Ecological-Economic Modelling for Biodiversity Conservation

Both ecologists and economists use models to help develop strategies for biodiversity management. The practical use of disciplinary models, however, can be limited because ecological models tend not to address the socioeconomic dimension of biodiversity management, whereas economic models tend to neglect the ecological dimension. Given these shortcomings of disciplinary models, ecological and economic knowledge need to be combined into ecological-economic models. Gradually guiding the reader into the field of ecological-economic modelling by introducing mathematical models and their role in general, this book provides an overview of ecological and economic modelling approaches relevant for research in the field of biodiversity conservation. It discusses the advantages and challenges associated with ecological-economic modelling, together with an overview of useful ways of integrating ecological and economic knowledge and models. Although this is a book about mathematical modelling, ecological and economic concepts play an equally important role, making the book accessible for readers from very different disciplinary backgrounds.

Martin Drechsler is a senior scientist at the Helmholtz Centre for Environmental Research – UFZ, Germany. His research includes the mathematical modelling of populations in fragmented and dynamic landscapes, the mathematical ecological-economic analysis of instruments and strategies for biodiversity conservation, and the model-based assessment of renewable energy deployment as well as mathematical optimisation and decision theory. He originally trained as a physicist, which provided him with the necessary mathematical background to understand, develop and analyse mathematical models. Some 20 years ago, he began collaborating with economists to contribute to the development of the research field of ecological-economic modelling. Today he is one of the most prolific authors in this field.
ECOLOGY, BIODIVERSITY AND CONSERVATION

General Editor
Michael Usher, University of Stirling

Editorial Board
Jane Carruthers, University of South Africa, Pretoria;
Joachim Claudet, Centre National de la Recherche Scientifique (CNRS), Paris;
Tasman Crowe, University College Dublin;
Andy Dobson, Princeton University, New Jersey;
Valerie Eviner, University of California, Davis;
John Fa, Manchester Metropolitan University;
Janet Franklin, University of California, Riverside;
Rob Fuller, British Trust for Ornithology;
Chris Margules, James Cook University, North Queensland;
Dave Richardson, University of Stellenbosch, South Africa;
Peter Thomas, Keele University;
Des Thompson, Scottish Natural Heritage;
Lawrence Walker, University of Nevada, Las Vegas

The world’s biological diversity faces unprecedented threats. The urgent challenge facing the concerned biologist is to understand ecological processes well enough to maintain their functioning in the face of the pressures resulting from human population growth. Those concerned with the conservation of biodiversity and with restoration also need to be acquainted with the political, social, historical, economic, and legal frameworks within which ecological and conservation practice must be developed. The new Ecology, Biodiversity, and Conservation series will present balanced, comprehensive, up-to-date and critical reviews of selected topics within the sciences of ecology and conservation biology, both botanical and zoological, and both ‘pure’ and ‘applied’. It is aimed at advanced final-year undergraduates, graduate students, researchers, and university teachers, as well as ecologists and conservationists in industry, government, and the voluntary sectors. The series encompasses a wide range of approaches and scales (spatial, temporal and taxonomic), including quantitative, theoretical, population, community, ecosystem, landscape, historical, experimental, behavioural, and evolutionary studies. The emphasis is on science related to the real world of plants and animals rather than on purely theoretical abstractions and mathematical models. Books in this series will, wherever possible, consider issues from a broad perspective. Some books will challenge existing paradigms and present new ecological concepts, empirical or theoretical models and testable hypotheses. Other books will explore new approaches and present syntheses on topics of ecological importance.

Ecology and Control of Introduced Plants
Judith H. Myers and Dawn Bazely

Invertebrate Conservation and Agricultural Ecosystems
T. R. New
Risks and Decisions for Conservation and Environmental Management
Mark Burgman

Ecology of Populations
Esa Ranta, Per Lundberg, and Veijo Kaitala

Nonequilibrium Ecology
Klaus Rohde

The Ecology of Phytoplankton
C. S. Reynolds

Systematic Conservation Planning
Chris Margules and Sihotra Sarkar

Large-Scale Landscape Experiments: Lessons from Tumut
David B. Lindenmayer

Assessing the Conservation Value of Freshwaters: An international perspective
Philip J. Boon and Catherine M. Pringle

Insect Species Conservation
T. R. New

Bird Conservation and Agriculture
Jeremy D. Wilson, Andrew D. Evans, and Philip V. Grice

Cave Biology: Life in darkness
Aldemaro Romero

Biodiversity in Environmental Assessment: Enhancing ecosystem services for human well-being
Roel Sluiterweg, Asha Kajanshi, Vinod B. Mathur, and Arend Kolhoff

Mapping Species Distributions: Spatial inference and prediction
Janet Franklin

Decline and Recovery of the Island Fox: A case study for population recovery
Timothy J. Coonan, Catherin A. Schwemm, and David K. Garcelon

Ecosystem Functioning
Kurt Jax

Spatio-Temporal Heterogeneity: Concepts and analyses
Pierre R. L. Dutilleul

Parasites in Ecological Communities: From interactions to ecosystems
Melanie J. Hatcher and Alison M. Dunn

Zoo Conservation Biology
John E. Fa, Stephan M. Funk, and Donnmarie O’Connell

Marine Protected Areas: A multidisciplinary approach
Joachim Claudet

Biodiversity in Dead Wood
Jogeir N. Stokland, Juha Siitonen, and Bengt Gunnar Jonsson

Landslide Ecology
Lawrence R. Walker and Aaron B. Shiels

Nature’s Wealth: The economics of ecosystem services and poverty
Pieter J.H. van Beukering, Elissaios Papyrakis, Jetske Bouna, and Roy Brouwer
Birds and Climate Change: Impacts and conservation responses
James W. Pearce-Higgins and Rhys E. Green

Marine Ecosystems: Human Impacts on Biodiversity, Functioning and Services
Tasman P. Crowe and Christopher L. J. Frid

Wood Ant Ecology and Conservation
Jenni A. Stockan and Elva J. H. Robinson

Detecting and Responding to Alien Plant Incursions
John R. Wilson, F. Dane Panetta and Cory Lindgren

Conserving Africa’s Mega-Diversity in the Anthropocene: The Hluhluwe-iMfolozi Park story
Joris P. G. M. Cromsigt, Sally Archibald and Norman Owen-Smith

National Park Science: A Century of Research in South Africa
Jane Carruthers

Plant Conservation Science and Practice: The Role of Botanic Gardens
Stephen Blackmore and Sara Oldfield

Habitat Suitability and Distribution Models: With Applications in R
Antoine Guisan, Wilfried Thuiller and Niklaus E. Zimmermann

Ecology and Conservation of Forest Birds
Grzegorz Mikusiński, Jean-Michel Roberge and Robert J. Fuller

Species Conservation: Lessons from Islands
Jameson A. Copsey, Simon A. Black, Jim J. Groombridge and Carl G. Jones

Soil Fauna Assemblages: Global to Local Scales
Uffe N. Nielsen

Curious About Nature
Tim Burt and Des Thompson

Comparative Plant Succession Among Terrestrial Biomes of the World
Karel Prach and Lawrence R. Walker

Ecological-Economic Modelling for Biodiversity Conservation
Martin Drechsler
Ecological-Economic Modelling for Biodiversity Conservation

MARTIN DRECHSLER
Helmholtz Centre for Environmental Research – UFZ
Contents

Preface xiii
Acknowledgements xvi

Part I Modelling 1

1 What Is a Model? 3

2 Purposes of Modelling 6
 2.1 Theory Development 6
 2.2 Generalisation 9
 2.3 Theory Testing 12
 2.4 Understanding 13
 2.5 Explanation 17
 2.6 Prediction 22
 2.7 Decision Support 24
 2.8 Communication 28
 2.9 Education 32
 2.10 Integration of Knowledge 33
 2.11 Mediation between Scales 34
 2.12 The Trade-Off between Generality and Specificity 35
 2.13 Positive versus Normative Analysis 36

3 Typical Model Features 38
 3.1 Spatial Structure 38
 3.2 Dynamics 41
 3.3 Stochasticity 42
 3.4 Individual Variability 44
 3.5 Feedback Loops 45
Contents

Part II Ecological Modelling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Homogenous Deterministic Population Models</td>
<td>51</td>
</tr>
<tr>
<td>4.1 Unlimited Population Growth</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Limited Population Growth</td>
<td>53</td>
</tr>
<tr>
<td>4.3 Chaos and Scramble Competition</td>
<td>57</td>
</tr>
<tr>
<td>5 Homogenous Stochastic Population Models</td>
<td>60</td>
</tr>
<tr>
<td>5.1 Stochasticity in Population Dynamics</td>
<td>60</td>
</tr>
<tr>
<td>5.2 Probability Distributions and Random Numbers</td>
<td>61</td>
</tr>
<tr>
<td>5.3 Simulating Stochastic Population Dynamics and Population Viability Analysis</td>
<td>65</td>
</tr>
<tr>
<td>5.4 Stochastic Processes and Extinction Risk</td>
<td>70</td>
</tr>
<tr>
<td>5.5 The Risk Model of the IUCN</td>
<td>73</td>
</tr>
<tr>
<td>6 Spatial Population Models</td>
<td>75</td>
</tr>
<tr>
<td>6.1 Patch-Based Models: The Metapopulation Concept</td>
<td>76</td>
</tr>
<tr>
<td>6.2 Grid-Based Models</td>
<td>81</td>
</tr>
<tr>
<td>7 Models with Individual Variability</td>
<td>88</td>
</tr>
<tr>
<td>7.1 Equation-Based Models</td>
<td>88</td>
</tr>
<tr>
<td>7.2 Individual-Based Models</td>
<td>92</td>
</tr>
<tr>
<td>8 Models of Biodiversity</td>
<td>98</td>
</tr>
<tr>
<td>8.1 Niche Separation and Resource Partitioning</td>
<td>98</td>
</tr>
<tr>
<td>8.2 Spatial Structure and Stochastic Disturbance</td>
<td>99</td>
</tr>
<tr>
<td>8.3 Endogenous Disturbances</td>
<td>100</td>
</tr>
<tr>
<td>8.4 Trade-Offs between Species Traits</td>
<td>103</td>
</tr>
<tr>
<td>8.5 Neutral Theory</td>
<td>104</td>
</tr>
<tr>
<td>8.6 Neutral Theory with Trade-Offs</td>
<td>105</td>
</tr>
<tr>
<td>8.7 Combined Effect of Trade-Offs and Disturbance</td>
<td>106</td>
</tr>
<tr>
<td>8.8 Conclusions</td>
<td>107</td>
</tr>
</tbody>
</table>

Part III Economic Modelling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Instruments for Biodiversity Conservation</td>
<td>111</td>
</tr>
<tr>
<td>9.1 Market Failure and the Social Dilemma of Environmental Protection</td>
<td>111</td>
</tr>
<tr>
<td>9.2 Instruments for Biodiversity Conservation: Regulation</td>
<td>115</td>
</tr>
</tbody>
</table>
9.3 Instruments for Biodiversity Conservation: Conservation Payments 119
9.4 Instruments for Biodiversity Conservation: Offsets 122
9.5 Conclusions 125

10 Game Theory 128
10.1 Public Good Problems, External Effects and the Prisoner’s Dilemma 128
10.2 A Few Bites of Game Theory 130
10.3 Dynamic Games and Evolutionary Game Theory 134

11 Incentive Design 138
11.1 The Principal–Agent Problem 138
11.2 Payments under Asymmetric Information: Adverse Selection and Moral Hazard 139
11.3 Cost-Effectiveness versus Budget-Effectiveness 145
11.4 Auctions as an Alternative to Address Adverse Selection 146
11.5 Payments for Heterogeneity 152
11.6 The Agglomeration Bonus 155

12 Modelling Human Decisions 158
12.1 Utility Functions 158
12.2 Risk–Utility Functions: Modelling Decisions under Risk 162
12.3 Fairness and Inequity Aversion 166
12.4 Imperfect Information 168
12.5 Bounded Rationality 170
12.6 Heuristics 171
12.7 Modelling Change in Behaviour and Decisions 173
12.8 Conclusions 179

13 The Agglomeration Bonus 181
13.1 The Economics of Habitat Fragmentation and the Agglomeration Bonus 181
13.2 The Agglomeration Bonus in Conservation Auctions and Conservation Offsets 182
13.3 The Agglomeration Payment 185
Contents

13.4 Side Payments as Means to Improve Compliance 187
13.5 Variants of the Agglomeration Bonus 188
13.6 Experiments 190
13.7 Conclusions 192

Part IV Ecological-Economic Modelling 193

14 Foundations of Ecological-Economic Modelling 195
14.1 The History of Environmental and Ecological-Economic Thought in a Nutshell 196
14.2 Environmental Economics in a Nutshell 199
14.3 Ecological Economics in a Nutshell 200
14.4 Implications for Ecological-Economic Modelling 203

15 Benefits and Challenges of Ecological-Economic Modelling 206
15.1 Why Is Ecological-Economic Modelling Useful? 206
15.2 Challenges: Differing Modelling Approaches 211
15.3 Concepts That Facilitate Integration 217

16 Integration of Ecological and Economic Models 219
16.1 A Classification of Integration in Ecological-Economic Models 219
16.2 Economy Affects Ecology 220
16.3 Models with Bidirectional Influence 223
16.4 Social Efficiency of Biodiversity Conservation via Indifference Curves 226
16.5 Social Efficiency of Biodiversity Conservation via Demand Functions 229
16.6 Equivalence of Indifference Curves and Demand Functions and Conclusions for Environmental Valuation 231
16.7 Natural Capital, the Economics of Biodiversity and Conclusions 236
17 Examples of Ecological-Economic Modelling

17.1 Superposing Ecological and Economic Solutions and the Added Value of Integration 241
17.2 Feedback Loops in Output-Based Payments 244
17.3 Analysis of the Feedback Loop in the Output-Based Payment 247
17.4 The Stochasticity in the Ecological-Economic Dynamics 256
17.5 Conclusions 260

18 Outlook

18.1 Multiple Interacting Species 262
18.2 Multiple Ecosystem Services 263
18.3 Feedback into the Policy Level 264
18.4 Managing Dynamic Complexity 265
18.5 Making Models Relevant for Policymakers 266
18.6 Concluding Remarks 267

References 269
Index 294
Preface

Despite various efforts to halt or reverse the current trend, biodiversity is being lost at an alarming rate across the world. At first sight, biodiversity may be regarded as an ecological issue and a topic of ecological research. However, its loss has economic causes and economic consequences, and economists are increasingly interested in the economic dimension of the loss and the conservation of biodiversity. To encompass the full complexity of biodiversity, both its ecological and economic dimensions must be considered in an integrated manner, ideally even together with other scientific disciplines such as hydrology, climatology, sociology, psychology and philosophy. Among various concepts for interdisciplinary integration, ecological-economic modelling has proven very fruitful and is gaining relevance and popularity both among ecologists and economists.

The present book provides an overview of the state of the art of ecological-economic modelling. The focus here is on mechanistic process models that model the relationships between causes and consequences through mathematical rules or equations. Statistical models such as habitat suitability and species distribution models that explain species presence from biotic and abiotic conditions, or econometric models that for instance explain human behaviour through environmental and socioeconomic variables, are not covered in this book. This is not because statistical models cannot be used for ecological-economic modelling – in fact there are a number of ecological-economic models that contain statistical models as components – but, in the author’s view, to date mechanistic process models form the majority of ecological-economic models, and a fair consideration of statistical models would be beyond both the author’s knowledge and the scope of this book.

To build integrated ecological-economic models, both conceptual knowledge (about what to integrate and for what purpose) and formal mathematical methods (how to integrate the available knowledge) are required. This book tries to address both dimensions of the integration
process by considering both conceptual thinking and mathematics on intermediate levels. The book thus contains more mathematics and less conceptual thinking than standard books on ecology or on environmental or ecological economics, but it contains less mathematics and more conceptual thinking than standard books on mathematical and complex-systems modelling. In this way, the book is integrative not only with regard to the disciplines of ecology and economics but also with regard to the mediation between concepts and their formal mathematical implementation. A particular feature of the book is the employment of numerous modelling examples from the literature whose selection is, of course, subjective but carried out in an attempt to be instructive and to cover a wide range of concepts and methods.

Although generally not stated explicitly, the focus of the book – especially the literature examples – is on terrestrial biodiversity conservation. Some of the modelling approaches addressed here can also be applied to marine and freshwater ecosystems, but the inclusion of these ecosystems would be beyond the book’s scope.

Furthermore, in most of the conservation problems considered biodiversity has no market value, and the conservation of biodiversity requires particular policies and strategies that differ from those applicable to marketable natural resources such as timber and fish.

Since biodiversity often has no market value, the economic valuation of biodiversity (and the environment in general) is a major research field in environmental and ecological economics, covered in various books. In economic terms, valuation deals with society’s demand for biodiversity. In contrast, much of the literature on ecological-economic modelling deals with the supply of biodiversity and, in particular, the question of how limited financial resources should be spent cost-effectively to maximise biodiversity levels for a given cost or budget. Most of the present book focuses on that supply side of biodiversity, although a few sections address the demand side, as well. It will be argued that the combined consideration of both sides is very fruitful.

Before proceeding to an outline of the structure of the book, some remarks should be added concerning the book’s intended readership. Because this is a book about mathematical modelling, some mathematical knowledge is required to understand the models presented. However, it is not necessary to understand all the equations in detail to capture their meaning and the modelling concepts behind them. The primary audience of the book is researchers and graduate students who already have a proficient knowledge base in mathematical modelling, quantitative ecology and
economics, or at least one of these three disciplines, and who wish to broaden their knowledge beyond their own discipline in order to work with researchers from other disciplines, or even develop integrated models on their own. This is not a textbook in the narrow sense but, rather, a compendium of relevant ecological-economic models, concepts and approaches. However, it can also be used as a textbook for graduate courses, and in fact some of its content is based on a lecture about ecological-economic modelling held by the author regularly over the past few years.

The book is organised into four parts. Part I introduces mathematical modelling in general, describing in particular the various purposes models can have, as well as typical model features. Modelling examples are considered from the disciplines of physics, ecology and economics.

Part II provides an overview of ecological models relevant for biodiversity conservation. After an introductory chapter, three important model features are addressed: stochasticity, spatial structure and individual variability and behaviour. In a final chapter the modelling approaches of the previous chapters are combined to discuss one of the central questions of biodiversity research: why and how can different species coexist?

The economic side of ecological-economic modelling is presented in Part III, which starts with basic concepts of environmental economics, such as biodiversity loss as a market failure and policy instruments for mitigating that market failure. As a fundamental approach for policy analysis, the following chapter presents basics of game theory, which is followed by a chapter on incentive design and a chapter on the modelling of human behaviour and decisions. The final chapter applies concepts derived in the previous chapters to discuss recent research on the agglomeration bonus – a policy instrument for incentivising spatially coordinated conservation efforts by landowners.

The final section, Part IV on ecological-economic modelling, starts with a brief summary of the history of economic thought, including the foundations of environmental economics and ecological economics, to derive recommendations for the design of ecological-economic models. The following chapter deals with the advantages of ecological-economic modelling compared with disciplinary research, as well as associated difficulties and challenges. After a chapter about major approaches for the integration of ecological and economic models, two examples are presented in which ecological-economic models are used to analyse policy instruments for the conservation of species. Part IV concludes with an outlook on the possible future of ecological-economic modelling.
Acknowledgements

Many people have positively influenced my research and thereby contributed to this book. In addition to the many colleagues in the Department of Ecological Modelling at the UFZ and various national and international research projects, I want to highlight a few of them by name. The first is Christian Wissel, supervisor of my first PhD thesis and my former boss. I am most grateful for the amount of time he has invested in discussions with me about my research and for his support when I later took my first steps in the new field of ecological-economic modelling. My luck with excellent supervisors continued when I was a postdoc with Mark Burgman at the University of Melbourne. In Mark’s lab I learned a lot about the role of modelling and quantitative methods in ecology and developed confidence in my own abilities as a modeller and theoretical ecologist. Third is my long-standing colleague and good friend Frank Wätzold who introduced me to economics and with whom I have developed many ecological-economic models. Many of the research questions behind these models were raised by Frank. I very much look forward to more joint research projects with him in the future. I am particularly indebted to Frank for carefully reading an earlier version of this manuscript and providing helpful comments, and for the same help I want to thank my colleague Volker Grimm who has also been a good advisor in many circumstances and has critically commented on several of my papers, starting from the very first ones. I have become so accustomed to a friendly and cooperative working atmosphere that I almost forget that such a thing cannot be taken for granted; to a great extent this is the achievement of my boss, Karin Frank. Lastly I want to thank my wife, Gabriele Körner, who may not have contributed significantly to my scientific life but certainly to my private life, and undoubtedly there is beneficial feedback between these two.