Computational Design of Engineering Materials

Successful computational design of engineering materials requires a combination of multiscale computational methods such as the CALPHAD method, first-principles calculations, phase-field simulation, and finite element analysis, covering the atomicmeso-macro scale ranges. Written jointly by a team of recognized experts in these fields, this book provides unique insights in both the fundamentals and case studies for a variety of materials. The fundamentals of computational thermodynamics, thermophysical properties, first-principles calculations, mesoscale simulation methods, and crystal plasticity finite element method are introduced. The nonspecialist reader with a general science or engineering background should understand these tools deeply enough to consider their applicability and assess the results. In particular, the important role of CALPHAD and its scientific databases in materials design and the integration of simulation tools at different levels are highlighted. Case studies for designing a wide range of materials, including steels, light alloys, superalloys, cemented carbides, hard coating, and energy materials, are demonstrated in detail through a step-by-step methodology. Ancillary materials provide the reader with hands-on experience in simulation tools. This book is intended for professionals in design of engineering materials and other materials, being also an invaluable reference to graduates, undergraduates, researchers, and engineers who use various computational tools in their study, research, and/or development of materials.

Yong Du received his PhD from Central South University (CSU) of China in 1992. From 1993 to 2003, he continued his research at the Tokyo Institute of Technology, University of Barcelona, Clausthal University of Technology, University of Vienna, and University of Wisconsin at Madison. Since 2003, Du has been a professor at CSU. His research fields are thermodynamics, thermophysical properties, and materials design. His recognitions and honors include the National Outstanding Youth by the National Natural Science Foundation of China (NSFC), the Cheung Kong Chair Professorship by the Ministry of Education of China, the Leader of the Innovative Research Team by the NFSC, and the Leader of 973 National Basic Research Program of China. Du is an associate editor for both *CALPHAD* and the *Journal of Phase Equilibria and Diffusion*. He has been awarded one First-Class Prize of Hunan Provincial Natural Science Award, one Third-Class Prize of National Natural Science Award of China, and one best paper prize of the Alloy Phase Diagram International Committee (APDIC).

Rainer Schmid-Fetzer received his PhD from Clausthal University of Technology (TU Clausthal) in 1977. With background in metallurgy and physics he earned merits in thermodynamics, solidification, interface reactions and applications to designing alloys. His career comprised research at the University of Wisconsin at Madison between 1982 and 1984, as lecturer, and professor at TU Clausthal and also in 1994 at the Microelectronics and Microsystems section of the Daimler Benz Corporate Research Institute, Frankfurt, and in 1997 as Visiting Professor at the University of Wisconsin at Madison. He retired in 2015. Schmid-Fetzer is an associate editor of the *Journal of Phase Equilibria and Diffusion* and a member of the advisory

board of the *International Journal of Materials Research* (formerly *Zeitschrift für Metallkunde*). He is a fellow of ASM International since 2003. He has been awarded the most prestigious honors and awards, including the Tammann Award and Werner-Köster Prize from the German Society of Materials, the Hume-Rothery Prize of British IoM3, the William Hume-Rothery Award from the Minerals, Metals, and Materials Society (TMS) of USA, and the Lee Hsun Lecture Award from the Institute of Metal Research of the Chinese Academy of Sciences.

Jincheng Wang received his PhD from Northwestern Polytechnical University of China in 2001. He did postdoctoral work at the National Institute for Materials Science of Japan from 2002 to 2004. Since 2005, Wang has been working at the State Key Laboratory of Solidification Processing at the Northwestern Polytechnical University as lecturer, associate professor, and professor. From 2009 to 2010, he worked at the Institute of Space and Astronautical Science of Japan as a visiting professor for six months. His major research fields include solidification; modeling and simulation of microstructure evolution; alloy design; additive manufacturing; and high-entropy alloys. His awards include two Second-Class Prizes of Shaanxi Provincial Natural Science Award.

Shuhong Liu received her PhD from Central South University (CSU) in 2010. Then she did postdoctoral work for one year at the Materials Chemistry Institute of RWTH Aachen University. Since 2010, Liu has been working at the Research Institute of Powder Metallurgy of CSU as lecturer, associate professor, and professor. She is an editorial member of the *Journal of Mining and Metallurgy B*. Her awards include the best paper prize of APDIC and the First-Class Prize of Hunan Provincial Natural Science Award. Her research interests include phase diagram, CALPHAD-type calculations of thermodynamic and thermophysical properties, as well as corrosion and precipitation simulation.

Jianchuan Wang received his PhD from Central South University (CSU) in 2012, being a visiting PhD student in 2011 at Max-Planck-Institut für Eisenforschung GmbH. Since 2013, he has been working at the State Key Laboratory of Powder Metallurgy of CSU as lecturer and associate professor. His major research focuses on using first-principles calculation and molecular dynamics to study defect properties, diffusion, thermodynamics, interface in condensed matter, especially in hydrogen storage materials, and Li-ion batteries. He has (co)authored more than 60 peer-reviewed publications.

Zhanpeng Jin received his master's degree from the Central South Institute of Mining and Metallurgy of China in 1963. He continued his teaching and research there from 1964 until he retired in 2018. From 1978 to 1980, Jin worked at the Royal Institute of Technology of Sweden as a visiting scholar. He was an associate editor of *CALPHAD* and a member of the Asia Pacific Materials Academy. In 2006, Jin became an academician of the Chinese Academy of Sciences. He received one Third-Class Prize of National Natural Science Award of China. CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-49410-6 — Computational Design of Engineering Materials Yong Du , Rainer Schmid-Fetzer , Jincheng Wang , Shuhong Liu , Jianchuan Wang , Zhanpeng Jin Frontmatter More Information

Computational Design of Engineering Materials

Fundamentals and Case Studies

YONG DU Central South University

RAINER SCHMID-FETZER Clausthal University of Technology

JINCHENG WANG Northwestern Polytechnical University

SHUHONG LIU Central South University

JIANCHUAN WANG Central South University

ZHANPENG JIN Central South University

MATERIALS RESEARCH SOCIETY

Advancing materials. Improving the quality of life.

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108494106

DOI: 10.1017/9781108643764

© Cambridge University Press and Assessment 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress.

ISBN 978-1-108-49410-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Y. Du wishes to dedicate this book to Professor Peiyun Huang, who received his PhD from MIT in 1945 and was one of the two supervisors (along with Professor Zhanpeng Jin) for Du's research.

1

2

Cambridge University Press & Assessment 978-1-108-49410-6 — Computational Design of Engineering Materials Yong Du , Rainer Schmid-Fetzer , Jincheng Wang , Shuhong Liu , Jianchuan Wang , Zhanpeng Jin Frontmatter <u>More Information</u>

Contents

	word		page x	
-	B. Olson			
Preface			xvi	
Ackn	owledg	gments	xiy	
Intro	duction		1	
1.1	Defini	tion of a Few Terms Used in Computational Design		
	of Ma	terials	2	
1.2	The Pa	ast and Present Development of Computational Design		
	of Eng	gineering Materials	3	
1.3	The St	tructure of the Book	7	
Refe	rences		9	
Fund	lamenta	als of Atomistic Simulation Methods	12	
2.1	Density Functional Theory			
	2.1.1	The Many-Body Schrödinger Equation	13	
	2.1.2	The Hartree Approximation	15	
	2.1.3	Kohn–Sham Equation	15	
	2.1.4	Pseudopotential Method	20	
2.2	Molecular Dynamics			
	2.2.1	The Basic Mechanical Quantities in MD	22	
	2.2.2	Periodic Boundary Conditions	26	
	2.2.3	Time Integration Algorithm	28	
	2.2.4	Ensemble	29	
	2.2.5	Procedure of MD Simulation	30	
	2.2.6	Ab Initio Molecular Dynamics	31	
2.3	Some Quantities Obtained from First-Principles Calculations			
	2.3.1	Lattice Parameter	33	
	2.3.2	Thermodynamic Properties above 0 K	35	
	2.3.3	Elastic Properties	36	
		Defect Properties	39	
2.4	A Case Study: Design of an Ultra-lightweight Mg-Li Alloys Using			
	First-Principles Calculations			
Refe	ferences			

viii	Cont	tents	
3	Fun	damentals of Mesoscale Simulation Methods	46
5	3.1	Mesoscale Simulation	47
	3.2	Phase-Field Method	48
	5.2	3.2.1 History of the Phase-Field Method	48
		3.2.2 Principles of the Phase-Field Method	50
		3.2.2.1 Diffuse Interface	50
		3.2.2.2 Order Parameter	51
		3.2.2.3 Free-Energy Functional	51
		3.2.2.4 Dynamic Equations	52
		3.2.2.5 Anisotropy	53
		3.2.3 Phase-Field Model for Solidification of a Pure	55
		Substance	54
		3.2.4 Phase-Field Model for Alloy Solidification	55
		3.2.4.1 WBM Model	55
		3.2.4.2 KKS Model	56
		3.2.5 Multiphase-Field Model	58
		3.2.6 Phase-Field Crystal Model	60
		3.2.7 Microscopic Phase-Field Models	63
		3.2.8 Applications of the Phase-Field Method	65
	3.3	Cellular Automaton Method	66
	5.5	3.3.1 Historical Background	67
		3.3.2 Principles of the Cellular Automaton Method	67
		3.3.3 Classical Cellular Automaton Model	68
		3.3.3.1 Nucleation Model	69
		3.3.3.2 Grain Growth Model	69
		3.3.4 Modified Cellular Automation Model	71
		3.3.4.1 Growth Kinetics and Orientation	71
		3.3.4.2 Solute Redistribution	71
		3.3.4.3 Thermal Transport	72
		3.3.4.4 Interface Curvature	72
		3.3.5 Discussion Regarding Grid Anisotropy	72
		3.3.6 Applications of the Cellular Automation Method	73
	3.4	Other Mesoscale Simulation Methods	74
	5.7	3.4.1 Front-Tracking Method	75
		3.4.2 Level-Set Method	75
		3.4.3 Comparisons among Different Mesoscale	70
		Simulation Methods	77
	3.5	Integration of the Phase-Field Method with Other	11
	5.5	•	79
		Simulation Approaches 3.5.1 PF Modeling with Atomic Simulations	79 79
		•	79 82
			82 84
		3.5.4 PF Modeling with CALPHAD	86 87
		3.5.5 PF Modeling with Machine Learning	87

			Contents	ix
	3.6		e Study: Phase-Field Design of High-Energy-Density	
	5.0		ner Nanocomposites	89
	Refe	erences		90
4	Fund	damenta	als of Crystal Plasticity Finite Element Method	95
	4.1	•	al Plasticity and Its General Features	95
	4.2		Concepts and Equations of Continuum Mechanics	96
			Definition of a Few Basic Terms in Continuum Mechanics	96
			Three Coordinate Systems and the Deformation Gradient	97
		4.2.3	I I I I I I I I I I I I I I I I I I I	98
			Polar Decomposition	99 99
	4.3	4.2.5 Mech	Eulerian and Lagrangian Finite Strain Tensors anical Constitutive Laws of Crystal Plasticity	99 100
	т.5	4.3.1		100
			Constitutive Models for Displacive Transformation	101
	4.4		Introduction to the Finite Element Method	103
	4.5	Softwa	are and Procedure for the Crystal Plasticity Finite	
		Eleme	ent Simulation	105
		4.5.1		105
			Procedure for the Crystal Plasticity Finite Element Method	107
	4.6		se Study: Plastic Deformation-Induced Surface Roughening	100
	Pofe	in Al	Polycrystals	108 111
	Ken	lichees		111
5			als of Computational Thermodynamics and the CALPHAD Method	113
	5.1		uction	114
	5.2	5.2.1	iew of the CALPHAD Method	115 115
			Origins and Development of the CALPHAD Method Principles of the CALPHAD Method	115
		5.2.2	Overview of Commercial and Open-Source	110
		0.2.0	CALPHAD-Based Software	122
	5.3	Therm	nodynamic Modeling of Gibbs Energy	123
		5.3.1	Phases with Fixed Composition	123
			5.3.1.1 Pure Elements	123
			5.3.1.2 Magnetic Contribution	125
			5.3.1.3 Pressure Contribution	127
			5.3.1.4 Stoichiometric Compounds	129
		5.3.2	Solution Phases	133
			5.3.2.1 Substitutional Solution	133
			5.3.2.2 Gas Phase5.3.2.3 Associate Solution	138 140
			5.3.2.4 Quasichemical Model	140
			5.3.2.5 Comparison of Models for Ordered Liquid Solutions	145
			5.3.2.6 Sublattice Model for Solid Solution Phases	146
				-

Х	Cont	tents		
	5.4	Establ	ishment of Thermodynamic CALPHAD Databases	155
	5.5	Alloy	Design Applications Using Solely Thermodynamic	
		CALP	PHAD Databases	159
		5.5.1		159
		5.5.2	II I I I I I I I I I I I I I I I I I I	160
			5.5.2.1 Stable Phase Diagram Calculations	162
			5.5.2.2 Metastable Phase Diagram Calculations	166
			5.5.2.3 Property Diagram Calculations	168
		5.5.3	11	170
	5.6	•	Design Applications Using Extended CALPHAD-Type Databases	178
			Overview	178
			Simulation of Solidification	179
	57	5.6.3		181
	5.7		e Study: CALPHAD Design of Al Alloys with High Resistance	10/
	Dafe	erences	t Tearing	184
	Kelt	erences		189
6	Fund		als of Thermophysical Properties	198
	6.1		tion of Thermophysical Properties	199
	6.2	Diffus	ion Coefficient	200
			Fick's Laws of Diffusion and Various Diffusion Coefficients	200
		6.2.2	Atomic Mechanism of Diffusion	204
			6.2.2.1 Interstitial Mechanism	205
			6.2.2.2 Direct Exchange and Ring Mechanisms	205
			6.2.2.3 Vacancy Mechanism	205
			6.2.2.4 Indirect Interstitial Mechanism	205
			6.2.2.5 Diffusion in Ordered Phase	206
		6.2.3		205
			Multicomponent Systems	207
			6.2.3.1 Interdiffusion in Binary Systems	207
			6.2.3.2 Interdiffusion in Ternary Systems	210
		624	6.2.3.3 Interdiffusion in Multicomponent Systems	217
		6.2.4	Diffusion in Phases with Narrow Homogeneity Ranges	219
			6.2.4.1 Wagner's Approach	219
		6.2.5	6.2.4.2 Du and Schuster Approach Short-Circuit Diffusion	220 223
		0.2.3	6.2.5.1 A-Type Kinetic Regime	223
			6.2.5.2 B-Type Kinetic Regime	224
			6.2.5.3 C-Type Kinetic Regime	223
		6.2.6	Computational Methods for Calculations of Diffusivity	220
		0.2.0	6.2.6.1 Atomistic Description of Diffusion	227
			6.2.6.2 MD Simulation	232
			6.2.6.3 Semi-Empirical Methods	232
			6.2.6.4 Diffusion Simulations Using DICTRA Software	235
			0.2.0.1 Diffusion officiations Using DICTICA Software	250

	Conte	nts xi			
	6.3 Interfacial Energy	239			
	6.4 Viscosity	243			
	6.5 Volume	245			
	6.6 Thermal Conductivity	247			
	6.7 Some Other Thermophysical Properties	251			
	6.8 Establishment of Thermophysical Property Databases6.9 A Case Study: Precipitation and Age Hardening in an AA6005	252			
	Al Alloy	253			
	References	253			
	References	231			
7	Case Studies on Steel Design	264			
	7.1 Brief Introduction about Steel	264			
	7.2 Ultrahigh-Strength and Corrosion-Resistant Ferrium S53 Steel	268			
	7.2.1 Strategy for the Systems Design of Ferrium S53	269			
	7.2.2 Design of Strength, Toughness, and Fatigue Resistance	269			
	7.2.2.1 Martensitic Transformation Behavior	271			
	7.2.2.2 Precipitation of Coherent M_2C Carbides	273			
	7.2.2.3 Solidification Microsegregation and Castability	275			
	7.2.3 Design of Resistance to General Corrosion and Stress	277			
	Corrosion Cracking 7.2.4 Hydrogen Embrittlement	277			
	7.2.4 Hydrogen Embrudement 7.2.5 Prototype and Applications of Ferrium S53	279			
	7.3 AISI H13 Hot-Work Tool Steel	279			
	7.3.1 Simulations of Microstructure Evolution, Yield Stress, Fl				
	Curve, and Creep	282			
	7.3.1.1 Simulation of Microstructure	282			
	7.3.1.2 Simulation of Yield Stress	284			
	7.3.1.3 Simulation of the Flow Curve	285			
	7.3.1.4 Simulation of Creep	286			
	7.3.2 Simulation of Heat Transfer, Phase Transformation, and				
	Stress Relaxation	287			
	7.3.2.1 Simulation of Heat Transfer	287			
	7.3.2.2 Simulation of Phase Transformations	288			
	7.3.2.3 Simulation of Stress Relaxation	289			
	References	291			
8	Case Studies on Light Alloy Design				
-	8.1 Introduction	295 295			
	8.2 Aluminum Alloys	296			
	8.2.1 Cast Al Alloy A356: Solidification Simulation				
	and Microsegregation	297			
	8.2.2 Wrought Al Alloy 7xxx: Heat Treatment Simulation				
	and Precipitation Kinetics	302			
	8.3 Magnesium Alloys	304			

xii	Contents	
	8.3.1 Selection of Cast Mg Alloy Composition and Optimized	
	Heat Treatment	30
	8.3.1.1 Selected Case Studies for New Creep-Resistant	30
	Mg Alloys 8.3.1.2 Solidification Path and T6 Heat Treatment of AZ	50
	Series Alloys	30'
	8.3.1.3 Computational Design and Development of New	
	Mg-Al-Sn-Based (AT) Cast Alloys	310
	8.3.2 Biomedical Mg Alloy Implants	312
	8.4 Summary	318
	8.4.1 Alloy Design Applications Using Solely Thermodynamic	
	CALPHAD Databases	318
	8.4.2 Alloy Design Applications Using Extended CALPHAD-Type Databases and Kinetic Simulations	318
	References	319
	References	512
9	Case Studies on Superalloy Design	323
	9.1 Introduction	323
	9.2 Ni-Based Single-Crystal Superalloys	325
	9.2.1 Model Description	328
	9.2.1.1 Thermodynamic Properties	328
	9.2.1.2 Density	328
	9.2.1.3 Misfit9.2.1.4 Creep-Rupture Lifetime	329 329
	9.2.1.5 Design Criteria	329
	9.2.2 Alloy Design Procedure	330
	9.2.2.1 Surrogate Models	331
	9.2.2.2 Optimization Algorithm	331
	9.2.3 Alloy Design and Experimental Validation	331
	9.3 Ni–Fe-Based Superalloys for Advanced Ultrasupercritical Units	333
	9.3.1 Model Description	334
	9.3.2 Alloy Design Procedure	335
	9.3.3 Alloy Design and Experimental Validation References	338 34(
10	Case Studies on Cemented Carbide Design	342
	10.1 Brief Introduction to Cemented Carbides	342
	10.2 Ultrafine Cemented Carbides	344
	10.2.1 Segregation of the (Ta,W)C Cubic Phase in Ultrafine	
	Cemented Carbides	345
	10.2.2 Optimization of Composition, Sintering Temperature,	
	and Inhibitors	347
	10.3 Cemented Carbides with Composite Binder Phases of Co and	251
	γ' -Ni ₃ Al	351

	Contents	xiii			
	10.3.1 Optimization of Composition and Sintering Temperature	353			
	10.3.2 Morphology Control of the Composite Binder Phases and WC Grains	355			
	10.4 Gradient Cemented Carbides	360			
	10.4 Gradient Cemented Carbides 10.4.1 Computational Design of Gradient Microstructure	361			
	10.4.2 A Microstructure-Based Hardness Model for Gradient	501			
	Cemented Carbides	362			
	References	367			
11	Case Studies on Hard Coating Design	370			
	11.1 Introduction to Cutting Tools and Hard Coatings	370			
	11.2 PVD Hard Coating	372			
	11.2.1 Cathodic Arc Evaporation and Magnetron Sputtering	372			
	11.2.2 Metastable Phase Formation and TiN–AlN Phase Diagrams	375			
	11.2.3 Spinodal Decomposition	378			
	11.2.4 Multilayer Hard Coating 11.3 CVD Hard Coating	379 383			
	11.3.1 Experimental Setup	- 383 - 383			
	11.3.2 Through-Process Modeling of CVD MT–Ti(C,N)	202			
	Hard Coating	385			
	References	398			
12	Ocea Studies on Franzy Materials Design				
12	Case Studies on Energy Materials Design 12.1 Case Study for Design of Hydrogen Storage Materials				
	12.1.1 Overview of Hydrogen Storage Materials	403 403			
	12.1.1 Overview of Hydrogen Storage Matchais 12.1.2 Complex Light Metal Hydride LiBH $_4$	404			
	12.1.2.1 Overview of LiBH ₄ Properties	404			
	12.1.2.2 Strategy for Understanding Dehydrogenation of LiBH ₄	406			
	12.1.2.2 Strategy for Charlistanding Denyarogenation of ElD114 12.1.2.3 Thermodynamics of LiBH ₄	408			
	12.1.2.4 Point Defects in LiBH ₄ : Understand the	100			
	Dehydrogenation of LiBH ₄	414			
	12.1.2.5 Structural Evolution and Diffusivity of LiBH ₄	417			
	12.2 Case Study for Design of Li–Ion Batteries	419			
	12.2.1 Overview of Li–Ion Batteries	419			
	12.2.2 Relationship among Phase Diagram, Thermodynamics, and				
	Electrochemical Properties	421			
	12.2.3 Li–Mn–O Spinel Cathode Material	422			
	12.2.3.1 Phase Diagrams	423			
	12.2.3.2 Evaluation of Cyclability	425			
	12.2.3.3 Evaluation of Safety	428			
	12.2.3.4 Evaluation of Energy Density	429			
	12.2.3.5 Optimization of the Composition Based on				
	Comprehensive Consideration	430			
	References	431			

xiv	Contents	
10		100
13	Summary and Future Development of Materials Design	433
	13.1 Brief Summary of This Book	434
	13.2 Highlighting Computational Design of Other Engineering Materials	127
	and Processes	437 438
	13.2.1 Highlighting the Design of Mo₂BC Thin Film13.2.2 Highlighting the Design of Nanocurvature-Enhanced Fabrication	438
	of Cu_3Sn	438
	13.2.3 Highlighting the Design of Steel Production Process	441
	13.2.4 Highlighting the Design of Slag as Recycled Material	442
	13.3 Future Orientations and Challenges for Computational Design of	442
	Engineering Materials	443
	13.3.1 General Aspects of Computational Design of Engineering	115
	Materials, ICME, MGI, and CDMD	443
	13.3.2 Advancement of Models and Approaches for More Quantitative	110
	Simulation in Materials Design	444
	13.3.2.1 Heterointerface and	
	Homointerface Thermodynamics	444
	13.3.2.2 Thermodynamics under External Fields	447
	13.3.2.3 More Quantitative Phase-Field Models	448
	13.3.3 Databases and Materials Informatics	449
	13.3.3.1 Scientific Databases	449
	13.3.3.2 Materials Informatics	449
	13.3.4 Enhanced Simulation Software Packages	450
	13.3.5 Concurrent Design of Materials and Products	451
	13.3.6 ICME and MGI as Well as Their Correlations to CDMP	453
	References	454
	Appendix A Ancillary Materials	457
	Appendix B Notations	461
	Index	469

Colour plates are to be found between pages 460 and 461.

Foreword

A revolution has been under way for several decades, transforming materials engineering from a much-discredited slow and costly process of trial-and-error experimental "materials by discovery" to one of true *design* enabled by predictive science inverted to exploit the system of CALPHAD fundamental databases now known as the materials genome. Driven by a systems approach to control of hierarchical microstructure, university research initiated in the 1980s integrated materials science, quantum physics, and continuum mechanics to bring materials into a new age of computational engineering design. Moving beyond the reductionist philosophy of traditional academic research, these efforts tested the accuracy limits of density functional theory (DFT)-based quantum mechanical methods in demonstrating particular utility in the prediction of surface thermodynamics, while continuum micromechanics of heterogeneous systems brought new insights to the unit processes of fracture and fatigue where quantitative structure-property relations had previously been lacking. Paramount to the achievements was a synthetic philosophy that can be traced back to the founding of the international CALPHAD collaboration by the work of Kaufman and Cohen in 1956. Rather than the "calculation of phase diagrams," as implied by the CALPHAD acronym, their work actually entailed the opposite - reducing the information in the Fe–Ni equilibrium diagram to its underlying thermodynamics for the specific purpose of controlling behavior far from equilibrium, as represented by martensitic transformations. It is this recognition of the importance of thermodynamics in defining the forces driving dynamic systems, and the attendant expansion of CALPHAD data to incorporate kinetic parameters, that has given CALPHAD such power in enabling the application of our fundamental knowledge of materials dynamics in a quantitative and system-specific form. Just as the human genome functions as a database directing the assembly of the structures of life, the CALPHAD genome embodies the fundamental parameters driving the dynamic assembly of multiscale materials microstructures - the defining concept of the materials genome metaphor.

Successful demonstrations of efficient CALPHAD-based parametric materials design in the 1990s led to the founding of QuesTek Innovations as the first computational materials design company. This was soon followed by the US Defense Advanced Research Projects Agency–Accelerated Insertion of Materials (DARPA-AIM) initiative aiming to accelerate the full materials development and qualification cycle. Here full simulation of microstructural evolution in complex processing enabled a probabilistic science approach to accurately forecast manufacturing

xvi Foreword

variation with minimal test data. Ultimately, that was applied to full flight qualification of two computationally designed aircraft landing gear steels. Achievements of the DARPA-AIM program were highlighted in a 2004 US National Research Council report *Accelerating Technology Transition*, which outlined a national initiative to promulgate this technology, ultimately undertaken in 2011.

The rare event of a speech by a US president announcing this materials research initiative immediately attracted the attention of apex corporations, which brought their resources to its efficient implementation, enabling for the first time the incorporation of materials design and development into concurrent engineering. Here, a historic milestone was the announcement of four new alloys with the Apple Watch in 2014, designed concurrently with the product in less than two years of acquiring the design technology that enabled it. Further migration of the technology led to Elon Musk's announcement of the novel SpaceX SX500 fire-resistant Superalloy as a vital enabler of the Raptor engine of the Mars Starship, integrated at an early stage of development into a highly accelerated concurrent engineering process. A major innovation in automotive technology was Tesla's rapid development of aluminum structure Giga-Casting technology enabled by a novel Al casting alloy designed through tight control of eutectic phase fractions, also delivered concurrently with its casting pilot plants in under a two-year cycle, now in production in the Tesla model Y. With the efficiency and efficacy of CALPHAD-based materials design clearly established by these major successes, Tesla announced the formation of a materials applications group to accelerate the replacement of legacy alloys with designed alternatives to enable a higher level of full-system optimization. We thus find ourselves at the start of another technology revolution whereby the rest of engineering is being retrained to embrace the new opportunity of materials concurrency.

Written by Rainer Schmid-Fetzer and Yong Du (both world-level outstanding scientists) along with four Chinese scientists, this unique book offers a compendium of the full computational toolset enabling this revolution.

Choose wisely.

G. B. Olson Massachusetts Institute of Technology Cambridge, MA

Preface

Recently, with the rapid development of computational techniques at different scales and various materials databases, materials design has become a research hotspot in different disciplines, including materials science, metallurgy, physics, chemistry, geology, biotechnology, and more. The most important trend is the integration of multiscale computational techniques for materials design, such as the CALPHAD technique, first-principles calculations in atomistic scale, mesoscale phase-field simulation, and finite element analysis in macroscale. However, most of the relevant books published so far do not reflect this important trend. Moreover, contributors of previously published books have focused on only one or two computational tools and, therefore, could not cover the tools in different scales. Thus, there is a need to publish a new book on this topic.

About half of this book presents for the first time a wide spectrum of various computational methods used in the design of engineering materials. An important feature of this part of the book is the methodology to establish thermodynamic and thermophysical databases for multicomponent and multiphase systems. Such databases are critical for an effective design of various engineering materials, which are usually multicomponent and multiphase alloys. This theoretical part of the book should be very useful for researchers, engineers, and students from materials sciences, metallurgy, physics, mathematics, and chemistry.

The other half of this book features a step-by-step demonstration of the design of engineering materials. This demonstration covers a very wide range of materials, including steels, light alloys, superalloys, cemented carbides, hard coatings, and energy materials.

The major motivation to write this book originated from a long-term cooperation between Professor R. Schmid-Fetzer and Professor Yong Du, which dates back to November 1994, when Dr. Du joined Professor Schmid-Fetzer's group as Alexander von Humboldt Research Fellow. Subsequently, they have established a close collaboration through several channels, such as mutual visits, attending conferences simultaneously, supervising PhD students together, and publishing papers jointly. Through many discussions and their individual experiences, both Professor Schmid-Fetzer and Professor Du have wondered why there is no book on the market that introduces the design of engineering materials via a step-by-step methodology. This book tries to fill that gap.

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-49410-6 — Computational Design of Engineering Materials Yong Du , Rainer Schmid-Fetzer , Jincheng Wang , Shuhong Liu , Jianchuan Wang , Zhanpeng Jin Frontmatter More Information

xviii

Preface

Figure 0.1 Five authors (Jianchuan Wang, Jincheng Wang, Rainer Schmid-Fetzer, Yong Du, and Shuhong Liu, from left to right) discussing the overall structure of the book in Changsha on September 21, 2018. A black and white version of this figure will appear in some formats. For the colour version, please refer to the plate section.

We believe that researchers, engineers, and graduate and undergraduate students in materials science and engineering, including ceramics, metallurgy, and chemistry, will find the book to be of great value. Moreover, we feel that even other fields, including computational biomaterials science, where modeling approaches have been used extensively for the research and development of various engineering materials, might substantially benefit from the methods and design methodology presented in this book.

Computational techniques and software have developed rapidly in recent times, and new concepts such as machine learning and artificial intelligence have emerged in the past few years. Consequently, it has been a tremendous challenge to keep the content of the book up to date. In addition, we do not expect the book to be error-free. Your comments and feedback on the book are highly appreciated and will enable us to address any shortcomings through the book's website or during the book's next revision.

Acknowledgments

The authors are grateful to many colleagues for inspiration, reading some chapters of the book, contributing some text, giving valuable comments, and producing a number of diagrams. Thanks to Professors Weibin Zhang, Keke Chang, and Wei Xiong; Doctors Yuling Liu, Lianchang Qiu, Yafei Pan, Shiyi Wen, Peisheng Wang, Yingbiao Peng, Yuxiang Xu, Haixia Tian, Kaiming Cheng, Cong Zhang, Peng Zhou, Dongdong Zhao, Dandan Liu, Ying Tang, Fan Zhang, Dandan Huang, Huixin Liu, Fangyu Guo, Shaoqing Wang, Chong Chen, Jinghua Xin, Mingjun Yang and Yinping Zeng; as well as our PhD students Xiaoyu Zheng, Peng Deng, Qianhui Min, Bo Jin, Han Li, Qiang Lu, Baixue Bian, Fengyang Gao, Yiqi Guan, Fangfang Zeng, Huaqing Zhang, Qi Huang, Liying Wu, Ya Li, Tong Yang, Shiwei Zhang, and many others.