Introduction to the Standard Model and Beyond

The Standard Model of particle physics is an amazingly successful theory describing the fundamental particles and forces of nature. This text, written for a two-semester graduate course on the Standard Model, develops a practical understanding of the theoretical concepts it's built upon, to prepare students to enter research. The author takes a historical approach to demonstrate to students the process of discovery which is often overlooked in other textbooks, presenting quantum field theory and symmetries as the necessary tools for describing and understanding the Standard Model. He develops these tools using a basic understanding of quantum mechanics and classical field theory, such as Maxwell's electrodynamics, before discussing the important role that Noether's theorem and conserved charges play in the theory. Worked examples feature throughout the text, while homework exercises are included for the first five parts, with solutions available online for instructors. Inspired by the author's own teaching experience, suggestions for independent research topics have been provided for the second half of the course, which students can then present to the rest of the class.

Stuart Raby is a professor of physics at The Ohio State University. He is among the original proponents of the supersymmetric extension of the Standard Model and a pioneer of supersymmetric grand unified theories. His work focuses on the experimental consequences of physics beyond the Standard Model, ranging from collider experiments to proton decay searches, dark matter candidates and questions in cosmology. His first book, *Supersymmetric Grand Unified Theories*, was published by Springer in 2017.

Introduction to the Standard Model and Beyond

Quantum Field Theory, Symmetries and Phenomenology

STUART RABY

The Ohio State University

CAMBRIDGE

Cambridge University Press 978-1-108-49419-9 — Introduction to the Standard Model and Beyond Stuart Raby Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108494199 DOI: 10.1017/9781108644129

© Stuart Raby 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49419-9 Hardback

Additional resources for this publication at www.cambridge.org/raby

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Product Action Action Construction (Construction)	eface knowle	edgements	page xiii xvi
		Part I Getting Started	1
1	Nota	ation	3
		Part II Symmetries and Quantum Field Theory	7
2	Poin	caré Invariance	9
	2.1	What Is a Group?	9
	2.2	The Lie Algebra of the Poincaré Group	12
	2.3	Exercises	18
3	Spin		20
	3.1	Massive Particles	20
	3.2	Massless Particles	25
4	Com	pleteness and Normalization	30
	4.1	Single-Particle States	30
	4.2	Definition of Cross-Section and Lifetime	31
	4.3	Decay Rates	36
5	Qua	ntum Mechanics	38
	5.1	Scattering Probability	38
	5.2	S Matrix	39
	5.3	Treatment of Unstable Particles	43
	5.4	Exercises	47
6	Unit	arity and Partial Waves	49
	6.1	Unitary S Matrix	49
	6.2	Spin $ab \to cd_M$ with $d_M \to 1, \ldots, n$	56
	6.3	Application of the Formalism on Lorentz Transformations	57

v

vi		Contents	
	7	Introduction to Field Theory	64
		7.1 Multi-Particle States: Fock Space	64
		7.2 What about Lorentz Transformations?	69
		7.3 Let's Complete the Analogy of a Scalar Field with the Quantum-	
		Harmonic Oscillator	71
		7.4 Some Useful Identities	75
		7.5 Exercises	78
	8	Complex Scalar Field	80
		8.1 Complex Scalar	80
		8.2 Discrete Symmetries of the Charged Scalar Field	84
		8.3 Exercises	88
	9	Spin-1/2 Particles	89
		9.1 Dirac Equation	89
		9.2 Causality for Fermions	94
		9.3 Phase Factor Conventions for Spinors	94
		9.4 Lorentz Transformations of Fermions	98
		9.5 Exercises	101
	10	Weyl Spinors	103
		10.1 Phase Symmetries of the Dirac Lagrangian	103
		10.2 The Massless Limit of the Dirac Theory, $m = 0$	105
		10.3 Lorentz Transformations and Weyl Spinors	108
	11	Spin-1 Particles	111
		11.1 Massive Spin-1 Particles	111
		11.2 Massless Spin-1 Particles	115
	12	The S Matrix in Field Theory	120
		Part III Quantum Electrodynamics	129
	10		101
	13	Quantum Electrodynamics	131
		13.1 Introduction to QED	131
		13.2 Feynman Rules in Coordinate Space	132
		13.3 Feynman Rules in Momentum Space	134
		13.3.1 Bubbles and Disconnected Diagrams at Second Order in	100
		Perturbation Theory	136
		13.4 Bhabha Scattering	137
		13.5 Crossing Symmetry	138
		13.0 Exercises	142

vii		Contents	
	14	Magnetic Moments in QED	143
		14.1 The Dirac Magnetic Moment	143
		14.2 Anomalous Magnetic Moments	145
		14.3 Measurement of a_e	147
		14.4 Anomalous Magnetic Moment of the Muon	148
		14.5 How Is a_{μ} Measured?	150
		14.6 Strong-Interaction Contribution to Electromagnetic Processes	151
		14.7 Lamb Shift	153
	15	The Size of the Proton	155
		15.1 Elastic Electron–Proton Scattering	155
		15.2 Physical Interpretation of the Form Factor	160
		15.3 Form Factors in the Crossed Channel	163
		15.4 Exercises	166
		Part IV Discrete Symmetries and their Consequences	167
	16	Charge Conjugation and Parity	169
		16.1 Charge Conjugation	170
		16.2 Parity	171
		16.3 Transformation of the Photon in the Coulomb Gauge	172
		16.4 Applications of \mathbf{C} and \mathbf{P} Invariance	173
		16.5 Exercises	178
	17	Time-Reversal Invariance	180
		17.1 Time-Reversal Invariance of QED	180
		17.2 Phenomenological Consequences of Time-Reversal Invariance	183
	18	CPT Theorem	186
		18.1 CPT Theorem	186
		18.2 Applications of the CPT Theorem	187
		Part V Flavor Symmetries	191
	19	Global Symmetries	193
		19.1 Baryon and Lepton Numbers	193
		19.2 Isotopic Spin	194
		19.3 Tests of Approximate Isospin Symmetry	198
		19.4 Isospin of Pions	200
		19.5 Exercises	201

viii	Contents	
20	Testing Isospin and G Parity	202
	20.1 Testing Isospin with Scattering Cross-Sections	202
	20.2 G-Parity Invariance of the Strong Interactions	204
	20.3 Some Applications of Isospin and G-Parity Conservation	207
	20.4 Exercises	208
21	Evidence for New Particles, Quantum Numbers and Interactions	210
	21.1 Bringing Order to Chaos	211
	21.2 Exercises	215
22	Representation Theory for $SU(2)$	216
	22.1 Exercises	218
23	SU(3) Symmetry	219
	23.1 Lie Algebra of $SU(3)$	220
	23.2 Complete Set of Commuting Operators	221
	23.3 The Quark Model	224
	23.4 Direct (or Tensor) Product States	227
	23.5 Exercises	229
24	Tests of $SU(3)$ Symmetry	230
	24.1 Coleman–Glashow Relation	230
	24.2 Tensor Methods	232
	24.3 Tensor Analysis and the Clebsch–Gordan Decomposition	233
	24.4 Gell-Mann–Okubo Mass Formula	238
	Part VI Spontaneous Symmetry Breaking	243
25	Spontaneous Symmetry Breaking	245
	25.1 Spontaneously Breaking a Discrete Global Symmetry	247
	25.2 Spontaneously Breaking a Continuous Global Symmetry	250
26	Spontaneous Symmetry Breaking in Hadronic Physics	254
	26.1 Chiral Symmetry	254
	26.2 Gell-Mann–Levy Model	256
	26.3 Spontaneously Breaking $SU(2)_L \otimes SU(2)_R$	258
	26.4 General Derivation of the Goldberger–Treiman Relation	263
	26.5 Non-Linear Sigma Model	264
27	Current Algebra and the Adler–Weisberger Relation	266
	27.1 Adler–Weisberger Relation	266
	27.2 Derivation of the Adler–Weisberger Relation	267

ix	Contents	
	Part VII Road to the Standard Model: Quantum Chromodynamics	281
28	Quantum Chromodynamics28.1Five Puzzles of the Quark Model28.2Local Non-Abelian Symmetry	283 283 285
29	Quantizing Non-Abelian Gauge Theory29.1Perturbation Theory for Non-Abelian Gauge Theories – R_{ξ} Gauge29.2Feynman Rules	290 292 293
30	Renormalization30.1 Four-Dimensional Lattice Gauge Theory30.2 Strong Coupling Limit of QCD on a Three-Dimensional Lattice	296 300 302
31	Deep Inelastic Electron-Nucleon Scattering31.1The Cross-Section31.2Bjorken Scaling31.3Parton Model31.4Jets31.5Discovery of the Gluon	305 305 308 309 317 318
32	LHC Physics and Parton Distribution Functions	323
	Part VIII Road to the Standard Model: Electroweak Theory	331
33	The Electroweak Theory33.1Brief Review of Spinors33.2Electroweak Theory of Leptons33.3Converting to Dirac Notation33.4Phenomenological Lagrangian33.5Muon Beta Decay33.6Discovery of the W^{\pm} and Z^0 Bosons	 333 333 334 336 342 344 350
34	Electroweak Symmetry Breaking 34.1 The Higgs Mechanism of Electroweak Symmetry Breaking 34.2 "Unitary" Gauge 34.3 't Hooft- R_{ξ} Gauge	351 353 359 361
35	Electroweak Phenomena 35.1 Custodial $SU(2)$ 35.2 Elastic Neutrino–Electron Scattering 35.3 Forward–Backward Asymmetry in $e^+e^- \rightarrow \mu^+\mu^-$ Scattering	363 363 367 368

×	Contents	
3(6 Deep Inelastic Scattering Revisited	371
3	7 Weak Interactions of Quarks	379
	37.1 Some Classic Weak Decays	380
	37.2 Flavor-Changing Neutral Currents	381
	Part IX The Standard Model	385
3	8 Three-Family Model	387
	38.1 Prologue	387
	38.2 Six-Quark Model	388
	38.3 Yukawa Couplings	389
	38.4 Mass Matrices and Mass Eigenstate Basis	390
	38.5 Kobayashi–Maskawa Model and Three Families	394
3	9 Determining V_{CKM} and Quark Masses	396
	39.1 CP Violation	399
	39.2 $K^0 - \bar{K}^0$ Mixing	401
	39.2.1 Perturbation Expansion in H_W	402
	39.2.2 Eigenvalues	404
	39.3 $K^0 - \bar{K}^0$ Oscillations: Measuring Δm_K	406
4	0 CP-Violating Parameters ϵ_K and ϵ'_K	407
	40.1 Phase Conventions	411
	40.2 Theoretical Calculation of ϵ_K	412
	40.2.1 Re-Phase-Invariant Formula	415
	40.3 ϵ_K in Terms of the Wolfenstein Parameters	417
	40.4 Unitarity Triangle	420
4	1 Effective Field Theories	422
	41.1 Vacuum Polarization	422
	41.2 Effective Field Theories above and below M_Z	424
	41.3 The Higgs Boson	429
43	2 Anomalies	432
	42.1 Anomalies via the Path-Integral Approach	433
	42.2 Gauge Anomalies in the Standard Model	439
	Part X Neutrino Oscillations	441
43	3 Neutrino Oscillations: Atmospheric	443
	43.1 The Missing Muon Neutrinos	443
	43.2 Neutrino Oscillations in Vacuum	446

xi	. –	Contents	
	44	Neutrino Oscillations: Solar	451
		44.1 The Solar-Neutrino Problem	451
		44.2 The SNO Experiment	455
		44.3 The MSW Effect	458
	45	Neutrino Oscillations Cont'd: Neutrino Mass and Mixing Angles	465
		45.1 LSND and Mini-BooNE	465
		45.2 Summarizing Neutrino Results	467
		45.3 Neutrino Mass	468
		45.4 Arbitrary Parameters of the Standard Model	470
		Part XI Grand Unification	473
	46	Grand Unification	475
		46.1 Two Roads to Grand Unification	475
		46.2 Grand Unified Theory: $SU(5)$	476
		46.2.1 Yukawa Unification: $\lambda_b = \lambda_{\tau}$	482
		46.2.2 Spontaneously Breaking $SU(5) \rightarrow SU(3) \otimes SU(2) \otimes U(1)_Y$	484
		46.2.3 Nucleon Decay	485
	47	Supersymmetry	488
		47.1 Two-Component Spinors and the Lorentz Group	488
		47.2 $N = 1$ SUSY Algebra	490
		47.3 Massless Representations of $N = 1$ SUSY	491
	48	Superfields	494
		48.1 SUSY Gauge Theory	498
		48.2 SUSY Quantum Electrodynamics	500
	49	SUSY $SU(5)$	502
		49.1 Superfields for SUSY $SU(5)$	502
		49.2 Nucleon Decay	505
		Part XII Minimal Supersymmetric Standard Model	509
	50	Supersymmetric Standard Model	511
		50.1 SUSY Non-Renormalization Theorems	513
		50.2 Soft SUSY Breaking	514
		50.3 The MSSM Spectrum	515
		50.4 Electroweak Symmetry Breaking	515
		50.5 Running the Gaugino and Higgs Masses	518
		50.6 Mass Eigenstates after Electroweak Soft Breaking	520

<ii -<="" th=""><th>Contents</th><th></th></ii>	Contents	
5	1 Spontaneous SUSY Breaking	
	51.1 O'Raifeartaigh Mechanism	
	51.2 Gravity-Mediated SUSY Breaking	
	51.3 Gauge-Mediated SUSY Breaking	
5	2 MSSM Phenomenology	
	52.1 Gluino–Squark Detection at the LHC	
	52.2 Simplified Models	
	52.3 Electroweakinos	
	Part XIII Second-Semester Projects	
5	3 Suggested Term Projects 1	
5	4 Suggested Term Projects 2	
	Part XIV Appendices	
ļ	Appendix A Gell-Mann–Low Theorem	
	A.1 Interaction Picture	
	A.2 Gell-Mann–Low Theorem	
ļ	Appendix B Wick's Theorem	
4	Appendix C One-Loop Calculations in QED	
	C.1 Vacuum Polarization	
	C.2 The Renormalized Polarization Tensor	
	C.3 Vertex Function and $(g-2)$	
	C.4 One-Loop Fermion Sen Energy	
ļ	Appendix D Renormalization in QED	
	D.1 The Un-renormalized and Renormalized Lagrangian	
	D.2 Generic β functions	
	D.3 Callan–Symanzik Equations	
ļ	Appendix E Triangle Anomaly	
1	References	
1	ndex	
(Color plates section can be found between pages 320 and 321	

Preface

The goal of the book is to develop a practical understanding of the theoretical concepts inherent in the Standard Model and to enable students to enter a research program in this exciting field. Note that the topics discussed in this book are also useful for students with interests in nuclear and astro/particle physics.

This book bears a strong resemblance to similar texts. However, it provides an introduction to field theory and the Standard Model which I believe may be more accessible to both experimentalists and theorists. Also, by following the development of the theory historically, it may allow students to understand the process of discovery, which seems to be missing in more recent texts. The development of the Standard Model relied heavily on symmetries, which can be both continuous and discrete, global and local, softly broken and exact. Therefore the book focuses on an understanding of symmetries in particle physics; their consequences and tests thereof.

This book is designed as a text for a one-year course on the Standard Model. The prerequisites include advanced courses on classical mechanics, electrodynamics and quantum mechanics. However, it does not require quantum field theory as a prerequisite. Homework problems and solutions are included in the book and have been used in the first half of the course. However, in the latter half of the course we have found that, firstly, there are too many directions in particle physics for which there is insufficient time to discuss in class, and, secondly, students have relished the independent research they do in discovering the details of some of these directions on their own. Thus, I provide a list of possible topics for independent research at the end of the book. Students typically present two research papers and lectures on these topics in class. In developing the material in the book we acknowledge some texts which have had a significant influence on our presentation. These include *Elementary Particle Physics* (Wiley, 1966) by S. Gasiorowicz, Particle Physics and Introduction to Field Theory (CRC Press, 1981) by T. D. Lee and Lie Algebras in Particle Physics, 2nd edition (CRC Press, 2018) by H. Georgi.

Note, the material in the book is presented step by step: introducing subjects as foundations which are then built upon and used over and over. For students who have already had a field theory course, the material in Part II may be encouraged as a refresher. Chapters 8, 9 and 10, in particular, on the symmetries of complex scalars and fermions, should be emphasized. Then instruction might cover the material in Parts III–X.

xiii

xiv

Preface

What is Particle Physics?

The 20th century witnessed the most amazing discovery of what we now call the Standard Model of Particle Physics. The Standard Model describes the results of hundreds of thousands of experiments, with of order 28 arbitrary parameters that are fit by experiment. Particle physics can be defined as humankind's search for an understanding of the basic building blocks of matter and their interactions. As such it began with the earliest musing about space, time and atoms by Aristotle and Democritus, with the study of gravitational phenomena by Galileo and Newton and the study of electric and magnetic phenomena by the likes of Coulomb, Ampere, Faraday and Maxwell. By the end of the 19th century, physicists were wondering whether all of nature was understood and, according to Maxwell in his Introductory Lecture on Experimental Physics, held at Cambridge in October 1871,

... the opinion seems to have got abroad, that in a few years all the great physical constants will have been approximately estimated, and that the only occupation which will then be left to men of science will be to carry on these measurements to another place of decimals. ... But we have no right to think thus of the unsearchable riches of creation, or of the untried fertility of those fresh minds into which these riches will continue to be poured. ... But the history of science shews that even during the phase of her progress in which she devotes herself to improving the accuracy of the numerical measurement of quantities with which she has long been familiar, she is preparing the materials for the subjugation of the new regions, which would have remained unknown if she had been contented with the rough methods of her early pioneers. I might bring forward instances gathered from every branch of science, shewing how the labour of careful measurement has been rewarded by the discovery of new fields of research, and by the development of new scientific ideas.

Soon after Maxwell made these comments, a period of highly significant scientific breakthroughs began with the discovery of radio waves by Hertz (1886–1889), followed quickly by those X-rays by Roentgen (1895) and nuclear radiation by Becquerel (1896). It was these discoveries which put into motion the dramatic events of the 20th century.

Beginning with the discovery of the electron by Thomson in 1897 and the seminal work of Rutherford, Geiger and Marsden in 1911, physicists have investigated the atom using particle beams (electrons, protons and alpha particles) as probes. They developed new detection methods: the geiger counter, scintillators, cloud and then bubble chambers. This new paradigm for probing matter and new detectors led to many discoveries.

The mystery of the atom was unraveled. With Bohr's quantum theory and Pauli's exclusion principle, a complete theory of the periodic table of the elements was developed, leading to the fields of physical chemistry and, eventually, microbiology.

The nucleus was shattered and the strong interactions, holding protons and neutrons inside the core, were investigated. Hence the beginning of nuclear physics.

These new detectors were then pointed to the heavens, unveiling a shower of energetic charged particles emanating from distant galaxies. New particles, such as the muon, the pion and the positron (also known as an anti-electron) were CAMBRIDGE

Cambridge University Press 978-1-108-49419-9 — Introduction to the Standard Model and Beyond Stuart Raby Frontmatter More Information

xv

Preface

discovered in the cosmic ray shower. You know, it would take a lead umbrella to stop this eternal shower.

By the late 1950s, a major step forward came with the advent of particle accelerators at Brookhaven in New York and CERN in Geneva. With controlled particle beams (made of strongly interacting particles, such as pions, kaons and protons), experiments revealed a virtual particle zoo, with many more species of strongly interacting particles – all called hadrons. It became evident that the hadronic zoo was immense and it was unlikely that hadrons were elementary or fundamental particles at all.

To make a long story short, by 1974, the chaos of discovery lead to the Standard Model describing all observed particle phenomena in terms of three fundamental forces (four, including gravity) and the fundamental building blocks of matter, i.e. quarks and leptons.

Only now, after the dust of this chaotic discovery settles, are we able with hindsight to recognize the underlying principles which define the theory we call the Standard Model. It is these principles, and their logical extension, which I will attempt to describe in this course. Particle physics has relied on amazing new methods of experiment to explore nature. Moreover, it has relied on *symmetries* and their consequences to describe nature. It is this hand-in-hand method which has propelled us into the present state of our understanding. Once again, we are at a moment in history where the role of scientists appears to be just to measure the fundamental constants to the next decimal point. But like Maxwell, more than 100 years ago, we can expect that new experimental techniques and measurements will lead to the next epoch of discovery.

Acknowledgements

This book is based on a Standard Model course that I have given at Ohio State University over the course of some 30 years. The material presented here has greatly benefited from the many graduate students who have taken the course and asked many tough questions. I would not have been able to write this book without their help. I also want to thank Professor Leonard Susskind for his strong support which kept me in the field. Finally, I want to thank my wife, Michele, whose guidance over these 50 years has always kept me grounded.

xvi