Beyond the Worst-Case Analysis of Algorithms

There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the application. However, typical algorithms courses rely almost entirely on a single analysis framework, that of worstcase analysis, wherein an algorithm is assessed by its worst performance on any input of a given size.

The purpose of this book is to popularize several alternatives to worst-case analysis and their most notable algorithmic applications, from clustering to linear programming to neural network training. Forty leading researchers have contributed introductions to different facets of this field, emphasizing the most important models and results, many of which can be taught in lectures to beginning graduate students in theoretical computer science and machine learning.

Tim Roughgarden is a professor of computer science at Columbia University. For his research, he has been awarded the ACM Grace Murray Hopper Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), the Kalai Prize in Computer Science and Game Theory, the Social Choice and Welfare Prize, the Mathematical Programming Society's Tucker Prize, and the EATCS-SIGACT Gödel Prize. He was an invited speaker at the 2006 International Congress of Mathematicians, the Shapley Lecturer at the 2008 World Congress of the Game Theory Society, and a Guggenheim Fellow in 2017. His other books include *Twenty Lectures on Algorithmic Game Theory* (2016) and the *Algorithms Illuminated* book series (2017–2020).

Beyond the Worst-Case Analysis of Algorithms

Edited by

Tim Roughgarden

Columbia University, New York

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108494311 DOI: 10.1017/9781108637435

© Cambridge University Press 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49431-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface List of Contributors		page xiii xv	
1	Intr	oduction	1
	Tim	Roughgarden	
	1.1	The Worst-Case Analysis of Algorithms	1
	1.2	Famous Failures and the Need for Alternatives	3
	1.3	Example: Parameterized Bounds in Online Paging	8
	1.4	Overview of the Book	12
	1.5	Notes	20
		PART ONE REFINEMENTS OF WORST-CASE ANALYSIS	
2	Para	ameterized Algorithms	27
	Fedo	r V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi	
	2.1	Introduction	27
	2.2	Randomization	31
	2.3	Structural Parameterizations	34
	2.4	Kernelization	35
	2.5	Hardness and Optimality	39
	2.6	Outlook: New Paradigms and Application Domains	42
	2.7	The Big Picture	46
	2.8	Notes	47
3	Fron	n Adaptive Analysis to Instance Optimality	52
	31	Case Study 1: Maxima Sets	52
	3.1	Case Study 7: Instance-Ontimal Aggregation Algorithms	52 60
	3.2	Survey of Additional Results and Techniques	64
	34	Discussion	65
	35	Selected Open Problems	66
	3.5	Key Takeaways	67
	3.7	Notes	68

v

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

CONTENTS

4	Reso Tim	ource Augmentation	72
	4.1	Online Paging Revisited	72
	4.2	Discussion	75
	4.3	Selfish Routing	77
	4.4	Speed Scaling in Scheduling	81
	4.5	Loosely Competitive Algorithms	86
	4.6	Notes	89
		PART TWO DETERMINISTIC MODELS OF DATA	
5	Pert	urbation Resilience	95
	Kons	tantin Makarychev and Yury Makarychev	
	5.1	Introduction	95
	5.2	Combinatorial Optimization Problems	98
	5.3	Designing Certified Algorithms	101
	5.4	Examples of Certified Algorithms	106
	5.5	Perturbation-Resilient Clustering Problems	108
	5.6	Algorithm for 2-Perturbation-Resilient Instances	111
	5.7	$(3 + \varepsilon)$ -Certified Local Search Algorithm for k-Medians	113
	5.8	Notes	115
6	Арр	roximation Stability and Proxy Objectives	120
	Avrir	n Blum	
	6.1	Introduction and Motivation	120
	6.2	Definitions and Discussion	121
	6.3	The k-Median Problem	125
	6.4	k-Means, Min-Sum, and Other Clustering Objectives	132
	6.5	Clustering Applications	133
	6.6	Nash Equilibria	134
	6.7	The Big Picture	135
	6.8	Open Questions	136
	6.9	Relaxations	137
	6.10	Notes	137
7	Spa	rse Recovery	140
	Eric	Price	
	7.1	Sparse Recovery	140
	7.2	A Simple Insertion-Only Streaming Algorithm	142
	7.3	Handling Deletions: Linear Sketching Algorithms	143
	7.4	Uniform Algorithms	148
	7.5	Lower Bound	154
	7.6	Different Measurement Models	155
	7.7	Matrix Recovery	158
	7.8	Notes	160

vi

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

CONTENTS

	TAKI IIIKEE SEMIKANDOM MODELS	
8	Distributional Analysis	167
	Tim Roughgarden	
	8.1 Introduction	167
	8.2 Average-Case Justifications of Classical Algorithms	171
	8.3 Good-on-Average Algorithms for Euclidean Problems	175
	8.4 Random Graphs and Planted Models	179
	8.5 Robust Distributional Analysis	183
	8.6 Notes	184
9	Introduction to Semirandom Models	189
	Uriel Feige	
	9.1 Introduction	189
	9.2 Why Study Semirandom Models?	192
	9.3 Some Representative Work	196
	9.4 Open Problems	209
10	Semirandom Stochastic Block Models	212
	Ankur Moitra	
	10.1 Introduction	212
	10.2 Recovery via Semidefinite Programming	215
	10.3 Robustness Against a Monotone Adversary	218
	10.4 Information Theoretic Limits of Exact Recovery	219
	10.5 Partial Recovery and Belief Propagation	221
	10.6 Random versus Semirandom Separations	223
	10.7 Above Average-Case Analysis	226
	10.8 Semirandom Mixture Models	230
11	Random-Order Models	234
	Anupam Gunta and Sahil Sinola	
	11.1 Motivation: Picking a Large Element	234
	11.2 The Secretary Problem	237
	11.3 Multiple-Secretary and Other Maximization Problems	238
	11.4 Minimization Problems	247
	11.5 Related Models and Extensions	250
	11.6 Notes	250
12	Self-Improving Algorithms	259
	C. Seshadhri	209
	12.1 Introduction	259
	12.2 Information Theory Basics	263
	12.3 The Self-Improving Sorter	266
	12.4 Self-Improving Algorithms for 2D Maxima	200
	12.5 More Self-Improving Algorithms	272
	12.6 Critique of the Self-Improving Model	278
		2/0

PART THREE SEMIRANDOM MODELS

vii

_

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

CONTENTS

PART FOUR SMOOTHED ANALYSIS

13	Smoothed Analysis of Local Search	285
	Bodo Manthey	
	13.1 Introduction	285
	13.2 Smoothed Analysis of the Running Time	286
	13.3 Smoothed Analysis of the Approximation Ratio	301
	13.4 Discussion and Open Problems	304
	13.5 Notes	305
14	Smoothed Analysis of the Simplex Method	309
	Daniel Dadush and Sophie Huiberts	
	14.1 Introduction	309
	14.2 The Shadow Vertex Simplex Method	310
	14.3 The Successive Shortest Path Algorithm	315
	14.4 LPs with Gaussian Constraints	319
	14.5 Discussion	329
	14.6 Notes	330
15	Smoothed Analysis of Pareto Curves in Multiobjective Optimization	334
	Heiko Röglin	
	15.1 Algorithms for Computing Pareto Curves	334
	15.2 Number of Pareto-optimal Solutions	342
	15.3 Smoothed Complexity of Binary Optimization Problems	352
	15.4 Conclusions	354
	15.5 Notes	355
	PART FIVE APPLICATIONS IN MACHINE LEARNING	

PART FIVE APPLICATIONS IN MACHINE LEARNING AND STATISTICS

16	Noise in Classification	361
	Maria-Florina Balcan and Nika Haghtalab	
	16.1 Introduction	361
	16.2 Model	362
	16.3 The Best Case and the Worst Case	363
	16.4 Benefits of Assumptions on the Marginal Distribution	365
	16.5 Benefits of Assumptions on the Noise	374
	16.6 Final Remarks and Current Research Directions	378
17	Robust High-Dimensional Statistics	382
	Ilias Diakonikolas and Daniel M. Kane	
	17.1 Introduction	382
	17.2 Robust Mean Estimation	384
	17.3 Beyond Robust Mean Estimation	396
	17.4 Notes	399

viii

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

CONTENTS

18	Nearest Neighbor Classification and Search Sanjoy Dasgupta and Samory Kpotufe	403
	18.1 Introduction	403
	18.2 The Algorithmic Problem of Nearest Neighbor Search	403
	18.3 Statistical Complexity of <i>k</i> -Nearest Neighbor Classification	411
	18.4 Notes	419
19	Efficient Tensor Decompositions	424
	Aravindan Vijayaraghavan	
	19.1 Introduction to Tensors	424
	19.2 Applications to Learning Latent Variable Models	426
	19.3 Efficient Algorithms in the Full-Rank Setting	430
	19.4 Smoothed Analysis and the Overcomplete Setting	433
	19.5 Other Algorithms for Tensor Decompositions	440
	19.6 Discussion and Open Questions	441
20	Topic Models and Nonnegative Matrix Factorization	445
	20.1 Introduction	115
	20.1 Inforduction 20.2 Nonpagative Matrix Factorization	443
	20.2 Nonnegative Matrix Factorization	440
	20.5 Topic Models 20.4 Enilogue: Word Embeddings and Payond	434
	20.4 Ephogue: word Embeddings and Beyond	401
21	Why Do Local Methods Solve Nonconvex Problems?	465
	Tengyu Ma	165
	21.1 Introduction	465
	21.2 Analysis Technique: Characterization of the Landscape	466
	21.3 Generalized Linear Models	468
	21.4 Matrix Factorization Problems	4/1
	21.5 Landscape of Tensor Decomposition	4/6
	21.6 Survey and Outlook: Optimization of Neural Networks	4/8
	21.7 Notes	482
22	Generalization in Overparameterized Models	486
	Moritz Hardt	10.5
	22.1 Background and Motivation	486
	22.2 Tools to Reason About Generalization	488
	22.3 Overparameterization: Empirical Phenomena	493
	22.4 Generalization Bounds for Overparameterized Models	497
	22.5 Empirical Checks and Holdout Estimates	500
	22.6 Looking Ahead	502
	22.7 Notes	502

ix

CONTENTS

23	Instance Optimal Distribution Testing and Learning Gregory Valiant and Paul Valiant	506
	23.1 Testing and Learning Discrete Distributions	506
	23.2 Instance Optimal Distribution Learning	507
	23.3 Identity Testing	516
	23.4 Digression: An Automatic Inequality Prover	519
	23.5 Beyond Worst-Case Analysis for Other Testing Problems	522
	23.6 Notes	523
	PART SIX FURTHER APPLICATIONS	
24	Beyond Competitive Analysis	529
	Anna R. Karlin and Elias Koutsoupias	
	24.1 Introduction	529
	24.2 The Access Graph Model	530
	24.3 The Diffuse Adversary Model	534
	24.4 Stochastic Models	537
	24.5 Direct Comparison of Online Algorithms	540
	24.6 Where Do We Go from Here?	541
	24.7 Notes	542
25	On the Unreasonable Effectiveness of SAT Solvers	547
	Vijay Ganesh and Moshe Y. Vardi	
	25.1 Introduction: The Boolean SAT Problem and Solvers	547
	25.2 Conflict-Driven Clause Learning SAT Solvers	550
	25.3 Proof Complexity of SAT Solvers	554
	25.4 Proof Search, Automatizability, and CDCL SAT Solvers	557
	25.5 Parameteric Understanding of Boolean Formulas	558
	25.6 Proof Complexity, Machine Learning, and Solver Design	562
	25.7 Conclusions and Future Directions	563
26	When Simple Hash Functions Suffice	567
	Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan	
	26.1 Introduction	567
	26.2 Preliminaries	571
	26.3 Hashing Block Sources	575
	26.4 Application: Chained Hashing	576
	26.5 Optimizing Block Source Extraction	577
	26.6 Application: Linear Probing	578
	26.7 Other Applications	580
	26.8 Notes	581
27	Prior-Independent Auctions	586
	Inbal Talgam-Cohen	
	27.1 Introduction	586
	27.2 A Crash Course in Revenue-Maximizing Auctions	587

Х

_

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

CONTENTS

	27.3 Defining Prior-Independence	591
	27.4 Sample-Based Approach: Single Item	593
	27.5 Competition-Based Approach: Multiple Items	598
	27.6 Summary	602
	27.7 Notes	603
28	Distribution-Free Models of Social Networks	606
20	Tim Roughgarden and C. Seshadhri	000
	28 1 Introduction	606
	28.2 Cliques of <i>c</i> -Closed Graphs	607
	28.3 The Structure of Triangle-Dense Graphs	612
	28.4 Power-I aw Bounded Networks	615
	28.5 The BCT Model	619
	28.6 Discussion	621
	28.7 Notes	623
29	Data-Driven Algorithm Design	626
	Maria-Florina Balcan	
	29.1 Motivation and Context	626
	29.2 Data-Driven Algorithm Design via Statistical Learning	628
	29.3 Data-Driven Algorithm Design via Online Learning	639
	29.4 Summary and Discussion	644
30	Algorithms with Predictions	646
	Michael Mitzenmacher and Sergei Vassilvitskii	
	30.1 Introduction	646
	30.2 Counting Sketches	649
	30.3 Learned Bloom Filters	650
	30.4 Caching with Predictions	652
	30.5 Scheduling with Predictions	655
	30.6 Notes	660
Ina	lex	663

xi

Preface

There are no silver bullets in algorithm design – no one algorithmic idea is powerful and flexible enough to solve every computational problem of interest. The emphasis of an undergraduate algorithms course is accordingly on the next-best thing: a small number of general algorithm design paradigms (such as dynamic programming, divide-and-conquer, and greedy algorithms), each applicable to a range of problems that span multiple application domains.

Nor are there silver bullets in algorithm *analysis*, as the most enlightening method for analyzing an algorithm often depends on the details of the problem and motivating application. However, the focus of a typical algorithms course rests almost entirely on a single analysis framework, that of worst-case analysis, wherein an algorithm is assessed by its worst performance on any input of a given size. The goal of this book is to redress the imbalance and popularize several alternatives to worst-case analysis, developed largely in the theoretical computer science literature over the past 20 years, and their most notable algorithmic applications. Forty leading researchers have contributed introductions to different facets of this field, and the introductory Chapter 1 includes a chapter-by-chapter summary of the book's contents.

This book's roots lie in a graduate course that I developed and taught several times at Stanford University.¹ While the project has expanded in scope far beyond what can be taught in a one-term (or even one-year) course, subsets of the book can form the basis of a wide variety of graduate courses. Authors were requested to avoid comprehensive surveys and focus instead on a small number of key models and results that could be taught in lectures to second-year graduate students in theoretical computer science and theoretical machine learning. Most of the chapters conclude with open research directions as well as exercises suitable for classroom use. A free electronic copy of this book is available from the URL https://www.cambridge.org/9781108494311#resources (with the password 'BWCA_CUP').

Producing a collection of this size is impossible without the hard work of many people. First and foremost, I thank the authors for their dedication and timeliness in writing their own chapters and for providing feedback on preliminary drafts of other chapters. I thank Avrim Blum, Moses Charikar, Lauren Cowles, Anupam Gupta,

xiii

¹ Lecture notes and videos from this course, covering several of the topics in this book, are available from my home page (www.timroughgarden.org).

PREFACE

Ankur Moitra, and Greg Valiant for their enthusiasm and excellent advice when this project was in its embryonic stages. I am also grateful to all the Stanford students who took my CS264 and CS369N courses, and especially to my teaching assistants Rishi Gupta, Joshua Wang, and Qiqi Yan. The cover art is by Max Greenleaf Miller. The editing of this book was supported in part by NSF award CCF-1813188 and ARO award W911NF1910294.

Contributors

Maria-Florina Balcan Carnegie Mellon University

Jérémy Barbay University of Chile

Avrim Blum Toyota Technological Institute at Chicago

Kai-Min Chung Institute of Information Science, Academia Sinica

Daniel Dadush Centrum Wiskunde Informatica

Sanjoy Dasgupta University of California at San Diego

Ilias Diakonikolas University of Wisconsin-Madison

Uriel Feige The Weizman Institute

Fedor Fomin University of Bergen

Vijay Ganesh University of Waterloo

Rong Ge Duke University

XV

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS

Anupam Gupta Carnegie Mellon University

Nika Haghtalab Cornell University

Moritz Hardt University of California at Berkeley

Sophie Huiberts Centrum Wiskunde Informatica

Daniel Kane University of California at San Diego

Anna R. Karlin University of Washington at Seattle

Elias Koutsoupias University of Oxford

Samory Kpotufe Columbia University

Daniel Lokshtanov University of California at Santa Barbara

Tengyu Ma Stanford University

Konstantin Makarychev Northwestern University

Yury Makarychev Toyota Technological Institute at Chicago

Bodo Manthey University of Twente

Michael Mitzenmacher Harvard University

Ankur Moitra Massachusetts Institute of Technology

xvi

_

Cambridge University Press 978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms Edited by Tim Roughgarden Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS

Eric Price The University of Texas at Austin

Heiko Röglin University of Bonn

Tim Roughgarden Columbia University

Saket Saurabh Institute of Mathematical Sciences

C. Seshadhri University of California at Santa Cruz

Sahil Singla Princeton University

Inbal Talgam-Cohen Technion–Israel Institute of Technology

Salil Vadhan Harvard University

Gregory Valiant Stanford University

Paul Valiant Brown University

Moshe Vardi Rice University

Sergei Vassilvitskii Google, Inc.

Aravindan Vijayaraghavan Northwestern University

Meirav Zehavi Ben-Gurion University of the Negev

xvii