
Cambridge University Press
978-1-108-49418-2 — Mathematics and Its Logics
Geoffrey Hellman 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

Abstract mathematics, from its earliest times in ancient Greece right up to the

present, has always presented a major challenge for philosophical understand-

ing. On the one hand, mathematics is widely considered a paradigm of provid-

ing genuine knowledge, achieving a degree of certainty and security as great as

or greater than knowledge in any other domain. A part of this, no doubt, is that it

proceeds by means of deductive proofs, thereby inheriting the security of

necessary truth preservation of deductive logical inference. But proofs have

to start somewhere: ultimately there need to be axioms, and these are the

starting points, not end points, of logical inference. But what then grounds or

justifies axioms? The question becomes especially urgent when it is considered

that the subject matter of pure mathematics, including its axioms, apparently

consists of abstracta such as numbers, functions, classes, and relations, which

are non-spatiotemporal and do not enter into causal interactions (with us or

anything else). This is true even for Euclidean geometry, which originally was

conceived as investigating properties of actual physical space and time, but

nevertheless treats directly of dimensionless points, perfectly straight lines of 0

breadth, ideal perfect figures such as triangles and rectangles, etc., none of

which exist in the material world.

In our own recent history, the logical empiricists, led by Rudolf Carnap and

inspired by Gottlob Frege, proffered the doctrine of analyticity, that mathema-

tical axioms are “analytic,” but now in the sense of “guaranteed true solely in

virtue of meanings of terms,” or “true entirely by linguistic convention.”1 This

was regarded as compatible with the obvious fact that theorems could be highly

surprising and informative, as logical deductions can be highly complex and

intricate, so that logical consequences of given axioms may appear quite

unpredictable.

1 Though Frege explicitly declared in theGrundlagen der Arithmetik that (in effect, second-order)
arithmetic was “analytic,” this was explained as “derivable from logic,” whereas Frege’s “logic”
was nowhere said to be “true by linguistic convention.” Indeed, not only was that logic
committed to many infinitistic functions, it was also proved inconsistent due to implying
Russell’s paradox.
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Now, as is well known, the doctrine of analyticity was severely critiqued by

W. V. Quine (and others), due to the questionable scientific status of the concept

of linguistic “meaning.” But even granting – for the sake of argument – the

scientific status of meaning concepts, there remains the problem that at least

some of the axioms of going mathematics just seem not to qualify as “analytic”

at all. Famously, the Euclidean parallels postulate (EPP) seems not to qualify,

resisting attempts to derive it from anythingmore basic. And the case seemed to

be sealed when, in the nineteenth century, it was discovered that the EPP could

consistently be negated, giving rise to genuine non-Euclidean geometries,

provably consistent relative to Euclidean geometry.

Now it may occur to the reader that one could reinterpret the EPP as claiming

only what is true in a genuinely Euclidean space, thereby ensuring its analyti-

city, as a space would be “Euclidean” only if it satisfied the EPP. But now we

have to accept the existence of a (possibly non-physical) Euclidean space, and

what yields the analyticity of that? Indeed, that involves the existence of an

infinite totality, and how can that be guaranteed true solely by the meanings of

words?

Indeed, for another striking example of a non-analytic axiom, consider the

Axiom of Infinity, that there exists an infinite set. Any attempt to derive this

appears quite circular. For example, Dedekind thought he could derive it from

reflecting on his capacity to entertain the thought of any thought that he could

entertain. But this failed, not only for the reason that it is dubious that we can

even understand enough iterates of “the thought of . . . the thought of my own

ego (or whatever the initial object may be),” but because Dedekind needed to

assume that “all objects that could be objects of [his] thought” form a “system”

or set. But what guarantees this? Perhaps all subsets of objects of his thought

could be objects of his thought, in which case Cantor’s theorem (that there are

always more subsets of a given set than members of it) would rule out that all

objects of his thought form a set, as that set would have all its subsets as

members, which is a contradiction!

The famous Axiom of Choice of set theory provides another example of an

axiom whose “analyticity” seems impossible to secure.2

Such examples led to a view known as “if-thenism” or “deductivism”

(espoused by Russell [1903], and later, at least in part, by Hempel [1945]),

according to which mathematics need not assert its axioms and can confine

itself to conditional claims of the form, “If these axioms, then this theorem.”

(A recent version of this is examined critically in some detail in the essay of

Chapter 14.)

2 The Axiom of Choice says that, given any set S of non-empty sets, s, there exists a “choice
function” f on S, i.e. such that the value f(s) of f is a member of s. Such a choice function on any
infinite S “does an infinite amount of choosing at once” and is thus itself an infinitistic object.
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Thus, even in the late twentieth century, the challenge regarding philosophi-

cal understanding presented by mathematics was far from being met. One

overarching question addressed by a number of the essays of this collection

is to what extent the rise of modern structuralism – in particular modal-

structuralism (MS), begun by Putnam [1967] and further developed by me

(Hellman [1989] and Hellman [1996], reproduced as Chapter 1 in this

volume) – makes significant progress toward meeting this challenge.

The crucial starting point of modal-structuralism is to adopt the

Dedekindian-Hilbertian view of mathematical axioms as defining conditions

on types of mathematical structures of interest, rather than as asserted truths

outright (as in the traditional Euclidean-Fregean view). The next step is to

interpret ordinary mathematical statements S of a branch of mathematics as

stating what would necessarily hold of structures of the appropriate type that

there might be (logically speaking), structures characterized by the axioms of

the branch of mathematics in question. Thus S is construed as a quantified

modal conditional whose antecedent is the conjunction of the relevant axioms

(relativized to an arbitrary given domain) and whose consequent is S (with its

quantifiers restricted to the given domain). If that were all, then we would have

a second-order logical version of if-thenism; and then there would be the

problem that, if the axioms were inconsistent, then any such conditional

would count as true or valid, regardless of the consequent – an intolerable

situation. In order to block this “problem of vacuity,” a further step is required,

viz. to assert the (second-order logical) possibility of there being a structure

fulfilling the relevant axioms (hence ruling out inconsistency), what we have

called “the categorical component” of a modal-structural interpretation

(the quantified conditionals constituting “the hypothetical component”). And

it is just here that the logicist idea, that all mathematical truths are analytic,

breaks down, for these modal existence postulates cannot be determined true

solely in virtue of the meanings of the words involved. (Compare the ontolo-

gical argument, which purports to “prove” the existence of a necessary, perfect

being by counting existence as a perfection! True enough, if G is a necessary,

perfect being, then G exists. But nothing guarantees that there actually are any

necessary, perfect beings. Moral: you cannot define objects into existence!)

At the time that I was developing MS, I was unaware of the full potential of

some crucial logical machinery already developed by Boolos [1985], that of

plural quantification. Specifically, as shown by Burgess, Hazen, and Lewis

[1991] (BHL) in their Appendix to Lewis [1991], the combination of plural

quantification and atomic mereology (but neither separately) enables explicit

general constructions of ordered-pairing, which achieves the expressive power

of a full classical theory of relations (polyadic second-order logic). In the

absence of this, Hellman [1989] got by with some rather ad hoc machinery to

achieve the requisite expressive power to carry out MS interpretations. But the
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BHL constructions afford a more general and smoother development, as

explained in the first essay of this volume, “Structuralism without

Structures,” Chapter 1.

As the reader may well know, there are several other structural

approaches to mathematics besides modal-structuralism. Indeed, set theory

and category theory have each provided such from within mathematics

itself. (For a systematic comparison of these along with Shapiro’s sui

generis structuralism, see Hellman and Shapiro [2019], also Hellman

[2005].) Set-theoretic structuralism (STS), based on model theory, is

probably the best known of all, and for much mathematics it does very

well. There are, however, two main problems with it. First, it fails to treat

set theory itself structurally, despite the fact that there are multiple,

conflicting but perfectly legitimate set theories deserving of recognition.

But second, and most important here, STS based on the Zermelo–Fraenkel

axioms, with Choice (ZFC), as usually understood, is committed to

a unique, maximal universe of “all sets,” despite the fact that the very

notion of “set” is indefinitely extensible, as are the notions of “ordinal”

and “cardinal.” That is, in the case of “set,” by our understanding of sets

as subject to certain operations, any totality of sets can be transcended by

means of those operations, for instance the operation of forming singletons

or forming powers (that is, forming the totality of all subtotalities). Thus,

it is a central postulate of the modal-structural interpretation of set theory

that any domain of sets (or, more neutrally, “set-like objects,” objects

obeying the axioms of ZFC) can be properly extended to a more compre-

hensive domain. We call this the Extendability Principle (EP). This applies

also to category theory’s (CT’s) version of set theory, as explained in

Chapter 2, and it rules defective commitment to a category of “all sets.”

The essay of Chapter 2, “What is categorical structuralism?” assesses

responses by Colin McLarty and Steve Awodey to my earlier critique of

category theory’s approach to mathematical structuralism.3 There I had com-

plained about the lack of assertory axioms governing existence of category-

theoretic structures, and McLarty had countered that two axiom systems due to

Lawvere met my concerns, axioms on the (sic) category of sets and axioms on

the (sic) category of categories. On the other hand, Awodey had maintained that

such axioms are unnecessary, that CT can get by with an entirely schematic

approach to mathematical structures. The essay of Chapter 2 exposes

a common problem with both of these approaches, viz. that both implicitly

rely on some concept of satisfaction (of sentences by systems of objects),

usually articulated via set theory, although second-order logic can be used

3 References to McLarty and Awodey are given in Chapter 2.
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instead. Thus CT’s autonomy, as a foundational framework, from set theory

or second-order logic has yet to be established by its proponents.4

Returning now to our theme of indefinite extensibility: in contrast to both set

theory and category theory, as usually understood, the MS approach adopts

a “height-potentialist” perspective, based on the EP framed modally. As

Putnam [1967] forcefully put it, “Even God could not make a model of

Zermelo set theory that it would be mathematically impossible to extend”

(p. 310). But since MS allows modal quantification over arbitrary set-like

objects – for example “for any set that there might be, there would also be its

power set,” etc. – what blocks commitment to a totality of “all possible sets or

set-like objects”? Since MS eschews possible worlds or possibilia of any sort,

the answer is that collections can only contain what would exist under given

circumstances, not anything that merely might then have existed. Invoking

“worlds” as heuristic only, we can say that sets or collections or set-like objects

are “world-bound.” It is impossible to form collections “across worlds.” It

literally makes no sense to speak of “the collection of all possible set-like

objects.”5 Thus, in contrast to Zermelo’s [1930] effort to articulate a height-

potentialist view (which did not employ modal operators), MS naturally avoids

commitment to “proper classes” or “ultimate infinities” in an absolute sense.

The notion of “proper class” can only be relative to a domain: what qualifies as

a proper class (hence not a member of anything) relative to domain D, functions

as a bona fide set relative to any possible proper extension of D; and there can

be no “union of all possible domains.”6

The essays of Chapters 3 and 4 develop some important consequences of

the height-potentialist view just sketched. Chapter 3 describes the MS resolu-

tions of the set-theoretic paradoxes, concentrating on the so-called Burali-

Forti paradox, of “the largest ordinal.” There it is shown how, in a potentialist

sense, MS can respect the desideratum that any well-order relation whatever

can have an ordinal representing it. This is in contrast to standard resolutions

of Burali-Forti based on a single fixed universe of “all sets.” Chapter 4 then

shows how a natural modal principle on the extendability of “stages” of sets

on the well-known iterative conception of set leads to new derivations of the

axioms of Infinity and Replacement, not available to Boolos’ original [1971]

4 Our analysis thus sustains the well-known earlier analysis by Feferman [1977], but focuses on
the problem of articulating structuralism rather than foundations generally.

5 Here we follow Kripke’s [1980] “actualist” conception of the alethic modalities, as contrasted
with Lewis’ [1986] “possibilist” or “modal-realist” conception.

6 While Zermelo [1930] did clearly state that the “set/proper class” distinction is relative to
a domain, still that work is naturally formalized in axiomatic second-order logic, an axiom of
which guarantees a class of all members of any domains, an ultimate proper class, contrary to
Zermelo’s (non-modal) Extendability Principle. In avoiding this “explosion,” modality does
essential conceptual work for the MS interpretation.
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stage theory, or any other height-actualist theory recognizing a plurality of

“all stages.”

Thus far, we have seen that MS requires as assertory axioms statements

affirming the possibility of structures of the appropriate type, geared to the

mathematical axioms defining that type of structures. Thus, both Hilbertian-

style and Fregean-style axioms are needed. But we have not yet said anything

explicitly about the ontological commitments of mathematical theories inter-

preted according to MS. Take the most elementary case of arithmetic. Does the

MS interpretation quantify over numbers as objects? No; all it requires is that

there possibly be a progression; it makes no difference at all what objects make

up the progression. All that matters is that, whatever the objects, they be

arranged in the right way, as required by the Dedekind–Peano axioms. Thus,

on interpretation, the predicate “__is a natural number” is eliminated. Similarly

for the integers, the rationals, the reals, and the complexes. MS is, after all,

“mathematics without numbers” (as explained in detail in Hellman [1989]).

Now one of the virtues of the BHL machinery, deploying the logic of plurals

combined with atomic mereology, is that it allows us to eliminate even struc-

tures as objects, in favor of speaking directly of enough objects – of whatever

sort – interrelated in the right ways, as dictated by the proper mathematical

axioms. Thus, as indicated in the title of Chapter 1, we have a “Structuralism

without Structures.” This thus raises the prospect that MS may be fully

nominalistic, at least in the sense that abstract entities need not be recognized.

To a surprising degree, this is correct. But, as will now be explained, it is not

entirely correct.

Suppose we begin with a postulate asserting the possibility of a countable

infinity of mereological atoms, say, satisfying the Dedekind–Peano axioms for

natural numbers. Such objects can readily be conceived as part of space or

space-time, for example non-overlapping space-time regions. They need not be

abstract. Then applying mereology, we have all wholes of such atoms, also not

abstract. This gives us a continuum of concrete objects, at the level of the

classical real numbers, or classical second-order number theory, arguably

enough to support virtually all of scientifically applicable mathematics. But

we can go even further, using plural quantification over these real-number

surrogates, yielding the equivalent of full, classical third-order number theory,

again within the confines of nominalism. Furthermore, now consider that we

could start off with a continuum of atoms instead of a countable infinity of such.

Then applying mereology we obtain all wholes of such atoms, corresponding to

all non-empty subsets of the atoms. Finally, with plural quantification over such

wholes, we attain the level of third-order real analysis or fourth-order number

theory, all within a nominalist framework. Thus, vast amounts of pure and

applied mathematics (including e.g. differentiable geometry of Riemannian

manifolds, measure theory, and much more) are nominalistically reducible.

6 Introduction
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(Indeed, we do not even need to invoke modality for this much, as actual space-

time regions furnish us with enough objects.)

Such constructions thus serve to undermine the well-known indispensa-

bility arguments for the need to recognize mathematical abstracta in order to

do justice to scientific applications of mathematics. In this sense, a nominalist

ontology is enough to support virtually all such applications, depriving

platonism of arguably its most powerful argument. Such considerations led

us to reassess nominalism in the essay of Chapter 5. They are there coupled

with an effort to reformulate nominalism as an epistemic thesis, rather than

a strictly ontological one, viz. that there is no compelling evidence or reason

for invoking mathematical abstracta, appearances to the contrary

notwithstanding.

There is, however, a consideration that suggests that that conclusion may go

too far. That is that the above constructions do not extend to abstract set theory,

even Zermelo set theory, not to say ZFC. While the modal-structural inter-

pretations of those set theories do eliminate the predicate ‘is a set’, much as ‘is

a number’ is eliminated, still the postulate of the possibility of enough objects

to form amodel of those set theories goes well beyond the reaches of nominalist

ontology, as described above. Not all such objects could be conceived as part of

space-time, even a space-time of higher dimension. (Even postulating

a continuum of dimensions would not take one far enough!) Yet, as the work

of Harvey Friedman suggests, abstract set theory may well be required to solve

problems at the level of sets of integers (see the essay, “On the Gödel–Friedman

program,” of Chapter 10). It is not inconceivable that such problems might

even arise within physics. In that case, the Quine–Putnam indispensability

argument could be restored. But for now that remains quite speculative.

Thus, the thrust of “On nominalism” is that at present, except for achieving

a realist understanding of higher set theory, a nominalist ontology qualifies as

a default position, trading places with platonist ontologies that have dominated

in the past.

Finally, on the topic of nominalism, the essay of Chapter 6, “Maoist mathe-

matics?”, which is a critical study of Burgess and Rosen’s [1997] book,

A Subject with No Object: Strategies for Nominalist Interpretation of

Mathematics, defends nominalistic reconstruction programs against the charge

of facing a dichotomy of either proposing (unjustifiably) to uncover the “real,

deeper meaning” of mathematical theories, or (recklessly) advocating

a revolutionary revision of mathematics as practiced. We argue that this is

a false dichotomy, that the nominalist programs considered by Burgess and

Rosen – those due to Field, Chihara, and Hellman – are proposed as neither

“hermeneutic” nor “revolutionary,” but rather serve as rational reconstructions

designed to mitigate epistemological and metaphysical problems confronting

platonistically construed mathematics.
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This brings us to Part II, which consists mainly of essays on predicative

mathematics, two of which were done jointly with Solomon Feferman. Now

predicative foundations grew out of the work of Russell, viz. his ramified type

theory, and writings of Poincaré andWeyl, and was designed to avoid so-called

impredicative definitions or specifications of sets, that is specifications by

formulas with quantifiers ranging over totalities which include the very set

being introduced. For example, consider the classical least upper bound prin-

ciple governing sets of real numbers. This says that any non-empty bounded set

of reals has a least upper bound (or greatest lower one). Specification of such

a bound involves a quantifier ranging over all (upper) bounds of the given set,

which of course includes the least bound. Thus the principle is called “impre-

dicative.”Now classical set theorists have no problem with such specifications,

as they regard the totalities of sets involved as objectively existing, independent

of their being picked out by our languages. But those with constructivist

inclinations find such specifications viciously circular (recall Russell’s “vicious

circle principle,” essentially a ban on impredicative specifications of sets or

other objects). Ultimately, this traces back to skepticism over the power-set

operation, passing from an infinite set to the set of all of its subsets. Instead, the

predicativist restricts this operation to taking the set of all definable subsets of

the given (infinite) set, where the definitions lack quantifiers ranging over the

very subset being specified.

As another paradigmatic example, consider the classical Fregean and

Dedekindian specifications of the totality of natural numbers as the intersection

of all classes containing the initial number (0 for Frege, 1 for Dedekind) and

closed under the successor operation. Again, this reference to “all classes”

includes the very class being introduced; hence the specification is impredicative.

The effect of this ban on impredicative specifications of sets is to avoid

uncountably infinite sets, in an absolute sense, as formulas of countable

languages are required to specify predicatively subsets of an infinite set.

Instead, the predicativist recognizes a kind of relative uncountability of the

real numbers, based on the negative conclusion of Cantor’s diagonalization

argument: given any putative enumeration of all the reals, the diagonal argu-

ment produces a real that differs from each real of the given enumeration. So far

so good. But this is just interpreted to mean that more reals need to be

recognized at any stage of construction. The continuum is thus viewed as an

incompleteable, indefinitely extensible totality, something like what even some

(but not all) classical set theorists recognize as true of the putative universe of

“all sets or ordinals.”

Two more features of predicative mathematics need to be mentioned here by

way of background. The first is that classical logic is accepted, distinguishing

predicative from constructive mathematics with its renunciation of the law of

excluded middle (framed either classically or with intuitionistic logical
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connectives). Predicative mathematics is thus known as “semi-constructivist.”

Second, as usually presented, predicative mathematics begins by taking the

natural numbers as given. Predicativity is understood as relative to the natural

numbers. Thus, Poincaré’s misgivings concerning logicism (which sought

a logical foundation of arithmetic) are taken to heart: the natural-numbers

system is regarded as more fundamental than the full battery of logicist

machinery (which included second- and higher-order logical notions, not

merely first-order ones).

There arises here, however, a nagging question: given that classical logicist

foundations of arithmetic had to resort to impredicative definitions to obtain

a natural-numbers structure, as reviewed above, would it not be better for

predicative mathematics to begin without taking that structure for granted,

but somehow to derive it (its existence)? After all, it is an infinite structure of

a special type.

As had been pointed out by Dan Isaacson [1987], the framework of

“weak second-order logic,” with axioms quantifying over finite sets as well

as individuals, does permit a characterization of a natural-numbers structure,

unique up to isomorphism. This suggested to me that it should be possible for

predicative mathematics to begin with an elementary theory of finite sets and

build up a natural-numbers structure predicatively relative to the notion “finite

set.” Extensive correspondence with Solomon Feferman, leading proof theorist

well known for developing predicative mathematics, then resulted eventually

in the two papers reprinted here as Chapters 7 and 8. Notably, the theory of

finite sets developed there is quite weak, lacking any axiom of finite-set

induction, thereby avoiding the charge of circularity of our construction,

which effectively derives mathematical induction governing natural numbers.

Furthermore, our derivation of existence and unicity of a natural-numbers

structure brings out an important difference between the notion of “finite set”

as compared with “natural number,” namely that finite sets are “self-standing”

rather than inherently part of a structure, whereas the opposite is true of “natural

number” (especially in Dedekind’s sense of “finite ordinal”). In our view, it

makes no sense to consider a natural number in isolation from a structure of at

least a segment of natural numbers; whereas reference to finite sets makes sense

apart from their belonging to a structure of, say, hereditarily finite sets (of some

given individuals) ordered by set-inclusion. The upshot is that we provide

a predicativist-logicist foundation of arithmetic, thereby meeting Poincaré’s

challenge.

This brings us to the essay of Chapter 9, “Predicativism as a Philosophical

Position,”where we assess the philosophical import of predicative foundations.

Various limitative theses are examined and found wanting, mainly because

their very assertion requires transcending the limits of predicativist mathe-

matics. Instead, we find the main contributions of predicative foundations to be
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in the area of mathematical epistemology, through its detailed examination of

“what rests on what” and “why a little bit goes a long way” (both of which

phrases are titles of insightful papers of Feferman).7 Unlike radical constructi-

vism (examined in Part III), predicativism does not purport to set limits to

classical mathematics, but rather seeks to show the sufficiency of predicative

methods for the vast bulk of scientifically applicable mathematics. It thus poses

a major challenge to the Gödel–Friedman program, which seeks to justify

abstract set theory as needed to solve ordinary (or ordinary-appearing)

mathematical problems.

The main point made in the last essay (Chapter 10) of Part II, “On the Gödel–

Friedman program,” is that Bayesian confirmation theory is relevant to meeting

this challenge posed by predicative foundations. As explained in that essay,

there is a major gap between statements of consistency of large cardinals and

statements asserting directly the mathematical existence of such cardinals. Yet

it is the former, not the latter, that recent work of Friedman demonstrates

equivalent to certain low-level combinatorial statements very similar to state-

ments that are provable without higher set theory (as in Friedman’s Boolean

Relation Theory (BRT)). As it stands, predicative mathematics is adequate for

proving the statements of BRT that have been shown equivalent to statements

of consistency of certain large cardinals. However, from the standpoint of

ordinary mathematical practice, such consistency statements are arcane render-

ings of metamathematical content of precisely the kind that the Gödel–

Friedman program seeks to improve upon. Our essay sketches how, in princi-

ple, a kind of inductive evidence can be gained to support the assertions of

mathematical existence of the relevant large cardinals. The latter can thus

emerge as the best explanation for a variety of independently justifiable con-

sistency statements, in line with Gödel’s ideas set out in his well-known [1947]

paper, “What is Cantor’s continuum problem?”

Turning to the essays of Part III, these focus on various logical systems used

in different approaches to mathematics and its foundations. Now, to one who

shares the popular misconception of mathematics as a cut-and-dried discipline

of universally agreed upon results, it may come as something of a shock to learn

that there are actually vastly different “schools” of mathematics favoring even

different logics. But that is actually the case, as manifested in the divergence

between mainstream classical mathematics based on (first- or higher-order)

classical logic on the one hand, and, on the other, various versions of con-

structive mathematics based on intuitionistic logic, well known for renouncing

certain classical logical laws, especially the law of excluded middle (that either

p or not-p holds for any mathematical sentence, p) and proof of existence by

7 See Feferman [1998].
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