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Oscillator Fundamentals

At the heart of every phase-locked loop lies an oscillator, playing a critical role in the performance that can

be achieved. For this reason, we devote five chapters of this book to oscillator design. This chapter aims

to build a solid foundation for general oscillator concepts before we delve into high-performance design in

Chapters 3-6. We begin with basic concepts and discover how a negative-feedback system can oscillate. We

then extend our view to ring and LC oscillators.

1.1 Basic Concepts

If we release a pendulum from an angle, it swings for a while and gradually comes to a stop. The “oscillation”

begins because the original potential energy turns into kinetic energy as the pendulum reaches its vertical

position (Fig. 1.1), allowing it to continue its trajectory to the other extreme angle (position 3), at which the

Figure 1.1 A pendulum acting as an oscillatory system.
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energy is again in potential form. The oscillation stops because the friction at the hinge and the air resistance

convert some of the pendulum’s energy to heat in every oscillation period.

In order to sustain the oscillation, we can provide external energy to the pendulum so as to compensate

for the loss caused by the hinge and the air. For example, if we give the pendulum a gentle push each time

it returns to position 1, it will continue to swing. If the push is too weak, we undercompensate, allowing the

oscillation to die; if the push is too strong, we overcompensate, forcing the swing amplitude to increase from

one cycle to the next. We also note that the period of oscillation is independent of the amplitude.1

The above mechanical example points to several ingredients of an oscillatory system: (1) an initial “im-

balance,” i.e., an initial condition or packet of energy (provided by bringing the pendulum to position 1);

(2) a tendency for one type of energy to turn into another and vice versa; and (3) a sustaining mechanism

that replenishes the energy lost due to inevitable imperfections. Not all oscillator circuits contain all of these

ingredients, but it is helpful to bear these concepts in mind.

1This is true only if the pendulum oscillates with a small amplitude.
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2 1 Oscillator Fundamentals

Example 1.1

Repeat the foregoing experiments with a “lossless” pendulum.

Solution

If released from an angle, such a pendulum oscillates indefinitely. Now, if we give a push each time the

pendulum reaches the left end, then the swing keeps increasing due to the additional energy that we inject

into the system in each cycle. Note that this indefinite growth does not occur if we give a push at a frequency

other than the pendulum’s natural oscillation frequency.

The above example serves as a guide in our analysis: if a system has a tendency to oscillate at a frequency

ω0, then it creates a growing oscillatory output in response to an external injection at a frequency ω0. From

another perspective, such a system indefinitely amplifies a periodic input at this frequency.

1.2 Oscillatory Feedback System

We know from basic analog design that a negative-feedback system can become unstable. We exploit this

property to construct oscillators.

Let us first study oscillation in the frequency domain. Consider the feedback system shown in Fig. 1.2(a),

where the negative sign at one adder input signifies negative feedback at low frequencies. Depicted in Fig.

Figure 1.2 (a) Simple feedback system, (b) realization using an op amp, (c) open-loop frequency response showing zero

phase margin, (d) signal inversion at ω0, and (e) propagation of a sinusoid at ω0 around the loop.
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1.2(b) is an implementation example, which, in response to a low-frequency sinusoidal input, simply acts as

a unity-gain buffer. Note that the op amp exhibits negligible phase shift at low frequencies.
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1.2 Oscillatory Feedback System 3

How can the arrangements in Figs. 1.2(a) or (b) oscillate? Writing the closed-loop transfer function of the

former as

Y (s)

X(s)
=

H(s)

1 + H(s)
, (1.1)

we observe that the denominator falls to zero if H(s) = −1 for some value of s. If X(s) is a sinusoid,
then s = jω0 and we must have H(jω0) = −1. The open-loop frequency response thus exhibits a unity
magnitude and a 180◦ phase shift at ω0 [Fig. 1.2(c)]. We note that (Y/X)(jω0) → ±∞, concluding that
the system provides an infinite gain for such a sinusoid. As surmised in the previous section, this scenario

suggests an oscillatory loop.

Let us examine the conditionH(jω0) = −1 more closely: this equality means thatH(s) itself inverts the
input at this frequency [Fig. 1.2(d)]. That is, H(s) has so much phase shift (or delay) at ω0 that the overall

feedback becomes positive. This can be seen by setting the main input, X , to zero, breaking the loop, and
applying a stimulus at this frequency [Fig. 1.2(e)], and following it around the loop. The returned signal is

in phase with the test voltage, Vt. We say the loop contains a 180◦ phase shift due to the nominally negative
feedback and another frequency-dependent 180◦ phase shift arising fromH(s). These two phase shifts must
not be confused with each other.

The total phase shift of 360◦ at ω0 implies that the signal returns to enhance itself as it circulates around

the loop. This phenomenon results in amplitude growth because the returned signal is at least as large as the

starting signal, i.e., because |H(jω0)| = 1. We therefore summarize the conditions for oscillation as

|H(jω0)| = 1 (1.2)

� H(jω0) = 180◦, (1.3)

which are called “Barkhausen’s” criteria. We also call H(jω0) = −1 the “startup condition.” Note that
H(jω) generally has a complex value at ω �= ω0 and becomes real only at ω0.

The oscillation buildup can also be studied in the time domain. We begin with the arrangement shown in

Fig. 1.3(a) and note that, with H(jω0) = −1, the output is equal to the input but shifted by 180◦. If the loop

Figure 1.3 Growth of an input sinusoid around the loop with time.
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is closed [Fig. 1.3(b)], the output is subtracted from the input, yielding a larger swing at A. This signal is
again inverted and subtracted from the input, leading to indefinite grow of the amplitude [Fig. 1.3(c)].

In summary, a negative-feedback system can generate a growing periodic output in response to a sinusoidal

input if its loop gain reaches −1 at a finite frequency, ω0. But does such a system oscillate if we apply no

input? Yes, the wideband noise of the devices within the loop exhibits a finite energy in the vicinity of ω0,

producing a small component that circulates around the loop and causes oscillation. For example, as shown

in Fig. 1.4, a noise source, Vn, at the input ofH(s) yields an output given by

Y = Vn

H(s)

1 + H(s)
, (1.4)
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4 1 Oscillator Fundamentals

Figure 1.4 Effect of noise injected into a closed-loop system.
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thereby experiencing infinite gain at s = jω0. That is, even though Vn is infinitesimally small at ω0, Y can

assume a finite swing.

The foregoing analysis suggests that, to test for oscillation, we can inject a sinusoidal input at any point

and observe the response at any point so long as both points are within the loop.2 In Fig. 1.4, for example,

Vn can be placed at the output of H(s). Similarly, the point of observation can be P rather than Y . By the
same token, the injection and observation points can be the same, pointing to another method of finding the

oscillation conditions that is suited to some circuits. We inject a current at ω0 into a node within the loop and

examine the voltage at that node, i.e., we compute the impedance. If the voltage and hence the impedance go

to infinity at ω0, the circuit can oscillate. Figure 1.5 depicts the concept. We return to this point in Section

1.5.3.

Figure 1.5 Infinite port impedance in an oscillatory circuit.
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1.3 A Deeper Understanding

Analysis Methods In the analysis of oscillators, we first wish to determine how the devices and the bias

conditions must be chosen so as to guarantee oscillation. Our previous studies point to three methods using

the small-signal model of the circuit:

1. Open the loop and enforce the startup condition,H(jω0) = −1, thus obtaining the circuit design require-
ments.

2. In analogy with the ideal pendulum example, release the closed-loop circuit with an initial condition and

determine the design parameters for oscillation. The initial condition can be created by an impulse of

current injected into a node within the loop or simply by assuming a finite voltage on a capacitor.

3. Inject a sinusoidal current into a node in the closed-loop circuit and compute the conditions necessary for

the impedance seen at this node to go to infinity. This method is not universal but still proves helpful.

A given oscillator topology may lend itself more easily to one method than to another. The following

examples illustrate these thoughts.

2An injection point is considered to be within the loop if the transfer function from that point to the output is not zero.
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1.3 A Deeper Understanding 5

Example 1.2

A common-source (CS) stage is placed in a feedback loop as shown in Fig. 1.6(a). Can the circuit oscillate?

Figure 1.6 (a) Feedback around a CS stage, and (b) equivalent circuit.
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Neglect other capacitances and channel-length modulation.

Solution

To retain consistency with the block diagram of Fig. 1.2(a) and noting that the CS stage inverts at low fre-

quencies, we denote the circuit in the dashed box by −H(s) (why?). Applying the first analysis method, we
write

H(s) = gm

(

RD|| 1

CLs

)

(1.5)

= gm

RD

RDCLs + 1
. (1.6)

Owing to its single pole,H(s) can contribute a maximum phase of −90◦ (at infinite frequency), disallowing
H(jω0) = −1. Thus, the loop cannot oscillate.
Let us try the second method by applying an initial condition to CL. Since M1 operates as a diode-

connected device, the small-signal model reduces to that shown in Fig. 1.2(b), revealing that CL simply

discharges through RD||g−1
m and no oscillation occurs. Similarly, the third method gives an impedance of

RD||g−1
m ||(CLs)−1 seen at the output node, indicating that it cannot go to infinity at any s = jω.

Example 1.3

The common-source stage studied in the previous example does not exhibit enough phase shift to allow

oscillation. It is possible to insert an additional delay in the loop in the form of a delay line as shown in

Fig. 1.7(a). Here, a voltage change at the drain takes ∆T seconds to reach the gate. Determine the startup

condition and the frequency of oscillation. Neglect all capacitances and channel-length modulation.

Solution

Using our first analysis method, we break the loop as illustrated in Fig. 1.7(b) and write

H(s) = −Vout

Vin

(1.7)

= gmRDe−s∆T . (1.8)

(The transfer function of the ideal delay line is equal to e−s∆T .) We seek H(jω0) = −1, i.e.,
gmRD exp(−jω0∆T ) = −1. It follows that, if |H(jω0)| = 1 and � H(jω0) = 180◦, then

gmRD = 1 (1.9)
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6 1 Oscillator Fundamentals

Figure 1.7 (a) CS stage with a feedback delay line, (b) open-loop system, (c) computation of impedance at one node,

and (d) illustration of infinite impedance at ω0.
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ω0∆T = π. (1.10)

The first equation is the startup condition, and the second can be expressed as

f0 =
1

2∆T
, (1.11)

where f0 = ω0/(2π). The circuit therefore oscillates with a period equal to 2∆T . Note that the delay line
introduces a phase shift of 180◦ at ω0.

We can apply the third method by computing the closed-loop impedance seen at, for example, the output

node. From the arrangement depicted in Fig. 1.7(c), we have VG = VX exp(−s∆T ) and hence a small-signal
drain current of gmVX exp(−s∆T ). A KCL at the output node gives

VX

RD

+ gmVXe−s∆T = IX (1.12)

and hence

VX

IX

=
RD

1 + gmRDe−s∆T
. (1.13)

We observe that if the startup condition, gmRD = 1 is fulfilled, then the denominator goes to zero for
s = jω0 = j2π/(2∆T ). The reader is encouraged to apply the second analysis method as well.
To gain more insight, let us compute the output impedance of the circuit while excludingRD. If RD = ∞

in Eq. (1.13), we have

VX

IX

=
1

gme−s∆T
, (1.14)

which reduces to VX/IX = −1/gm at s = jω0. Interestingly, the loop comprising M1 and ∆T presents a

negative resistance, which cancels the “loss” due to RD if gmRD = 1 [Fig. 1.7(d)].

Oscillation Growth It is important to distinguish between two cases when H(jω0) = −1 and the loop is
stimulated. In response to an initial condition (or an impulse), the circuit oscillates with a constant amplitude

[Fig. 1.8(a)]—as did the ideal pendulum in the previous section. On the other hand, with a sinusoidal exci-

tation at ω0, the oscillation amplitude continues to grow [Fig. 1.8(b)] (unless some other mechanism, e.g., a

nonlinearity, stops the growth).
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1.3 A Deeper Understanding 7

Figure 1.8 Response of an oscillatory system to (a) an impulse, and (b) a sinusoid at ω0.
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Startup Condition Revisited The conditionH(jω0) = −1 places the feedback loop at the edge of oscilla-
tion, failing to hold if process, voltage, and temperature (PVT) variations cause a slight drop in the loop gain.

Moreover, this condition prohibits large-signal oscillations: if the oscillation amplitude grows to the extent

that the circuit becomes nonlinear, the loop gain may drop below unity, violating the startup condition. The

following example illustrates this point.

Example 1.4

Figure 1.9(a) shows a differential realization of the oscillator studied in Example 1.3. If gmRD = 1, explain

Figure 1.9 Differential pair with feedback delay lines.
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why the oscillation amplitude remains small.

Solution

The circuit operates such that VX and VY swing differentially and so do VA and VB . If VA and VB have

small swings, the differential pair exhibits a unity voltage gain, sustaining the oscillation. The circuit cannot

operate with large swings because the gain would then drop below unity at the peaks of VA and VB .

For the two reasons mentioned above, namely, PVT variations and gain drop due to nonlinearity, oscillators

are typically designed with |H(jω0| > 1 [and � H(jω0) = 180◦].

Example 1.5

The differential oscillator of Fig. 1.9 is redesigned for voltage swings that are large enough to ensure ISS is

entirely steered to the left or to the right. Determine the small-signal loop gain.
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8 1 Oscillator Fundamentals

Solution

Suppose the four nodes carry a peak-to-peak swing of V0. For M1 or M2 to carry all of ISS , we have

|VA −VB|max = V0 =
√

2(VGS −VTH) [1], where VGS −VTH denotes the transistors’ overdrive voltage in

equilibrium (when VA = VB). With complete switching of the differential pair, we also have |VX−VY |max =
ISSRD = |VA − VB|max. It follows that

√
2(VGS − VTH) = ISSRD (1.15)

and hence

gmRD =
√

2 (1.16)

because gm = ISS/(VGS − VTH) in equilibrium (where ID1 = ID2 = ISS/2).

With |H(jω0)| > 1 and � H(jω0) = 180◦ [Fig. 1.10(a)], we face an interesting puzzle. If, for example,

Figure 1.10 (a) Open-loop response with gain greater than unity at ω0, and (b) impulse response of closed-loop system.
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H(jω0) = −2, then the closed-loop gain is equal to H(jω0)/[1 + H(jω0)] = +2 and not infinity! How
then does the circuit oscillate? This result shows that the loop does not oscillate at ω0. Rather, the circuit may

find another value of s such that H(s)/[1 + H(s)] → ∞, i.e., H(s1) = −1, where s1 has a complex value,

σ1 + jω1, and σ1 > 0. We study this case in Appendix I but should mention here that such a value of s leads
to a growing sinusoid even with an impulse input [Fig. 1.10(b)], a point of contrast to the situation depicted in

Fig. 1.8(a). [As explained in Appendix I, the condition |H(jω0)| > 1 does not always guarantee oscillation,
but suffices for typical oscillators.]

In the case of |H(jω0)| > 1 and � H(jω0) = 180◦, our node impedance test must also be revisited.
For example, if gmRD > 1 in Eq. (1.13), then |VX/IX | becomes real and negative at s = jω0 (why?). In

particular, the output resistance seen in Fig. 1.7(d) is now “stronger” than −RD, leaving a residual negative

component after canceling RD. This component thus allows the oscillation amplitude to grow.

Positive Feedback at dc We have seen that positive feedback at a finite frequency,ω0, can cause oscillation.

But what happens if we have positive feedback at dc (low frequencies) as well? For example, if we cascade

two CS stages as shown in Fig. 1.11 to obtain a greater phase shift, the feedback becomes positive at dc. If

the low-frequency loop gain is greater than unity, this circuit latches up. This can be seen by assuming a small

upward perturbation in VX , which leads to a greater, downward change in VY . This change in turn causes

even a larger upward change in VX , etc. We say the circuit “regenerates” until VX reaches VDD and VY falls

to a low value, turningM1 off. This circuit is in fact used as a memory cell.
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1.4 Basic Ring Oscillators 9

Figure 1.11 Two CS stages in a feedback loop.
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To avoid latch-up, we design oscillators such that, at dc, the feedback is negative or, if it is positive, the

loop gain is well below unity.

Oscillator Topologies Numerous oscillator topologies have been introduced over the years. Examples in-

clude “phase-shift,” “Wien bridge,” “relaxation,” “multivibrator,” “ring,” and LC oscillators. In this book, we

deal with primarily the last two as they are most commonly used in integrated circuit design.

1.4 Basic Ring Oscillators

Ring oscillators are popular in today’s phase-locked system for their design flexibility and wide frequency

tuning range. This section builds the foundation for these oscillators and Chapters 3 and 4 introduce advanced

ring concepts.

We have seen that a single common-source stage does not provide sufficient phase shift to allow
� H(jω0) = −180◦. Even a loop employing two CS stages fails to oscillate because � H(jω) reaches−180◦

only at ω = ∞. We therefore surmise that a three-stage “ring” can satisfy both � H(jω0) = −180◦ and
|H(jω0)| = 1. Depicted in Fig. 1.12(a), this simple ring oscillator has negative feedback at low frequencies

Figure 1.12 (a) Three CS stages in a feedback loop, (b) loop transmission, and (c) node waveforms.
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and can be analyzed by assuming identical stages. The circuit in the dashed box is called −H(s) to comply
with the negative-feedback system shown in Fig. 1.2(a). We write

−H(s) =

[

−gm

(

RD|| 1

CLs

)]3

, (1.17)
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10 1 Oscillator Fundamentals

where channel-length modulation and other capacitances are neglected. It follows that

H(jω) =
g3

mR3
D

(RDCLjω + 1)3
. (1.18)

Figure 1.12(b) sketches the magnitude and phase behavior. For |H(jω0)| = 1, we have

(

gmRD
√

R2
D

C2
L
ω2

0
+ 1

)3

= 1 (1.19)

and hence

ω0 =

√

g2
mR2

D
− 1

RDCL

. (1.20)

Also, � H(jω0) = −180◦ yields

tan−1(RDCLω0) = 60◦ (1.21)

and

ω0 =

√
3

RDCL

. (1.22)

Interestingly, (1.20) and (1.22) give

gmRD = 2. (1.23)

In other words, each stage must provide a low-frequency voltage gain of 2 to guarantee oscillation.

A few properties of the above oscillator are worth noting. First, at ω0, each stage exhibits a phase shift of

60◦ arising from its output pole plus 180◦ due to the low-frequency inversion of a CS amplifier. Thus, the
waveforms atX , Y , and Z in Fig. 1.12(a) have a phase separation of 240◦ (= −120◦) [Fig. 1.12(c)]. Second,
CL can represent all of the transistor capacitances with reasonable accuracy. For example, at Y , CL includes

CGS2, CDB1, and the Miller effect of CGD2. Since the waveforms in Fig. 1.12(c) suggest equal swings at the

three nodes, we can assume a large-signal voltage gain of −1 from Y to Z and write the Miller capacitance

as Cmill = [1 − (−1)]CGD2 = 2CGD2.
3

Example 1.6

A ring oscillator similar to Fig. 1.12(a) incorporates N identical CS stages, where N is an odd number.

Determine the startup condition and the frequency of oscillation.

Solution

With an odd number of stages, the loop provides negative feedback at low frequencies, necessitating a

frequency-dependent phase shift of−180◦/N per stage for oscillation. That is,

−180◦

N
= − tan−1(RDCLω0) (1.24)

and hence

ω0 =
1

RDCL

tan
180◦

N
. (1.25)

3This is an approximation because the phase shift from Y to Z is equal to −120
◦ rather than −180

◦ .
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