches

be developed? The answer lies in several basic principles inherent in generic con-

densed matter systems.

1. Structural reducibilityreduction

principle
: Not all components of the Hamiltonian (1.1) need

to be treated simultaneously. For example, when our interest is in the vibra-

tional motion of the ion lattice, the dynamics of the electron system can often

be neglected or, at least, treated in an “effective” manner. Similarly, the dy-

namics of the electron system can often be considered independent of the ions,

etc.

2. In the majority of condensed matter applications, one is interested not so much

in the full profile of a given system but, rather, in its energetically low-lying

dynamics. This is motivated partly by practical aspects (in daily life, iron

is normally encountered at room temperature and not at its melting point),

and partly by the tendency of large systems to behave in a “universal” man-

ner at low temperatures. Here, universalityuniversality

principle
implies that systems differing

in microscopic detail (i.e., with different types of interaction potentials, ion

species, etc.) exhibit common collective behavior at low energy or long length

scales. As a physicist, one will normally seek for unifying principles in collec-

tive phenomena rather than to describe the peculiarities of individual elements

or compounds. However, universality is equally important in the practice of

condensed matter theory. In particular, it implies that, at low temperatures,

system-specific details of microscopic interaction potentials are often of sec-

ondary importance, i.e., one may employ simple model Hamiltonians.

3. For most systems of interest, the number of degrees of freedom N = O(1023)

is formidably large. However, contrary to first impressions, the magnitude of

this figure is rather an advantage: in addressing condensed matter problems,

the principles of statisticsstatistical

principles
imply that statistical errors tend to be negligibly

small.1

4. Finally, condensed matter systems typically possess intrinsic symmetriessymmetries . For

example, the Hamiltonian (1.1) is invariant under the simultaneous translation

and/or rotation of all coordinates, which expresses the global Galilean invari-

ance of the system (these are continuous symmetries). Invariance under spin

rotation (continuous) or time reversal (discrete) are other examples of common

symmetries. The general importance of symmetries cannot be overemphasized:

symmetries support the conservation laws that simplify any problem. Yet, in

1 The importance of this point is illustrated by the empirical observation that the most chal-
lenging systems in physical sciences are of medium, and not large, scale, e.g., metallic clusters,

medium-sized nuclei or large atoms consisting of some O(101–102) fundamental constituents.
Such systems are beyond the reach of few-body quantum mechanics while not yet accessible to
reliable statistical modeling. The only viable path to approaching systems of this type is often
through numerical simulation or the use of phenomenology.
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5 1.1 Classical Harmonic Chain: Phonons

condensed matter, symmetries are even more important. A conserved observ-

able is generally tied to an energetically low-lying excitation. In the universal,

low-temperature, regime in which we will typically be interested, it is precisely

the dynamics of these excitations that govern the gross behavior of the sys-

tem. Generally, the identification of fundamental symmetries is the first step

in the sequence “symmetry 7→ conservation law 7→ low-lying excitations” and

one that we will encounter time and again.

To understand how these basic principles can be used to formulate and explore

effective low-energy field theories of solid state systems, we will begin by focusing

on the harmonic chain, a collection of atoms bound by a harmonic potential.

In doing so, we will observe that the universal characteristics encapsulated by the

low-energy dynamics2 of large systems relate naturally to concepts of field theory.

1.1 Classical Harmonic Chain: Phonons

[Classical Harmonic Chain: Phonons]

Returning to the prototype Hamiltonian (1.1), let us focus on the dynamical

properties of the positively charged core ions that constitute the host lattice of a

crystal. For the moment, we will neglect the fact that atoms are quantum objects

and treat the ions as classical entities. To further simplify the problem, let us

consider a one-dimensional atomic chain rather than a generic d-dimensional solid.

In this case, the positions of the ions can be specified by a sequence of coordinates

with average lattice spacing a. Relying on the structural reducibility principle 1, we

will first argue that, to understand the behavior of the ions, the dynamics of the

conduction electrons are of secondary importance, i.e., we will set He = Hei = 0.

At zero temperature, the sys-

tem freezes into a regularly spaced

array of ion cores at coordinates

RI = R̄I ≡ Ia. Any deviation

from a perfectly regular configu-

ration incurs a potential energy

cost. For low enough temperatures

(principle 2), this energy will be

approximately quadratic in the small deviation of the ion from its equilibrium po-

sition. The “reduced” low-energy Hamiltonian of the system then reads

H =

N
∑

I=1

[

P 2
I

2m
+

ks

2
(RI+1 − RI − a)2

]

, (1.2)

2 In this text, we will focus on the dynamical behavior of large systems, as opposed to their static

structural properties. In particular, we will not address questions related to the formation of
definite crystallographic structures in solid state systems.
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6 1 From Particles to Fields

where the coefficient ks determines the steepness of the lattice potential. Note that

H can be interpreted as the Hamiltonian of N point-like particles of mass m con-

nected by elastic springs with spring constant ks (see the figure).

1.1.1 Lagrangian formulation and equations of motion

Joseph-Louis Lagrange
1736–1813

was a French mathematician
and astronomer (though born
in Turin) who excelled in all
fields of analysis, number the-
ory and celestial mechanics. In
1788, he published Mécanique

Analytique, which summarized the field of me-

chanics since the time of Newton, and is no-
table for its use of the theory of differential

equations. In this text, he transformed mechan-

ics into a branch of mathematical analysis.

What are the elementary low-energy

excitations of the classical harmonic

chainclassical

harmonic

chain

? To answer this question we

might, in principle, attempt to solve

Hamilton’s equations of motion. In-

deed, since H is quadratic in all coordi-

nates, such a program is feasible. How-

ever, few of the problems encountered

in solid state physics enjoy this prop-

erty. Further, it seems unlikely that the

low-energy dynamics of a macroscopi-

cally large chain – which we know from our experience will be governed by large-

scale wave-like excitations – is adequately described in terms of an “atomistic”

language; the relevant degrees of freedom will be of a different type. We should,

rather, draw on the basic principles 1–4 set out above. Notably, so far, we have

paid attention to neither the intrinsic symmetry of the problem nor the fact that

the number of ions, N , is large.

To reduce a microscopic model to an effective low-energy theory, often the Hamil-

tonian is not a very convenient starting point. Usually, it is more efficient to start

from the classical actionclassical

action
, S. In the present case, S =

´

dt L(R, Ṙ), where

(R, Ṙ) ≡ {RI , ṘI} represent the coordinates and their time derivatives. The corre-

sponding classical Lagrangianclassical

Lagrangian
L related to the Hamiltonian (1.2) is given by

L = T − U =

N
∑

I=1

[

m

2
Ṙ2

I −
ks

2
(RI+1 − RI − a)2

]

, (1.3)

where T and U denote, respectively, the kinetic and potential energy.

Since we are interested in the properties of the large-N system, we can expect

boundary effects to be negligible. In this case, we may impose periodic boundary

conditions, making the identification RN+1 = R1. Further, anticipating that the

effect of lattice vibrations on the solid is weak (i.e., long-range atomic order is

maintained), we may assume that the deviation of ions from their equilibrium po-

sition is small (i.e., |RI(t) − R̄I | � a). For RI(t) = R̄I + φI(t), with φN+1 = φ1,

the Lagrangian (1.3) assumes the simplified form

L =

N
∑

I=1

[

m

2
φ̇2

I −
ks

2
(φI+1 − φI)

2

]

.

To make further progress, we will now make use of the fact that we are not

concerned with behavior on “atomic” scales. For such purposes, our model would,
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7 1.1 Classical Harmonic Chain: Phonons

in any case, be much too primitive! Rather, we are interested in experimentally

observable behavior that becomes manifest on macroscopic length scales (principle

2). For example, one might wish to study the specific heat of the solid in the limit

of infinitely many atoms (or at least a macroscopically large number, O(1023)).

Under these conditions, microscopic models can usually be simplified substantially

(principle 3). In particular, it is often permissible to subject a discrete lattice model

to a continuum limitcontinuum

limit
, i.e., to neglect the discreteness of the microscopic entities

and to describe the system in terms of effective continuum degrees of freedom.

In the present case, taking a continuum limit

amounts to describing the lattice fluctuations φI in

terms of smooth functions of a continuous variable x.

(See the figure, where the [horizontal] displacement of

the point particles is plotted along the vertical axis.)

Clearly such a description makes sense only if the relative fluctuations on atomic

scales are weak (for otherwise the smoothness condition would be violated). How-

ever, if this condition is met – as it will be for sufficiently large values of the stiffness

constant ks – the continuum description is much more powerful than the discrete

encoding in terms of the “vector” {φI}. The steps that we will need to take to go

from the Lagrangian to concrete physical predictions will then be much easier to

formulate.

Introducing continuum degrees of freedom φ(x), and applying a first-order Taylor

expansion,3 let us define

φI → a1/2φ(x)
∣

∣

∣

x=Ia
, (φI+1 − φI) → a3/2∂xφ(x)

∣

∣

∣

x=Ia
,

N
∑

I=1

→
1

a

ˆ L

0

dx,

where L = Na. Note that, as defined, the functions φ(x, t) have dimensionality

[length]1/2. Expressed in terms of the new degrees of freedom, the continuum limit

of the Lagrangian then reads

L[φ] =

ˆ L

0

dx L(∂xφ, φ̇), L(∂xφ, φ̇) =
m

2
φ̇2 −

ksa
2

2
(∂xφ)2, (1.4)

where the Lagrangian densityLagrangian

density
L has dimensionality [energy]/[length]. Similarly,

the classical action assumes the continuum form

S[φ] =

ˆ

dt L[φ] =

ˆ

dt

ˆ L

0

dx L(∂xφ, φ̇) (1.5)

We have thus succeeded in abandoning the N point-particle description in favor of

one involving continuous degrees of freedom, a (classical) fieldclassical

field
. The dynamics of

the latter are specified by the functionals L and S, which represent the continuum

generalizations of the discrete classical Lagrangian and action, respectively.

3 Indeed, for reasons that will become clear, higher-order contributions to the Taylor expansion
are immaterial in the long-range continuum limit.
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8 1 From Particles to Fields

INFO The continuum variable φ is our first encounter with afield field. Before proceeding
with our example, let us pause to make some preliminary remarks on the general definition
of these objects. This will help to place the subsequent discussion of the atomic chain in
a broader context. Formally, a field is a smooth mapping

φ : M → T

z 7→ φ(z)

from a certain manifold M ,4 often called the “base

manifold,” into a “target” or “field manifoldfield

manifold
”

T (see the figure).5 In our present example, M =
[0, L]×[0, t] ⊂ R2 is the product of intervals in space
and time, and T = R. In fact, the factorization M ⊂
R × T into a space-like manifold R multiplied by a
one-dimensional time-like manifold T is inherent in
most applications of condensed matter physics.6

However, the individual factors R and T may,
of course, be more complex than in our prototypical problem above. As for the target
manifold, not much can be said in general; depending on the application, the realizations
of T range from real or complex numbers over vector spaces and groups to the “fanciest
objects” of mathematical physics.

In applied field theory, fields appear not as final objects, but rather as input to func-

tionalsfunctionals . Mathematically, a functional S : φ 7→ S[φ] ∈ R is a mapping that takes a field
as its argument and maps it into the real numbers. The functional profile S[φ] essentially
determines the character of a field theory. Notice that the argument of a functional is
commonly indicated in square brackets [ ].

While these formulations may appear unnecessarily abstract, remembering the mathe-
matical backbone of the theory often helps to avoid confusion. At any rate, it takes some
time and practice to get used to the concept of fields and functionals. Conceptual difficul-
ties in handling these objects can be overcome by remembering that any field in condensed
matter physics arises as the limit of a discrete mapping. In the present example, the field
φ(x) is obtained as a continuum limit of the discrete vector {φI} ∈ RN ; the functional
L[φ] is the continuum limit of the function L : RN → R, etc. While, in practice, fields
are usually easier to handle than their discrete analogs, it is sometimes helpful to think
about problems of field theory in a discrete language. Within the discrete picture, the
mathematical apparatus of field theory reduces to finite-dimensional calculus.

Although the Lagrangian (1.4) contains the full information about the model, we

have not yet learned much about its actual behavior. To extract concrete physical

information from the Lagrangian, we need to derive equations of motionequations

of motion
. At first

sight, it may not be entirely clear what is meant by the term “equations of motion”

in the context of an infinite-dimensional model: the equations of motion relevant for

4 If you are unfamiliar with the notion of manifolds (for a crash course, see appendix section
A.1), think of M and T as subsets of some vector space. For the moment, this limitation won’t
do any harm.

5 In some (rare) cases it becomes necessary to define fields in a more general sense (e.g., as
sections of mathematical objects known as fiber bundles). However, in practically all condensed

matter applications, the more restrictive definition above will suffice.
6 By contrast, the condition of Lorentz invariance implies the absence of such factorizations in

relativistic field theory. In classical statistical field theories, i.e., theories probing the thermo-
dynamic behavior of large systems, M is just space-like.
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9 1.1 Classical Harmonic Chain: Phonons

the present problem are obtained as the generalization of the conventional Lagrange

equations of N point-particle classical mechanics to a model with infinitely many

degrees of freedom. To derive these equations, we need to generalize Hamilton’s

extremal principle (i.e., the route from an action to the associated equations of

motion) to infinite dimensions. As a warm-up, let us briefly recapitulate how the

extremal principle works for a system with one degree of freedom.

Suppose the dynamics of a classical point particle with coordinate x(t) is de-

scribed by the classical Lagrangian L(x, ẋ) and action S[x] =
´

dt L(x, ẋ). Hamil-

ton’s extremal principleHamilton’s

extremal

principle

states that the configurations x(t) that are realized are

those that extremize the action, δS[x] = 0, i.e., for any smooth curve t 7→ y(t),

lim
ε→0

1

ε
(S[x + εy] − S[x]) = 0. (1.6)

(For a more rigorous discussion, see section 1.2 below.) To first order in ε, the action

has to remain invariant. Applying this condition, one finds that it is fulfilled if and

only if x satisfies Lagrange’s equation of motionLagrange’s

d

dt
(∂ẋL) − ∂xL = 0 (1.7)

EXERCISE Recapitulate the derivation of (1.7) from the classical action.

x

t

T

L

φ (x,t)

φ

εη (x,t)

In Eq. (1.5) we are dealing with a system of

infinitely many degrees of freedom, φ(x, t).

Yet Hamilton’s principle is general and we

may see what happens if Eq. (1.5) is sub-

jected to an extremal principle analogous

to Eq. (1.6). In this case, we require the ac-

tion (1.5) to be invariant under variations

φ(x, t) → φ(x, t) + εη(x, t), to first order

in ε. Note that field variations must respect boundary conditions, if present. For

example, if φ|boundary = const., then η|boundary = 0 (see the figure). When applied

to the specific Lagrangian (1.4), substituting the “varied” field leads to

S[φ + εη] = S[φ] + ε

ˆ

dt

ˆ L

0

dx
(

mφ̇ η̇ − ksa
2∂xφ ∂xη

)

+ O(ε2).

Integrating by parts and requiring the contribution linear in ε to vanish, one obtains

lim
ε→0

1

ε
(S[φ + εη] − S[φ]) = −

ˆ

dt

ˆ L

0

dx
(

mφ̈ − ksa
2∂2

xφ
)

η
!
= 0.7

(Notice that the boundary terms vanish identically.) Now, since η was defined to

be an arbitrary smooth function, the integral above can vanish only if the factor in

7 Here and throughout a
!

= b means “we require a to be equal to b.”
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10 1 From Particles to Fields

parentheses is globally vanishing. Thus the equation of motion takes the form of a

classical wave equationclassical

wave

equation

(

m∂2
t − ksa

2∂2
x

)

φ = 0 (1.8)

φ+
φ�

x = vt

x = � vt

The solutions of (1.8) have the form

φ+(x−vt)+φ−(x+vt), where v = a
√

ks/m,

and φ± are arbitrary smooth functions of

the argument. From this we can deduce that the low-energy elementary excita-

tions of our model are lattice vibrations propagating as classical sound wavessound

waves

to the left or right at a constant velocity v (see figure).8 The trivial behavior of the

model is, of course, a direct consequence of its simplistic definition – no dissipa-

tion, dispersion, or other nontrivial ingredients. Adding these refinements leads to

the general classical theory of lattice vibrations (see, e.g., Ashcroft and Mermin9).

Finally, notice that the elementary excitations of the chain have little in common

with its “microscopic” constituents (the atoms). Rather they are collective exci-

tationscollective

excitations
, i.e., elementary excitations comprising a macroscopically large number of

microscopic degrees of freedom.

INFO The “relevant” excitations of a condensed matter system can, but need not,
be of collective type. For example, the interacting electron gas (a system to be discussed
in detail below) supports microscopic excitations – charged quasi-particles standing in 1:1
correspondence with the electrons of the original microscopic system – while the collective
excitations are plasmon modes of large wavelength that involve many electrons. Typically,
the nature of the fundamental excitations cannot be straightforwardly inferred from the
microscopic definition of a model. Indeed, the mere identification of the relevant excitations
often represents the most important step in the solution of a condensed matter problem.

1.1.2 Hamiltonian formulation

Sir William Rowan Hamil-
ton 1805–1865

was an Irish mathematician
credited with the discovery
of quaternions, the first non-
commutative algebra to be
studied. He also made seminal

contributions to the study of

geometric optics and classical mechanics.

An important characteristic of any ex-

citation is its energy. How much en-

ergy is stored in the sound waves of

the harmonic chain? To address this

question, we need to switch back to a

Hamiltonian formulation. Once again,

this is achieved by generalizing stan-

dard manipulations from point-particle

mechanics to the continuum. Remembering that, in the Lagrangian formulation of

8 Strictly speaking, the modeling of our system enforces a periodicity constraint φ±(x + L) =
φ±(x). However, in the limit of large system sizes, this aspect becomes inessential.

9 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt–Saunders International, 1983).
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