Design of CMOS Phase-Locked Loops

Using a modern, pedagogical approach, this textbook gives students and engineers a comprehensive and rigorous knowledge of CMOS PLL design for a wide range of applications. It features intuitive presentation of theoretical concepts, built up gradually from their simplest form to more practical systems; broad coverage of key topics, including oscillators, phase noise, analog PLLs, digital PLLs, RF synthesizers, delay-locked loops, clock and data recovery circuits, and frequency dividers; tutorial chapters on high-performance oscillator design, covering fundamentals to advanced topologies; and extensive use of circuit simulations to teach design mentality, highlight design flaws, and connect theory with practice. Offering over 200 thought-provoking examples that demonstrate best practices and common pitfalls, 250 end-of-chapter homework problems to test and enhance the readers’ understanding, and solutions and lecture slides for instructors, this is the perfect text for senior undergraduate and graduate-level students and professional engineers who want an in-depth understanding of PLL design.

Behzad Razavi is Professor of Electrical Engineering at The University of California, Los Angeles. He has received numerous teaching and education awards, and is a member of the US National Academy of Engineering and a Fellow of the IEEE. His previous textbooks include Fundamentals of Microelectronics, RF Microelectronics and Design of Analog CMOS Integrated Circuits.
Design of CMOS Phase-Locked Loops
From Circuit Level to Architecture Level

BEHZAD RAZAVI
University of California, Los Angeles
To my brother Hossein,
who has always been there for me
Contents

Preface xiii

Acknowledgments xiv

About the Author xvi

1 Oscillator Fundamentals 1

1.1 Basic Concepts 1

1.2 Oscillatory Feedback System 2

1.3 A Deeper Understanding 4

1.4 Basic Ring Oscillators 9

1.4.1 Inverter-Based Rings 12

1.5 Basic LC Oscillators 13

1.5.1 LC Circuit Concepts 13

1.5.2 LC Oscillators as Feedback Systems 17

1.5.3 LC Oscillators as One-Port Systems 23

1.6 Voltage-Controlled Oscillators 27

1.7 Appendix I 30

2 Introduction to Jitter and Phase Noise 34

2.1 Brief Review of Noise 34

2.1.1 Noise in Time and Frequency Domains 34

2.1.2 Device Noise 35

2.1.3 Propagation of Noise 37

2.1.4 Average Power of Noise 38

2.1.5 Approximation of Noise Spectrum 39

2.1.6 Accumulation of Noise with Time 39

2.2 Basic Jitter and Phase Noise Concepts 40

2.2.1 Jitter 41

2.2.2 Phase Noise 44

2.2.3 Limitations of Narrowband FM Approximation 49

2.2.4 Relationship between Jitter and Phase Noise 50

2.2.5 Types of Jitter 52

2.3 Trade-Off Between Phase Noise and Power 53

2.4 Basic Phase Noise Mechanisms 55

2.4.1 Phase Noise versus Frequency Noise 55

2.4.2 Ring Oscillators 56

2.4.3 LC Oscillators 58

2.5 Effect of Jitter on Performance 58

2.6 Effect of Phase Noise on Performance 59

3 Design of Inverter-Based Ring Oscillators 64

3.1 Phase Noise in Ring Oscillators 64

3.1.1 General Equation 64

3.2 Preliminary Design Ideas 70

3.3 Obtaining the Desired Frequency 72

3.3.1 Greater Node Capacitances 73

3.3.2 Greater Number of Stages 74

3.3.3 Greater Transistor Lengths 74

3.3.4 Frequency Division 75
3.4 Phase Noise Considerations 75
3.4.1 Transistor Noise Simulations 76
3.4.2 Reference Oscillator Phase Noise 78
3.4.3 First 2-GHz Oscillator Phase Noise 80
3.4.4 Second 2-GHz Oscillator Phase Noise 80
3.4.5 Third 2-GHz Oscillator Phase Noise 81
3.4.6 Fourth 2-GHz Oscillator Phase Noise 82
3.5 Frequency Tuning .. 83
3.5.1 Tuning Considerations ... 83
3.5.2 Continuous and Discrete Tuning 84
3.5.3 Tuning by Variable Resistance 85
3.5.4 Tuning by Variable Capacitance 90
3.6 Discrete Frequency Tuning .. 93
3.7 Problem of Supply Noise .. 96
3.7.1 Voltage Regulation .. 96
3.7.2 Current Regulation .. 97

4 Design of Differential and Multiphase Ring Oscillators 103
4.1 General Considerations ... 103
4.2 Phase Noise Considerations .. 105
4.3 Basic Differential Ring Design 108
4.3.1 Initial Design .. 108
4.3.2 Design Improvements ... 111
4.4 Obtaining the Desired Frequency 112
4.4.1 Method 1: Greater Node Capacitances 113
4.4.2 Method 2: Larger Transistors 114
4.4.3 Method 3: Greater Number of Stages 115
4.5 Two-Stage Ring Oscillators 116
4.5.1 Basic Idea .. 116
4.5.2 Design Example ... 120
4.6 Linear Scaling ... 121
4.7 Tuning Techniques .. 122
4.7.1 Resistive Tuning ... 122
4.7.2 Varactor Tuning .. 123
4.7.3 Tuning the Number of Stages 124
4.8 Comparison of Inverter-Based and Differential Rings 126
4.9 Inverter-Based Oscillators with Complementary or Quadrature Outputs .. 126
4.9.1 Coupled Oscillators .. 126
4.9.2 Phase Noise Considerations 128
4.9.3 Direct Quadrature Generation 129
4.9.4 Quadrature Generation by Interpolation 130
4.10 Ring Oscillators with LC Loads 134

5 LC Oscillator Design .. 138
5.1 Inductor Modeling ... 138
5.2 Phase Noise Analysis ... 143
5.2.1 A Simple Case .. 144
5.2.2 Cyclostationary Noise ... 146
5.2.3 Noise Injected by Cross-Coupled Pair 149
5.2.4 Phase Noise Calculation 153
5.3 Tail Noise .. 155
5.3.1 Tail Thermal Noise .. 155
8.3.4 Clock Feedthrough and Charge Injection .. 255
8.3.5 Other Charge Pump Nonidealities ... 255
8.4 Improved Charge Pumps .. 257
8.5 PLLs with Discrete VCO Tuning ... 259
8.6 Ripple Reduction by Sampling Filter ... 260
8.7 Loop Filter Leakage .. 260
8.8 Filter Capacitor Reduction .. 261
8.9 Trade-Off Between Bandwidth and Spur Level 262
8.10 Phase Noise in PLLs ... 263
 8.10.1 Shaping of Input Phase Noise .. 263
 8.10.2 Shaping of VCO Phase Noise .. 266
 8.10.3 Charge Pump Noise .. 269
 8.10.4 Loop Filter Noise ... 272
 8.10.5 Supply Noise .. 274

9 PLL Design Study .. 277
 9.1 Design Procedure ... 277
 9.2 PFD Design .. 278
 9.3 Charge Pump Design .. 278
 9.3.1 First CP Design .. 278
 9.3.2 Second CP Design ... 282
 9.3.3 Third CP Design .. 282
 9.3.4 Fourth CP Design .. 283
 9.3.5 PFD/CP Interface .. 283
 9.4 Behavioral Simulations of PLL ... 283
 9.4.1 Loop Simplification .. 283
 9.4.2 Loop Dynamics .. 286
 9.4.3 Effect of Ripple .. 287
 9.5 Simulation of the PLL Transfer Function 289
 9.5.1 One-Pole Approximation ... 289
 9.5.2 Use of Input FM Source .. 289
 9.5.3 Use of Random Phase Modulation 291
 9.6 Effect of VCO Phase Noise .. 293
 9.6.1 VCO Phase Noise Model .. 293
 9.6.2 VCO Phase Noise Suppression 293
 9.7 Loop Filter Noise .. 295
 9.8 Doubling the Reference Frequency .. 296
 9.8.1 Doubler Design .. 296
 9.8.2 Frequency Doubling Issues .. 296
 9.9 Feedback Divider Design .. 298
 9.9.1 Topology Selection .. 298
 9.9.2 Divider Circuit Design ... 299
 9.10 Use of Lock Detectors for Calibration .. 301
 9.11 Design Summary ... 303

10 Digital Phase-Locked Loops ... 305
 10.1 Basic Idea ... 305
 10.2 ADC Basics ... 306
 10.2.1 Quantization ... 306
 10.2.2 Flash ADC ... 307
10.2.3 Interpolation .. 308
10.3 Time-to-Digital Conversion 309
10.3.1 Basic TDC Topology .. 310
10.3.2 Effect of Quantization Noise 312
10.3.3 TDC Dynamic Range 314
10.3.4 TDC Imperfections .. 315
10.4 Transistor-Level TDC Design 316
10.5 Improved TDCs .. 319
10.5.1 Vernier TDC .. 319
10.5.2 Multi-Path TDCs .. 321
10.6 TDC/Oscillator Combinations 323
10.7 Digitally-Controlled Oscillators 326
10.7.1 Problem of Discrete Frequencies 326
10.7.2 DAC Principles ... 328
10.7.3 Matrix Architecture .. 331
10.7.4 Coarse/Fine DACs .. 333
10.7.5 DCO Topologies .. 333
10.8 Loop Dynamics .. 341
10.8.1 Digital Filter Implementation 341
10.8.2 Correspondence between Analog and Digital PLLs 342

11 Delay-Locked Loops .. 346
11.1 Basic Idea ... 346
11.2 Loop Dynamics .. 347
11.3 Choice of Number of Delay Stages 349
11.4 Effect of Nonidealities 349
11.4.1 PFD/CP Nonidealities 349
11.4.2 Supply Noise ... 350
11.4.3 Phase Noise ... 351
11.5 Generation of Multiple Phases 352
11.6 Frequency-Multiplying DLLs 354
11.6.1 Basic Topologies ... 354
11.6.2 Design Issues ... 357
11.6.3 Use of Frequency Multiplication in False Lock Detection 358
11.7 DLL/PLL Hybrids ... 358
11.8 Phase Interpolation .. 360
11.9 High-Speed PD Design 363
11.10 Duty Cycle Correction 364

12 RF Synthesis ... 368
12.1 RF Synthesis Requirements 368
12.2 Integer-N Synthesizers 370
12.3 Fractional-N Synthesizers 371
12.3.1 The Need for Modulus Randomization 373
12.3.2 Noise Shaping .. 376
12.3.3 Discrete-Time Model 379
12.3.4 $\Delta\Sigma$ Fractional-N Synthesizers 382
12.3.5 Higher-Order $\Delta\Sigma$ Modulators 384
12.4 Nonlinearities in Fractional-N Loops 392
12.4.1 Charge Pump Nonlinearity 393
12.4.2 Charge Pump Settling Behavior 395
12.5 Reduction of Quantization Noise 396
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.1 DAC Feedforward</td>
<td>396</td>
</tr>
<tr>
<td>12.5.2 Noise Cancellation by DTC</td>
<td>399</td>
</tr>
<tr>
<td>12.5.3 Reference Frequency Doubling</td>
<td>400</td>
</tr>
<tr>
<td>13 Clock and Data Recovery Fundamentals</td>
<td>404</td>
</tr>
<tr>
<td>13.1 General Considerations</td>
<td>404</td>
</tr>
<tr>
<td>13.2 Properties of Random Binary Data</td>
<td>406</td>
</tr>
<tr>
<td>13.2.1 Spectrum of NRZ data</td>
<td>406</td>
</tr>
<tr>
<td>13.3 Clock Recovery by Edge Detection</td>
<td>408</td>
</tr>
<tr>
<td>13.4 Clock Recovery by Phase-Locking</td>
<td>410</td>
</tr>
<tr>
<td>13.4.1 Bang-Bang Phase Detector</td>
<td>411</td>
</tr>
<tr>
<td>13.4.2 Alexander Phase Detector</td>
<td>416</td>
</tr>
<tr>
<td>13.4.3 Hogge Phase Detector</td>
<td>423</td>
</tr>
<tr>
<td>13.5 Problem of Data Swings</td>
<td>426</td>
</tr>
<tr>
<td>14 Advanced Clock and Data Recovery Principles</td>
<td>428</td>
</tr>
<tr>
<td>14.1 Half-Rate Phase Detectors</td>
<td>428</td>
</tr>
<tr>
<td>14.1.1 Half-Rate Bang-Bang PDs</td>
<td>428</td>
</tr>
<tr>
<td>14.1.2 Half-Rate Linear PDs</td>
<td>431</td>
</tr>
<tr>
<td>14.2 Oscillatorless CDR Architectures</td>
<td>434</td>
</tr>
<tr>
<td>14.2.1 DLL-Based CDR Circuits</td>
<td>434</td>
</tr>
<tr>
<td>14.2.2 PI-Based CDR Circuits</td>
<td>435</td>
</tr>
<tr>
<td>14.2.3 Digital CDR Circuits</td>
<td>437</td>
</tr>
<tr>
<td>14.3 Frequency Acquisition</td>
<td>443</td>
</tr>
<tr>
<td>14.4 Jitter Characteristics</td>
<td>444</td>
</tr>
<tr>
<td>14.4.1 Jitter Generation</td>
<td>445</td>
</tr>
<tr>
<td>14.4.2 Jitter Transfer</td>
<td>445</td>
</tr>
<tr>
<td>14.4.3 Jitter Tolerance</td>
<td>448</td>
</tr>
<tr>
<td>15 Frequency Dividers</td>
<td>453</td>
</tr>
<tr>
<td>15.1 General Considerations</td>
<td>453</td>
</tr>
<tr>
<td>15.2 Latch Design Styles</td>
<td>454</td>
</tr>
<tr>
<td>15.2.1 Static Latches</td>
<td>455</td>
</tr>
<tr>
<td>15.2.2 Dynamic Latches</td>
<td>459</td>
</tr>
<tr>
<td>15.3 Divide-by-2 Circuit Design</td>
<td>464</td>
</tr>
<tr>
<td>15.4 Dual-Modulus Prescalers</td>
<td>467</td>
</tr>
<tr>
<td>15.5 Divider Design for RF Synthesis</td>
<td>472</td>
</tr>
<tr>
<td>15.5.1 Pulse Swallow Divider</td>
<td>472</td>
</tr>
<tr>
<td>15.5.2 Vaucher Divider</td>
<td>474</td>
</tr>
<tr>
<td>15.6 Miller Divider</td>
<td>476</td>
</tr>
<tr>
<td>15.7 Injection-Locked Dividers</td>
<td>478</td>
</tr>
<tr>
<td>15.8 Fractional Dividers</td>
<td>480</td>
</tr>
<tr>
<td>15.9 Divider Delay and Phase Noise</td>
<td>482</td>
</tr>
<tr>
<td>Index</td>
<td>486</td>
</tr>
</tbody>
</table>
Preface

A quick search on Google brings up nearly two dozen books on PLLs. So why another one? This book addresses the need for a text that methodically teaches modern CMOS PLLs for a wide range of applications. The objective is to teach the reader how to approach PLLs from transistor-level design to architecture development.

Based on 25 years of teaching courses on the subject and the latest trends in industry, this book deals with oscillators, phase noise, analog phase-locked loops, digital phase-locked loops, RF synthesizers, delay-locked loops, clock and data recovery circuits, and frequency dividers. The objective is to reach a broad spectrum of readers while maintaining a cohesive flow.

As with my past writings, I have implemented a multitude of pedagogical tools to help the reader learn efficiently—and experience the pleasure of learning. One principle that I uphold in writing is to start with the simplest possible arrangement, teach how it works and what shortcomings it has, and then add components to it to improve its performance. This approach allows the reader to see how a basic architecture evolves to a complex system. After laying the theoretical foundation for each topic, I present a step-by-step design flow and proceed to design the circuit.

And not all design efforts are successful. The reader can clearly see how certain decisions lead to a dead end and how we revise these decisions to reach a new, more practical solution. This exploratory mentality not only makes the process of learning more exciting but also helps the reader see why each component is necessary, what criteria govern its choice, and what not to do.

A unique aspect of this book is its extensive use of simulations to teach design and investigate agreement between theory and practice. For each design, I use the theoretical basis to choose certain parameters and predict the performance, and then I simulate the circuit. If the simulation results do not agree with the predictions, I delve into the details and determine why. Another unique aspect of this book is that it leverages concepts from one field (e.g., wireless technology) to another (e.g., wireline communications) by bringing the vast knowledge in these fields under one roof.

A website for the book provides additional resources for readers and instructors, including Powerpoint slides and a solutions manual.

Behzad Razavi
September 2019
Acknowledgments

It gives me great pleasure to express my gratitude to the many people who have contributed to this book. First, an army of reviewers:

Morteza Alavi, Delft University of Technology
Tejasvi Anand, Oregon State University
Pietro Andreani, Lund University
Baktash Behmanesh, Lund University
Amir Bozorg, University College Dublin
Farhad Bozorgi, University of Pavia
Francesco Brandomisio, Infineon
Brian Buell, IDT
Wei Sung Chang, Mediatek
Chienwen Chen, Realtek
Nick Young Chen, University of Macau
Peng Chen, University College Dublin
Yung-Tai Chen, Realtek
Dmytro Cherniak, Infineon
Murat Demirkiran, Analog Devices
Jianglin Du, University College Dublin
Alper Eken, Analog Devices
Eythan Familiar, Maxlinear
Zhong Gao, University College Dublin
Werner Grollitsch, Infineon
Jane Gu, UC Davis
Ehsan Hadizadeh, University of British Columbia
Zhiquiang Hang, Samsung
Shi lei Hao, Qualcomm
Aravind Heragud, Semitech
Cheng Ru Hu, University of Southern California
Ali Homayoun, Movandi
Kenny Hsieh, TSMC
Chien Hsu, UC San Diego
Yizhe Hu, University College Dublin
Cheng-Chang Huang, National Taiwan University
Rulin Huang, UCLA
Zue Der Huang, Realtek
Jeongho Hwang, Seoul National University
Milad Kalantari, Hong Kong University of Science and Technology
Nader Kalantari, ArianRF
Sivash Kananian, Stanford University
Alireza Karimi, UC Irvine
Ting Kuei Kuan, TSMC
Tai Cheng Lee, National Taiwan University
Guansheng Li, Broadcom
Bang Liu, Tokyo Institute of Technology
Hanli Liu, Tokyo Institute of Technology
Lorenzo Lotti, UC Berkeley
Enrico Mammeli, ST Microelectronics
Abishek Manian, Texas Instruments
Dennis Andreotti Miceli, University College Dublin
Aravind Narayanan, Ericsson
Reza Nikandish, University College Dublin
Ali Nikoofard, UC San Diego
Minh Hieu Nguyen, University College Dublin
Viet Nguyen, University College Dublin
Fabio Padovan, Infineon
Kwanseo Park, Seoul National University
Fabio Quadrelli, Infineon
Ehsan Rahimi, University of Pavia
Wahid Rahman, Alphawave
Negar Reiskarimian, MIT
Sujiang Rong, TransaSemi
Jhoan Salinas, University of Toronto
Saurabh Saxena, IIT Madras
Mohamed Shehata, University College Dublin
Fei Song, Ubilinx
Mrunmay Talegaonkar, Inphi
Bortecene Terlemez, IDT
Howie Tu, Realtek
Eric Vandel, Semitech
Marco Vigilante, Qualcomm
Haisong Wang, Semitech
Zisong Wang, UC Irvine
My special thanks go to Pietro Andreani, who heroically reviewed almost the entire book. Grazie, Piero! In addition, Pavan Hanumolu, Long Kong, and Bogdan Staszewski have kindly answered my many questions and helped enrich the book.

I also wish to thank the staff at Cambridge University Press for their support during the production of the book, particularly, Elizabeth Horne, Charles Howell, and Beverley Lawrence.

My wife, Angelina, typed the entire book. I am very grateful to her.

Behzad Razavi
About the Author

Behzad Razavi received the BSEE degree from Sharif University of Technology in 1985 and the MSEE and PhDEE degrees from Stanford University in 1988 and 1992, respectively. He was with AT&T Bell Laboratories and Hewlett-Packard Laboratories until 1996. Since 1996, he has been Associate Professor and subsequently Professor of electrical engineering at University of California, Los Angeles. His current research includes wireless and wireline transceivers and data converters.

Professor Razavi received the Beatrice Winner Award for Editorial Excellence at the 1994 ISSCC, the best paper award at the 1994 European Solid-State Circuits Conference, the best panel award at the 1995 and 1997 ISSCC, the TRW Innovative Teaching Award in 1997, the best paper award at the IEEE Custom Integrated Circuits Conference in 1998, and the McGraw-Hill First Edition of the Year Award in 2001. He was the co-recipient of both the Jack Kilby Outstanding Student Paper Award and the Beatrice Winner Award for Editorial Excellence at the 2001 ISSCC. He received the Lockheed Martin Excellence in Teaching Award in 2006, the UCLA Faculty Senate Teaching Award in 2007, and the CICC Best Invited Paper Award in 2009 and in 2012. He was also recognized as one of the top 10 authors in the 50-year history of ISSCC. He received the 2012 Donald Pederson Award in Solid-State Circuits. He was also the recipient of the American Society for Engineering Education PSW Teaching Award in 2014. Professor Razavi is a member of the US National Academy of Engineering. He received the 2017 IEEE CAS John Choma Education Award.