Index

AANS. See American Association of Neurological Surgeons
absolute truth, 22–3
absolute values, 23–4
accelerometer data, 85–7
current collection and use of, 87–8, 89
ethical issues in, 92
case illustration of, 93
access to brain-machine-interface technology, 230
to neurosurgical care, 234, 235–6
active data, 86
acts, in withholding and withdrawal of treatment, 48–9
administrators, healthcare, 80–1
adult stem cells, 214–15
ethics of using, 215–16
processing and manufacturing of, 216–17
advance directives, treatment refusal and, 39–40
age, surgeon. See surgeon aging
Age Discrimination in Employment Act of 1967, 68
agency, brain-machine-interface technology and, 225–7
Aging Surgeon program, 70–1
ALS. See amyotrophic lateral sclerosis
AMA. See American Medical Association
American Association of Neurological Surgeons (AANS), neurosurgical code of ethics, 98–9
American Medical Association (AMA), Code of Ethics, 96
American Society of Bioethics and Humanities

(ASBH), standards and best practices in ethics consultation, 16
A-MI. See ante mortem interventions
amyotrophic lateral sclerosis (ALS), 228–9
aneurysmal subarachnoid haemorrhage (aSAH), 145, 152
background information, 145–6
current evidence
BRAT, 147–8
ISAT, 147
Kuopio trial, 146–7
ethical issues, 148
conflicts of interest, 149–50
randomized controlled trial limitations, 148–9
future directions
ISAT II, 150
service development implications, 152
training implications, 150–1
animal models, of stem cell interventions, 217
anosognosia, surgeon, 69
ante mortem interventions (A-MI), 198–9
apnoea test, 197
applied ethics, 5
Aristotle, 7–8
aSAH. See aneurysmal subarachnoid haemorrhage
ASBH. See American Society of Bioethics and Humanities
augmentation, brain-machine-interface technology for, 230–1
autonomy, 12, 13, 20–1, 22
beneficence at expense of, 23–4
brain machine-interface technology and, 225, 226
consent protection of, 29–30
economic issues and, 78–9
relational, 30, 36–7
treatment refusal and, 39–40
Barrow Ruptured Aneurysm Trial (BRAT), 147–8
BCI. See brain computer interface
BCI illiteracy, 229–30
beneficence, 12, 13, 20–1, 22
at expense of autonomy, 23–4
benefit of brain-machine-interface technology, 228–9
of psychosurgery, 180
benevolent donation, 236
Bentham, Jeremy, 7, 241
best interests standard, 42–3
bias, passive data use causing, 91
bioethics, 97–8. See also ethics
clinical decision-making challenges and, 1–2
definition of, 98
early neurosurgical, 97–8
bionic vision devices, 225, 229
Bland, Anthony, 43–4, 47, 48
bone marrow transplant, 36
brain computer interface (BCI), 224–5, 231–2
background
current evidence, 225
history, 225
enhancement and augmentation using, 230–1
ethical issues
agency and identity, 225–7
informed consent, 227–30
privacy and security, 227
future directions, 231
consequentialist theories, 7, 13
consultation, ethics, 16–18
contextual futility, 44, 45
continental philosophy, 8–9
continuing professional development, age-related regulations in, 68
contracatarianism, 241
Convention of the Rights of People with Disabilities, 42
Corticosteroid-Randomization-after-Significant-Head injury (CRASH), 1–2, 129, 130, 131
cost-effectiveness, in clinical decision-making, 74–5, 79–80
costs, healthcare, 73–4
Council of Medical Education, age-related codes of ethics, 69
CRASH. See Corticosteroid-Randomization-after-Significant-Head injury
critical appraisal, in evidence-based neurosurgery, 108–9
cultural context, of psychosurgery, 185–6
cultural norms, 242
cultural sensitivity, 238
cultural values, 22–3
curriculum ethics training in, 56–7, 61 professionalism in, 56, 61
Cushing, Harvey, 97
cyborgs, 230–1
Dandy, Walter, 97
data background on, 85–7 in brain machine-interface technology, 227
current collection and use of, 87–8, 89
ethical issues in, 88
case illustrations of, 92, 93 collection, 88–90 ownership, 90–1 storage, 91
use, 91–2
future directions in, 93
generation of, 86–7
types of, 85
DBS. See deep brain stimulation
DCD. See donation after circulatory death
dead donor rule (DDR), 193, 194–5, 196–7, 200, 202
death. See also brain death
brain death as form of, 195
diagnosis of, 193–4
DECIMAL trial, 136
decision-making. See clinical decision-making; surgical decision-making
decision-makers, for incapacitated patients, 41–2
decision-making standard, for incapacitated patients, 42
decompressive cranectomy, 1–2
prediction of long-term outcomes after, 129, 130–2
for severe TBI, 1–2, 123–4
decompressive hemicraniectomy, for malignant middle cerebral artery infarction, 143
background information, 134
case illustrations, 139–40
current evidence, 136–7
ethical issues, 137–40
evidence-based medicine applied to, 25–6
future directions, 140–3
for patients over 60 years of age, 138–9
for patients under 60 years of age, 137–8
DECRA study, 124–5
deep brain stimulation (DBS) consent considerations for, 35
televisioned live, 251, 252–3
degenerative spine disease, prevalence of, 170
deontology, 6, 241
Derrida, Jacques, 8
DESTINY II trial, 137, 138, 139
DESTINY trial, 136
diabetes insipidus, in brain death, 196
digital phenotyping, 87–8
dignity, 20–1, 22
consent and, 29–30
disability, after TBI, 1–2, 126–9
disability paradox, 126–8
disclosure, in consent for brain machine-interface technology, 228
disproportionate treatment, 45, 46
distributive justice, 20–1, 24
doctor-centred approach, to consent, 33–4
Donaldson, Lord, 39–40
donation after circulatory death (DCD), 193, 194–7, 200
ante mortem interventions in, 198–9
donor organs. See organ donation
EBM. See evidence-based medicine
EBN. See evidence-based neurosurgery
economics, healthcare. See healthcare economics education. See medical education
efficacy, of brain machine-interface technology, 230
embryonic stem cells (ESCs), 214–15
ethics of using, 215–16
processing and manufacturing of, 216–17
research with, 216
enhancement, brain machine-interface technology for, 230–1
epidemiology, research designs in, 101–2, 103
equity of access, to brain machine-interface technology, 230
Equivalence thesis, 49, 50
ESCs. See embryonic stem cells
ethical principles consequentialist theories, 7, 13
continental philosophy and postmodernism, 8–9
deontology, 6, 241
feminist moral philosophy, 9
in healthcare, 9–10
international neurosurgical
initiatives and, 241
utilitarianism, 7, 13, 241
in values-based medicine, 20–1, 22
virtue theory, 7–8
ethical relativism, 22–3
ethical theories, international
neurosurgical
initiatives and, 241–2
ethical truth, 22–3
ethics. See also bioethics;
ethical principles
areas of, 5
clinical practice value of, 10–11
of consent, 29–30
consultation, 16–18
definition of, 5
education on, 54–5, 56–7, 61
evidence-based medicine
and, 3–4, 5, 25–6
historical overview of
neurosurgical, 95, 99
early virtue ethics, 96–7
medical ethics, 95–6
modern ethical
collections, 98–9
societal issues and early
bioethics, 97–8
local, 239–40
models and methods in, 12
case illustration, 12, 13, 14,
15, 16, 17–18
casuistry, 15
communitarian, 14,
15, 242
consultation methods,
16–18
ethics of virtue, 15, 16
feminist ethics, 14
narrative ethics, 13–14
principicism, 12, 13
religion and theology, 16
utilitarianism, 7, 13, 241
principles of modern day
medical, 20–1, 22
professional, 26–7
rights compared with, 4–5
ethics consultation, standards
and best practices in,
16–18
ethics of virtue, 7–8, 15, 16
early neurosurgical, 96–7
European stoke trials, 136, 138
ethanasia
in newborns, 157–60
organ donation and, 200
treatment withdrawal
comparing with, 47–51
evidence
evaluation of level/class of,
106–7
evaluation of quality of,
105, 107
evidence-based
medicine (EBM)
evaluated and, 3–4, 5, 25–6
limitations of, 24–6
psychosurgery ethical issues
and, 180
values-based medicine
and, 24–7
evidence-based neurosurgery
(EBN), 101, 109–10
challenges of, 109
clinical decision-making
and, 104–6
concept of, 101, 102
critical appraisal in, 108–9
evaluation of level/class of
evidence in, 106–7
evaluation of quality of
evidence in, 105, 107
grading of strength of
recommendations in,
107–8
methodology of, 102–4
research designs in
neuropediatrics, 101–2, 103
expectations, for brain
machine-interface
technology, 228,
229–30
experimental interventions,
considerations and,
35
false advertising, in
international
neurosurgical
initiatives, 239
family veto, of organ donation,
197–8
feminist ethics, 14
feminist moral philosophy, 9
financial incentives
for organ donation, 198
for performance of medical
procedures, 81–2
focused teaching, 236
Foucault, Michel, 8
‘Four Topics’ method, 16,
17
fraud, 32–3
Freeman, Walter, 97–8
futility, 44–6
survival after severe TBI and
debate over, 128–9
Gillick competence, 30
global health initiative. See
international
neurosurgical
initiatives
global positioning satellite
(GPS) data, 85–7
current collection and use of,
87–8, 89
ethical issues in, 88
case illustration of, 93
data collection, 88–90
data ownership, 90–1
data storage, 91
data use, 91–2
Goff, Lord, 47
Good Practice guidelines, 79
government investment, in
neurosurgical
research, 78
GPS data. See global
positioning satellite
data
grading of, recommendations,
107–8
Grindley, Greg, 251
Groningen protocol, 157–60
guild ethics, 95
Haddenbrock, Siegfried, 97–8
HAMLET trial, 136
harm, neurosurgery
causing, 180
Health Information
Technology for
Economic and Clinical
Health Act
(HITECH), 85–6
Health Insurance Portability
and Accountability Act
(HIPAA), 85–6
healthcare, ethical frameworks
and principles in,
9–10
healthcare economics, 73, 83
background information on, 73–4
case illustrations of, 81–2
costs in, 73–4
current evidence in, 74–6
ethical issues in, 76–82
future directions in, 82–3
resource distribution in, 73, 74–5, 81
healthcare professionals, liability of, in cases of treatment withholding and withdrawal, 43–4
hESCs. See human embryonic stem cells
HIPAA. See Health Insurance Portability and Accountability Act
Hippocrates, 95
Hippocratic Oath, 95
HITECH. See Health Information Technology for Economic and Clinical Health Act
honesty, 20–1, 22
hope, relational function of consent in, 36–7
human embryonic stem cells (hESCs), 214–15
ethics of using, 215–16
processing and manufacturing of, 216–17
research with, 216
human rights, ethics compared with, 4–5
humanity, brain machine-interface technology and, 226
Hume, David, 3
hyper-interaction, 231
hypothermia, for severe TBI, 123
ICP monitoring, for severe TBI, 123
identity
brain machine-interface technology and, 225–7
in consent, 31
identity change, neurosurgery risks for, 34
illiteracy, BCI, 229–30
IMPACT. See International-Mission-for-Prognosis-and-Clinical-Trial
implicit curriculum, 57
incapacitated patients
decision-makers for, 41–2
decision-making standard for, 42
healthcare professional liability in death of, 43–4
when to withdraw or withdrawal treatment for, 42–3
individual values, 23–4
induced pluripotential stem cells (iPSCs), 214–15
ethics of using, 215–16
processing and manufacturing of, 216–17
informed consent, 33–4
for brain machine-interface technology, 227–30
for decompressive hemicraniectomy for malignant middle cerebral artery infarction, 140
neurosurgical innovation and, 210–11
in paediatric neurosurgery, 163–4
for passive data collection, 88–90
for spinal neurosurgery, 168–9
for stem cell research, 215–16
initiatives, international neurosurgical. See international neurosurgical initiatives
innovation
brain tumour management and, 118–19
consent considerations and, 35
ethical aspects of, 205–6, 212
conflicts of interest, 208–9
future directions, 211–12
informed consent and vulnerable patients, 210–11
introduction of surgical devices, 209–10
learning curve, 210
oversight, 206–8
in spinal neurosurgery, 169
instrumental value, 20, 23–4
intelligence, age-related changes in surgeon, 64–5
international neurosurgical initiatives, 234
background, 234–5
case illustrations, 242, 243
ethical analysis, 240
ethical principles, 241
ethical theories, 241–2
future directions, 243
intervention issues
local ethics, 239–40
misrepresentation and false advertising, 239
provision of care with less-than-ideal resources or circumstances, 239
post-intervention issues
end point determination, 240
inappropriate application of teaching, 240
pre-intervention issues
coordination of efforts, 237
cultural sensitivity, 238
international research, 238–9
reflection on motives, 235
selection of initiative location, 236–7
selection of initiative model, 236
surgery vs. primary care needs, 235–6
team selection, 237
International Society for Stem Cell Research (ISSCR), 216
International Subarachnoid Aneurysm Trial (ISAT), 147
II, 150
International-Mission-for-Prognosis-and-Clinical-Trial (IMPACT), 129, 130
Internet data, 87–8, 89. See also social media data
intracranial hypertension, 1
intrinsic value, 20, 23–4
of life, in treatment
withholding and
withdrawal
decisions, 46–7
introduction, of surgical
devices, 209–10
iPSCs. See induced
pluripotent stem cells
disability, survival with severe, 
after TBI, 126–9
ISAT. See International
Subarachnoid
Aneurysm Trial
ischaemic stroke. See
malignant middle
cerebral artery
infarction
ISSCR. See International
Society for Stem Cell
Research
Japan, televised live surgery in, 
246–50
Japanese Society for
Cardiovascular Surgery
(JSCVS), guidelines for
live presentations of
thoracic and
cardiovascular surgery, 
248–50
Jehovah’s Witnesses, 162–3
JSCVS. See Japanese Society for
Cardiovascular Surgery
justice, 12, 13, 21, 22
brain machine-interface
technology and, 230
distributive, 20–1, 24
Kant, Immanuel, 6, 241
Kantian deontology, 6, 241
kidneys, sale of, 198
Kuopio trial, 146–7
laboratory training, 59
law of diminishing marginal
returns, 75
learning curve, in
neurosurgical
innovation, 210
legal considerations
in diagnosis of death, 
197, 200
in treatment decisions for
incapacitated patients
decision-makers for, 41–2
decision-making standard
for, 42
healthcare professional
liability in death of, 43–4
when to withhold or
withdrawal treatment
for, 42–3
levels of evidence, 106–7
Levinas, Emmanuel, 8
liability
brain machine-interface
technology and, 226–7
in cases of treatment
withholding and
withdrawal, 43–4
life, intrinsic value of, in
treatment withholding and
withdrawal decisions, 46–7
LIS. See locked in syndrome
lobotomy, 97–8
locked in syndrome (LIS), 
228–9
Maimonides, 95
malignant middle cerebral
artery infarction, decompressive
hemiancietomoy for, 
25–6, 134, 135, 136, 143
background
information, 134
case illustrations, 139–40
current evidence, 136–7
ethical issues, 137–40
evidence-based medicine
applied to, 25–6
future directions, 140–3
for patients over 60 years of
age, 138–9
for patients under 60 years of
age, 137–8
management, healthcare, 80–1
mandated choice, for organ
donation, 198
mandated request, for organ
donation, 197–8
mandatory reporting, of
impaired surgeons, 69
mandatory retirement ages, 68
market, health care provision
as, 76–81
material risks, patient
awareness of, 33–4
mature minor doctrine, 30
McMath, Jahi, 47, 197
MCS. See minimally conscious
state
medical data. See data
medical decapitation, 196
medical education, 54, 62
current evidence in
ethics training, 56–7
patient safety in
neurosurgery, 55–6
professionalism, 56
ethical issues in
case illustrations of, 
60–1
consent, 59
laboratory training and
simulator use, 59
surgery by residents, 
57–8, 60–1
technology-associated, 
59–60
future directions in
integrated lecture/case-
based curriculum in
ethics, 61
simulators in
training, 61–2
historical background
of, 54–5
medical ethics. See ethics
Medical Ethics (Percival), 96
medical futility, 44–6
medical neglect, 160–2
medical professionalism, 26
memory decline, surgeon, 
64–5
mental illness, neurosurgery
for, 175, 189
consent considerations in, 
34, 182–3
eye bioethics and, 97–8
ethical issues in, 179–87
ethical regulation of, 
187–9
new advances in, 175–6
recent history of, 176–9
metaethics, 5
middle cerebral artery
infarction. See
malignant middle
cerebral artery
infarction
Mill, John Stuart, 7, 241
minimally conscious state
(MCS), 228–9
misrepresentation, in international neurosurgical initiatives, 239
modified Rankin Scale (mRS), 137
Moniz, Egas, 180
moral distress, 75–6
moral exercise, practice of medicine as, 3–4, 5
moral fictions, in brain death and DCD definitions, 196–7
moral philosophy, 5
feminist, 9
moral virtue, 7–8
Morrissey proposal, 200
motives, of international neurosurgical initiatives, 235
mRS. See modified Rankin Scale
Mustill, Lord, 32, 48
narrative ethics, 13–14
negative rights, 4
neglect, medical, 160–2
neural privacy, brain-machine-interface technology and, 226
neurobionics, 224
neurocognitive decline, surgeon, 64–5
neuroepidemiology, research designs in, 101–2, 103
neurological disease, stem cell interventions for, 219–21, 222
neuroprosthetic devices, 224, 225, 229, 230
neurosurgery. See also evidence-based neurosurgery; surgical training; specific surgeries
access to, 234, 235–6
changes in practice of, 65–6
consent for
innovation, vulnerability and therapeutic misconception considerations in, 35
mental illness considerations in, 34, 182–3
as necessary, ethical component to surgery, 37
personality and identity change considerations in, 34
therapeutic ambivalence considerations in, 36
disparities within, 77
economic considerations in, 76–82
economic costs of, 73
ethical frameworks and principles in, 9–10
ethics training in, 56–7
government investment in, 78
historical overview of ethics in, 95, 99
early virtue ethics, 96–7
medical ethics, 95–6
modern ethical contributions, 98–9
societal issues and early bioethics, 97–8
innovation in brain tumour management and, 118–19
conflicts of interest in, 208–9
consent considerations and, 35
ethical aspects of, 205–6, 212
future directions of, 211–12
informed consent and vulnerable patients in, 210–11
introduction of surgical devices, 209–10
learning curve in, 210
oversight of, 206–8
in spinal neurosurgery, 169
patient safety in, 55–6
by residents, 57–8, 60–1
surgeon age impact on, 64, 66–7, 69–70, 71
televised live, 245–6, 253
history of, 246–50
neurosurgical role of, 250–1
participant related issues in, 245, 248
patient centred issues in, 245, 246
public neurosurgery, 251, 252–3
surgeon centred issues in, 245, 247
value of ethics to, 10–11
new public management (NPM), 74, 75–6, 78
newborns, euthanasia in, 157–60
non-culpable omission, 43–4
non-embryonic stem cells, 214–15
non-maleficence, 12, 13, 20–1, 22
normality, brain-machine-interface technology and, 226
normative ethics, 5
NPM. See new public management
omissions, in withholding and withdrawal of treatment, 48–9
operating room, neurosurgery utilization of, 77–8
opt-in consent, for organ donation, 197–8
opt-out consent, for organ donation, 197–8
organ donation, 193, 194–5, 201–2
ante mortem interventions for, 198–9
background, 193–4
conflicts of interest in, 199–200
consent for, 197–8
ethical issues, 195–7
euthanasia and, 200
financial incentives for, 198
future directions, 200
in paediatric patients, 163
Osler, William, 96
outcomes assessment, for psychosurgery, 180
oversight, for neurosurgical innovation, 206–8
ownership, of patient data, 90–1
treatment withholding (cont.)
for incapacitated patients, 42–3
decision-makers for, 41–2
decision-making standard for, 42
healthcare professional liability in death of, 43–4
when to withhold or withdrawal treatment for, 42–3
practical considerations in, 44
difference between withholding and withdrawal, 47–9, 50
medical futility, 44–6
neurosurgical case illustration of, 49–51
quality of life and intrinsic value of life, 46–7
technology impact on, 39
trust, relational function of consent in, 36–7
truth, ethical, 22–3
truthfulness, 20–1, 22

Universal Declaration of Human Rights (UDHR), 4
universal truth, 22–3
universal values, 23–4
unprofessional behaviours, in surgical training, 58
unproven interventions, stem cell, 218–19
use, data, 87–8, 89, 91–2
user safety, for brain machine-interface technology, 229
utilitarianism, 7, 13, 241
values
absolute and universal, 23–4
conflicts of, 23–4
of consent, 29–30
cultural and societal, 22–3
individual, 23–4
intrinsic and instrumental, 20, 23–4
patient, 22–4, 26
technology and, 20
values-based medicine (VsBM), 20
concept of, 20–4
conflicts between values in, 23–4
definition of, 20
distribution of resources in, 24
ethical truth and relativism in, 22–3
evidence-based medicine and, 24–7
medical ethics principles and, 20–1, 22
patient care and interest as center of care in, 27
professional ethics in, 26–7
virtual reality (VR), surgical training with, 61–2
virtue ethics, 7–8, 15, 16
early neurosurgical, 96–7
voluntariness, of consent, 31
VR. See virtual reality
VsBM. See values-based medicine
vulnerability
consent and, 35
neurosurgical innovation and, 210–11

Wada, Juro, 194
Watts, James, 97–8
White, Robert, 98
white knight syndrome, 235
whole brain death, 196–7
withholding and withdrawal of treatment. See treatment withholding and withdrawal
Wittgenstein, Ludwig, 3
workforce, surgical, 65
World Federation of Neurosurgical Societies, Statement of Ethics in Neurosurgery, 79, 99