
Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

CHAPTER ONE

Introduction
Tim Roughgarden

Abstract: One of the primary goals of the mathematical analysis of

algorithms is to provide guidance aboutwhich algorithm is the “best”

for solving a given computational problem. Worst-case analysis

summarizes the performance proile of an algorithm by its worst

performance on any input of a given size, implicitly advocating for

the algorithm with the best-possible worst-case performance. Strong

worst-case guarantees are the holy grail of algorithm design, provid-

ing an application-agnostic certiication of an algorithm’s robustly

good performance. However, for many fundamental problems and

performance measures, such guarantees are impossible and a more

nuanced analysis approach is called for. This chapter surveys several

alternatives to worst-case analysis that are discussed in detail later in

the book.

1.1 The Worst-Case Analysis of Algorithms

1.1.1 Comparing Incomparable Algorithms

Comparing different algorithms is hard. For almost any pair of algorithms and

measure of algorithm performance, each algorithmwill perform better than the other

on some inputs. For example, the MergeSort algorithm takes �(n log n) time to sort

length-n arrays, whether the input is already sorted or not, while the running time of

the InsertionSort algorithm is �(n) on already-sorted arrays but �(n2) in general.1

The dificulty is not speciic to running time analysis. In general, consider a com-

putational problem� and a performance measure PERF, with PERF(A,z) quantifying

the “performance” of an algorithmA for � on an input z ∈ �. For example, � could

be the Traveling Salesman Problem (TSP),A could be a polynomial-time heuristic for

the problem, and PERF(A,z) could be the approximation ratio of A – i.e., the ratio

of the lengths of A’s output tour and an optimal tour – on the TSP instance z.2

1A quick reminder about asymptotic notation in the analysis of algorithms: for nonnegative real-valued

functionsT(n) and f (n) deined on the natural numbers, wewriteT(n) = O(f (n)) if there are positive constants c

and n0 such thatT(n) ≤ c · f (n) for all n ≥ n0;T(n) = �(f (n)) if there exist positive c and n0 withT(n) ≥ c · f (n)
for all n ≥ n0; and T(n) = �(f (n)) if T(n) is both O(f (n)) and �(f (n)).

2 In the Traveling Salesman Problem, the input is a complete undirected graph (V,E) with a nonnegative

cost c(v,w) for each edge (v,w) ∈ E, and the goal is to compute an ordering v1,v2, . . . ,vn of the vertices V that

minimizes the length
∑n

i=1 c(vi,vi+1) of the corresponding tour (with vn+1 interpreted as v1).

1

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

T. ROUGHGARDEN

Or � could be the problem of testing primality, A a randomized polynomial-

time primality-testing algorithm, and PERF(A,z) the probability (over A’s internal

randomness) that the algorithm correctly decides if the positive integer z is prime. In

general, when two algorithms have incomparable performance, how can we deem one

of them “better than” the other?

Worst-case analysis is a speciic modeling choice in the analysis of algorithms,

in which the performance proile {PERF(A,z)}z∈� of an algorithm is summarized

by its worst performance on any input of a given size (i.e., minz : |z|=n PERF(A,z) or

maxz : |z|=n PERF(A,z), depending on the measure, where |z| denotes the size of the

input z). The “better”algorithm is then the onewith superior worst-case performance.

MergeSort, with its worst-case asymptotic running time of �(n log n) for length-n

arrays, is better in this sense than InsertionSort, which has a worst-case running time

of �(n2).

1.1.2 Beneits of Worst-Case Analysis

While crude, worst-case analysis can be tremendously useful and, for several reasons,

it has been the dominant paradigm for algorithm analysis in theoretical computer

science.

1. A good worst-case guarantee is the best-case scenario for an algorithm, certifying

its general-purpose utility and absolving its users fromunderstandingwhich inputs

are most relevant to their applications. Thus worst-case analysis is particularly

well suited for “general-purpose” algorithms that are expected to work well

across a range of application domains (such as the default sorting routine of a

programming language).

2. Worst-case analysis is often more analytically tractable to carry out than its

alternatives, such as average-case analysis with respect to a probability distribution

over inputs.

3. For a remarkable number of fundamental computational problems, there are

algorithms with excellent worst-case performance guarantees. For example, the

lion’s share of an undergraduate algorithms course comprises algorithms that run

in linear or near-linear time in the worst case.3

1.1.3 Goals of the Analysis of Algorithms

Before critiquing the worst-case analysis approach, it’s worth taking a step back to

clarify why we want rigorous methods to reason about algorithm performance. There

are at least three possible goals:

1. Performance prediction. The irst goal is to explain or predict the empirical perfor-

mance of algorithms. In some cases, the analyst acts as a natural scientist, taking

an observed phenomenon such as “the simplex method for linear programming is

fast” as ground truth, and seeking a transparent mathematical model that explains

it. In others, the analyst plays the role of an engineer, seeking a theory that

3Worst-case analysis is also the dominant paradigm in complexity theory, where it has led to the develop-

ment of NP-completeness and many other fundamental concepts.

2

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

gives accurate advice about whether or not an algorithm will perform well in an

application of interest.

2. Identify optimal algorithms.The second goal is to rank different algorithms accord-

ing to their performance, and ideally to single out one algorithm as “optimal.”At

the very least, given two algorithms A and B for the same problem, a method for

algorithmic analysis should offer an opinion about which one is “better.”

3. Develop new algorithms. The third goal is to provide a well-deined framework in

which to brainstorm new algorithms. Once a measure of algorithm performance

has been declared, the Pavlovian response of most computer scientists is to

seek out new algorithms that improve on the state-of-the-art with respect to

this measure. The focusing effect catalyzed by such yardsticks should not be

underestimated.

When proving or interpreting results in algorithm design and analysis, it’s impor-

tant to be clear in one’s mind about which of these goals the work is trying to

achieve.

What’s the report card for worst-case analysis with respect to these three goals?

1. Worst-case analysis gives an accurate performance prediction only for algorithms

that exhibit little variation in performance across inputs of a given size. This is

the case for many of the greatest hits of algorithms covered in an undergraduate

course, including the running times of near-linear-time algorithms and of many

canonical dynamic programming algorithms. For many more complex prob-

lems, however, the predictions of worst-case analysis are overly pessimistic (see

Section 1.2).

2. For the second goal, worst-case analysis earns a middling grade – it gives good

advice about which algorithm to use for some important problems (such as many

of those in an undergraduate course) and bad advice for others (see Section 1.2).

3. Worst-case analysis has served as a tremendously useful brainstorming organizer.

For more than a half-century, researchers striving to optimize worst-case algo-

rithm performance have been led to thousands of new algorithms, many of them

practically useful.

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the

downside of worst-case analysis rears its ugly head. This section reviews four

famous examples in which worst-case analysis gives misleading or useless advice

about how to solve a problem. These examples motivate the alternatives to worst-

case analysis that are surveyed in Section 1.4 and described in detail in later chapters

of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps themost famous failure of worst-case analysis concerns linear programming,

the problem of optimizing a linear function subject to linear constraints (Figure 1.1).

Dantzig proposed in the 1940s an algorithm for solving linear programs called

the simplex method. The simplex method solves linear programs using greedy local

3

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

T. ROUGHGARDEN

Figure 1.1 A two-dimensional linear programming problem.

search on the vertices of the solution set boundary, and variants of it remain

in wide use to this day. The enduring appeal of the simplex method stems from

its consistently superb performance in practice. Its running time typically scales

modestly with the input size, and it routinely solves linear programs with millions of

decision variables and constraints. This robust empirical performance suggested that

the simplex method might well solve every linear program in a polynomial amount

of time.

Klee andMinty (1972) showed by example that there are contrived linear programs

that force the simplex method to run in time exponential in the number of decision

variables (for all of the common “pivot rules” for choosing the next vertex). This

illustrates the irst potential pitfall of worst-case analysis: overly pessimistic perfor-

mance predictions that cannot be taken at face value. The running time of the simplex

method is polynomial for all practical purposes, despite the exponential prediction of

worst-case analysis.

To add insult to injury, the irst worst-case polynomial-time algorithm for linear

programming, the ellipsoid method, is not competitive with the simplex method in

practice.4 Taken at face value, worst-case analysis recommends the ellipsoid method

over the empirically superior simplex method. One framework for narrowing the gap

between these theoretical predictions and empirical observations is smoothed analysis,

the subject of Part Four of this book; see Section 1.4.4 for an overview.

1.2.2 Clustering and NP-Hard Optimization Problems

Clustering is a form of unsupervised learning (inding patterns in unlabeled data),

where the informal goal is to partition a set of points into “coherent groups”

(Figure 1.2). One popular way to coax this goal into a well-deined computational

problem is to posit a numerical objective function over clusterings of the point set,

and then seek the clustering with the best objective function value. For example, the

goal could be to choose k cluster centers tominimize the sumof the distances between

points and their nearest centers (the k-median objective) or the sum of the squared

4 Interior-point methods, developed ive years later, led to algorithms that both run in worst-case polynomial

time and are competitive with the simplex method in practice.

4

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

Figure 1.2 A sensible clustering of a set of points.

such distances (the k-means objective). Almost all natural optimization problems that

are deined over clusterings are NP-hard.5

In practice, clustering is not viewed as a particularly dificult problem. Lightweight

clustering algorithms, such as Lloyd’s algorithm for k-means and its variants, regu-

larly return the intuitively “correct” clusterings of real-world point sets. How can

we reconcile the worst-case intractability of clustering problems with the empirical

success of relatively simple algorithms?6

One possible explanation is that clustering is hard only when it doesn’t matter.

For example, if the dificult instances of an NP-hard clustering problem look like

a bunch of random unstructured points, who cares? The common use case for a

clustering algorithm is for points that represent images, or documents, or proteins, or

some other objects where a “meaningful clustering” is likely to exist. Could instances

with a meaningful clustering be easier than worst-case instances? Part Three of this

book covers recent theoretical developments that support an afirmative answer; see

Section 1.4.2 for an overview.

1.2.3 The Unreasonable Effectiveness of Machine Learning

The unreasonable effectiveness of modern machine learning algorithms has thrown

the gauntlet down to researchers in algorithm analysis, and there is perhaps no other

problem domain that calls out as loudly for a “beyond worst-case” approach.

To illustrate some of the challenges, consider a canonical supervised learning

problem, where a learning algorithm is given a data set of object-label pairs and the

goal is to produce a classiier that accurately predicts the label of as-yet-unseen objects

5Recall that a polynomial-time algorithm for anNP-hard problemwould yield a polynomial-time algorithm

for every problem in NP – for every problem with eficiently veriiable solutions. Assuming the widely believed

P �= NP conjecture, every algorithm for anNP-hard problem either returns an incorrect answer for some inputs

or runs in super-polynomial time for some inputs (or both).
6More generally, optimization problems are more likely to be NP-hard than polynomial-time solvable. In

many cases, even computing an approximately optimal solution is an NP-hard problem. Whenever an eficient

algorithm for such a problemperforms better on real-world instances than (worst-case) complexity theorywould

suggest, there’s an opportunity for a reined and more accurate theoretical analysis.

5

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

T. ROUGHGARDEN

(e.g., whether or not an image contains a cat). Over the past decade, aided by massive

data sets and computational power, neural networks have achieved impressive levels

of performance across a range of prediction tasks. Their empirical success lies in

the face of conventional wisdom in multiple ways. First, there is a computational

mystery: Neural network training usually boils down to itting parameters (weights

and biases) to minimize a nonconvex loss function, for example, to minimize the

number of classiication errors the model makes on the training set. In the past such

problems were written off as computationally intractable, but irst-order methods

(i.e., variants of gradient descent) often converge quickly to a local optimum or even

to a global optimum. Why?

Second, there is a statistical mystery: Modern neural networks are typically over-

parameterized, meaning that the number of parameters to it is considerably larger

than the size of the training data set. Overparameterized models are vulnerable

to large generalization error (i.e., overitting), since they can effectively memorize

the training data without learning anything that helps classify as-yet-unseen data

points. Nevertheless, state-of-the-art neural networks generalize shockingly well –

why? The answer likely hinges on special properties of both real-world data sets and

the optimization algorithms used for neural network training (principally stochastic

gradient descent). Part Five of this book covers the state-of-the-art explanations

of these and other mysteries in the empirical performance of machine learning

algorithms.

The beyond worst-case viewpoint can also contribute to machine learning by

“stress-testing” the existing theory and providing a road map for more robust

guarantees. While work in beyond worst-case analysis makes strong assumptions

relative to the norm in theoretical computer science, these assumptions are usually

weaker than the norm in statistical machine learning. Research in the latter ield

often resembles average-case analysis, for example, when data points are modeled

as independent and identically distributed samples from some underlying structured

distribution. The semirandommodels described in Parts Three and Four of this book

serve as role models for blending adversarial and average-case modeling to encourage

the design of algorithms with robustly good performance.

1.2.4 Analysis of Online Algorithms

Online algorithms are algorithms that must process their input as it arrives over time.

For example, consider the online paging problem, where there is a systemwith a small

fastmemory (the cache) and a big slowmemory.Data are organized into blocks called

pages, with up to k different pages itting in the cache at once. A page request results

in either a cache hit (if the page is already in the cache) or a cache miss (if not). On a

cache miss, the requested page must be brought into the cache. If the cache is already

full, then some page in it must be evicted. A cache replacement policy is an algorithm

for making these eviction decisions. Any systems textbook will recommend aspiring

to the Least Recently Used (LRU) policy, which evicts the page whose most recent

reference is furthest in the past. The same textbook will explain why: Real-world

page request sequences tend to exhibit locality of reference, meaning that recently

requested pages are likely to be requested again soon. The LRU policy uses the recent

past as a prediction for the near future. Empirically, it typically suffers fewer cache

misses than competing policies like First-In First-Out (FIFO).

6

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

Worst-case analysis, straightforwardly applied, provides no useful insights about

the performance of different cache replacement policies. For every deterministic

policy and cache size k, there is a pathological page request sequence that triggers

a page fault rate of 100%, even though the optimal clairvoyant replacement policy

(known as Bélády’s furthest-in-the-future algorithm) would have a page fault rate of

at most 1/k (Exercise 1.1). This observation is troublesome both for its absurdly pes-

simistic performance prediction and for its failure to differentiate between competing

replacement policies (such as LRU vs. FIFO). One solution, described in Section 1.3,

is to choose an appropriately ine-grained parameterization of the input space and to

assess and compare algorithms using parameterized guarantees.

1.2.5 The Cons of Worst-Case Analysis

We should celebrate the fact that worst-case analysis works so well for so many

fundamental computational problems, while at the same time recognizing that

the cherrypicked successes highlighted in undergraduate algorithms can paint a

potentially misleading picture about the range of its practical relevance. The

preceding four examples highlight the chief weaknesses of the worst-case analysis

framework.

1. Overly pessimistic performance predictions. By design, worst-case analysis gives a

pessimistic estimate of an algorithm’s empirical performance. In the preceding

four examples, the gap between the two is embarrassingly large.

2. Can rank algorithms inaccurately. Overly pessimistic performance summaries can

derail worst-case analysis from identifying the right algorithm to use in practice.

In the online paging problem, it cannot distinguish between the FIFO and LRU

policies; for linear programming, it implicitly suggests that the ellipsoid method is

superior to the simplex method.

3. No data model. If worst-case analysis has an implicit model of data, then it’s the

“Murphy’s Law” data model, where the instance to be solved is an adversarially

selected function of the chosen algorithm.7 Outside of security applications, this

algorithm-dependent model of data is a rather paranoid and incoherent way to

think about a computational problem.

In many applications, the algorithm of choice is superior precisely because

of properties of data in the application domain, such as meaningful solutions

in clustering problems or locality of reference in online paging. Pure worst-case

analysis provides no language for articulating such domain-speciic properties of

data. In this sense, the strength of worst-case analysis is also its weakness.

These drawbacks show the importance of alternatives to worst-case analysis, in

the form of models that articulate properties of “relevant” inputs and algorithms

that possess rigorous and meaningful algorithmic guarantees for inputs with these

properties. Research in “beyond worst-case analysis” is a conversation between

models and algorithms, with each informing the development of the other. It has

both a scientiic dimension, where the goal is to formulate transparent mathematical

7Murphy’s Law: If anything can go wrong, it will.

7

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

T. ROUGHGARDEN

models that explain empirically observed phenomena about algorithm performance,

and an engineering dimension, where the goals are to provide accurate guidance about

which algorithm to use for a problem and to design new algorithms that perform

particularly well on the relevant inputs.

Concretely, what might a result that goes “beyond worst-case analysis” look like?

The next section covers in detail an exemplary result by Albers et al. (2005) for the

online paging problem introduced in Section 1.2.4. The rest of the book offers dozens

of further examples.

1.3 Example: Parameterized Bounds in Online Paging

1.3.1 Parameterizing by Locality of Reference

Returning to the online paging example in Section 1.2.4, perhaps we shouldn’t be

surprised that worst-case analysis fails to advocate LRU over FIFO. The empirical

superiority of LRU is due to the special structure in real-world page request sequences

(locality of reference), which is outside the language of pure worst-case analysis.

The key idea for obtaining meaningful performance guarantees for and compar-

isons between online paging algorithms is to parameterize page request sequences

according to how much locality of reference they exhibit, and then prove param-

eterized worst-case guarantees. Reining worst-case analysis in this way leads to

dramatically more informative results. Part One of the book describes many other

applications of such ine-grained input parameterizations; see Section 1.4.1 for an

overview.

How should we measure locality in a page request sequence? One tried and true

method is the working set model, which is parameterized by a function f from the

positive integers N to N that describes how many different page requests are possible

in awindowof a given length. Formally, we say that a page sequence σ conforms to f if

for every positive integer n and every set of n consecutive page requests in σ , there are

requests for at most f (n) distinct pages. For example, the identity function f (n) = n

imposes no restrictions on the page request sequence. A sequence can only conform

to a sublinear function like f (n) = ⌈
√
n⌉ or f (n) = ⌈1 + log2 n⌉ if it exhibits locality

of reference.8 We can assume without loss of generality that f (1) = 1, f (2) = 2, and

f (n+ 1) ∈ {f (n),f (n) + 1} for all n (Exercise 1.2).
We adopt as our performance measure PERF(A,z) the fault rate of an online

algorithmA on the page request sequence z – the fraction of requests in z on whichA

suffers a page fault. We next state a performance guarantee for the fault rate of the

LRU policy with a cache size of k that is parameterized by a number αf (k) ∈ [0,1].

The parameter αf (k) is deined below in (1.1); intuitively, it will be close to 0 for

slow-growing functions f (i.e., functions that impose strong locality of reference) and

close to 1 for functions f that grow quickly (e.g., near-linearly). This performance

guarantee requires that the function f is approximately concave in the sense that the

number my of inputs with value y under f (that is, | f−1(y)|) is nondecreasing in y

(Figure 1.3).

8 The notation ⌈x⌉ means the number x, rounded up to the nearest integer.

8

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

f (n) 1 2 3 3 4 4 4 5 · · ·

n 1 2 3 4 5 6 7 8 · · ·

Figure 1.3 An approximately concave function, with m1 = 1, m2 = 1, m3 = 2, m4 = 3, . . .

Theorem 1.1 (Albers et al., 2005) With αf (k) deined as in (1.1) below:

(a) For every approximately concave function f , cache size k ≥ 2, and deterministic

cache replacement policy, there are arbitrarily long page request sequences

conforming to f for which the policy’s page fault rate is at least αf (k).

(b) For every approximately concave function f , cache size k ≥ 2, and page request

sequence that conforms to f , the page fault rate of the LRU policy is at most

αf (k) plus an additive term that goes to 0 with the sequence length.

(c) There exists a choice of an approximately concave function f , a cache size k ≥ 2,

and an arbitrarily long page request sequence that conforms to f , such that the

page fault rate of the FIFO policy is bounded away from αf (k).

Parts (a) and (b) prove the worst-case optimality of the LRU policy in a strong

and ine-grained sense, f -by-f and k-by-k. Part (c) differentiates LRU from FIFO, as

the latter is suboptimal for some (in fact, many) choices of f and k.

The guarantees in Theorem 1.1 are so good that they are meaningful even when

taken at face value – for strongly sublinear f ’s, αf (k) goes to 0 reasonably quickly

with k. The precise deinition of αf (k) for k ≥ 2 is

αf (k) =
k− 1

f−1(k+ 1) − 2
, (1.1)

where we abuse notation and interpret f−1(y) as the smallest value of x such that

f (x) = y. That is, f−1(y) denotes the smallest window length in which page requests

for y distinct pages might appear. As expected, for the function f (n) = n we have

αf (k) = 1 for all k. (With no restriction on the input sequence, an adversary can force

a 100% fault rate.) If f (n) = ⌈
√
n⌉, however, then αf (k) scales with 1/

√
k. Thus with

a cache size of 10,000, the page fault rate is always at most 1%. If f (n) = ⌈1+ log2 n⌉,
then αf (k) goes to 0 even faster with k, roughly as k/2k.

1.3.2 Proof of Theorem 1.1

This section proves the irst two parts of Theorem 1.1; part (c) is left as Exercise 1.4.

Part (a). To prove the lower bound in part (a), ix an approximately concave function

f and a cache size k ≥ 2. Fix a deterministic cache replacement policy A.

We construct a page sequence σ that uses only k+ 1 distinct pages, so at any given

time step there is exactly one page missing from the algorithm’s cache. (Assume that

the algorithm begins with the irst k pages in its cache.) The sequence comprises k−1

blocks, where the jth block consists of mj+1 consecutive requests for the same page

pj, where pj is the unique page missing from the algorithmA’s cache at the start of the

9

www.cambridge.org/9781108494311
www.cambridge.org

Cambridge University Press
978-1-108-49431-1 — Beyond the Worst-Case Analysis of Algorithms
Edited by Tim Roughgarden
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

T. ROUGHGARDEN

Figure 1.4 Blocks of k − 1 faults, for k = 3.

block. (Recall thatmy is the number of values of x such that f (x) = y.) This sequence

conforms to f (Exercise 1.3).

By the choice of the pj’s, A incurs a page fault on the irst request of a block, and

not on any of the other (duplicate) requests of that block. Thus, algorithm A suffers

exactly k − 1 page faults.

The length of the page request sequence is m2 + m3 + · · · + mk. Because m1 = 1,

this sum equals (
∑k

j=1mj)−1 which, using the deinition of themj’s, equals (f−1(k+
1)−1)−1 = f−1(k+1)−2. The algorithm’s page fault rate on this sequence matches

the deinition (1.1) of αf (k), as required. More generally, repeating the construction

over and over again produces arbitrarily long page request sequences for which the

algorithm has page fault rate αf (k).

Part (b). To prove a matching upper bound for the LRU policy, ix an approximately

concave function f , a cache size k ≥ 2, and a sequence σ that conforms to f . Our

fault rate target αf (k) is a major clue to the proof (recall (1.1)): we should be looking

to partition the sequence σ into blocks of length at least f−1(k+1)−2 such that each

block has at most k − 1 faults. So consider groups of k − 1 consecutive faults of the

LRU policy on σ . Each such group deines a block, beginning with the irst fault of

the group, and ending with the page request that immediately precedes the beginning

of the next group of faults (see Figure 1.4).

Claim Consider a block other than the irst or last. Consider the page requests

in this block, together with the requests immediately before and after this block.

These requests are for at least k + 1 distinct pages.

The claim immediately implies that every block contains at least f−1(k + 1) − 2

requests. Because there are k−1 faults per block, this shows that the page fault rate is

at most αf (k) (ignoring the vanishing additive error due to the irst and last blocks),

proving Theorem 1.1(b).

We proceed to the proof of the claim. Note that, in light of Theorem 1.1(c), it is

essential that the proof uses properties of the LRU policy not shared by FIFO. Fix

a block other than the irst or last, and let p be the page requested immediately prior

to this block. This request could have been a page fault, or not (cf., Figure 1.4). In

any case, p is in the cache when this block begins. Consider the k− 1 faults contained

in the block, together with the kth fault that occurs immediately after the block. We

consider three cases.

First, if the k faults occurred on distinct pages that are all different from p, we have

identiied our k+1 distinct requests (p and the k faults). For the second case, suppose

that two of the k faults were for the same page q �= p. How could this have happened?

The page q was brought into the cache after the irst fault on q and was not evicted

until there were k requests for distinct pages other than q after this page fault. This

gives k+ 1 distinct page requests (q and the k other distinct requests between the two

10

www.cambridge.org/9781108494311
www.cambridge.org

