Game Theory
Second Edition

Covering both noncooperative and cooperative games, this comprehensive introduction to game theory also includes some advanced chapters on auctions, games with incomplete information, games with vector payoffs, stable matchings, and the bargaining set. Mathematically oriented, the book presents every theorem alongside a proof. The material is presented clearly and every concept is illustrated with concrete examples from a broad range of disciplines. With numerous exercises the book is a thorough and extensive guide to game theory from undergraduate through graduate courses in economics, mathematics, computer science, engineering, and life sciences to being an authoritative reference for researchers.

Michael Maschler was a professor in the Einstein Institute of Mathematics and the Center for the Study of Rationality at the Hebrew University of Jerusalem in Israel. He greatly contributed to cooperative game theory and to repeated games with incomplete information.

Eilon Solan is a professor in the School of Mathematical Sciences at Tel Aviv University in Israel. The main topic of his research is repeated games. He serves on the editorial board of several academic journals.

Shmuel Zamir is a professor emeritus in the Department of Statistics and the Center for the Study of Rationality at the Hebrew University of Jerusalem in Israel. The main topics of his research are games with incomplete information and auction theory. He is the editor-in-chief of the International Journal of Game Theory.
Game Theory
Second Edition

MICHAEL MASCHLER
EILON SOLAN
SHMUEL ZAMIR
Translated from Hebrew by Ziv Hellman
English Editor Mike Borns
To Michael Maschler
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xiv</td>
</tr>
<tr>
<td>Notations</td>
<td>xv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xxiii</td>
</tr>
<tr>
<td>1 The game of chess</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Schematic description of the game</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Analysis and results</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Remarks</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Exercises</td>
<td>7</td>
</tr>
<tr>
<td>2 Utility theory</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Preference relations and their representation</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Preference relations over uncertain outcomes: the model</td>
<td>12</td>
</tr>
<tr>
<td>2.3 The axioms of utility theory</td>
<td>14</td>
</tr>
<tr>
<td>2.4 The characterization theorem for utility functions</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Utility functions and affine transformations</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Infinite outcome set</td>
<td>23</td>
</tr>
<tr>
<td>2.7 Attitude towards risk</td>
<td>23</td>
</tr>
<tr>
<td>2.8 Subjective probability</td>
<td>26</td>
</tr>
<tr>
<td>2.9 Discussion</td>
<td>27</td>
</tr>
<tr>
<td>2.10 Remarks</td>
<td>31</td>
</tr>
<tr>
<td>2.11 Exercises</td>
<td>31</td>
</tr>
<tr>
<td>3 Extensive-form games</td>
<td>39</td>
</tr>
<tr>
<td>3.1 An example</td>
<td>40</td>
</tr>
<tr>
<td>3.2 Graphs and trees</td>
<td>41</td>
</tr>
<tr>
<td>3.3 Game trees</td>
<td>42</td>
</tr>
<tr>
<td>3.4 Chomp: David Gale’s game</td>
<td>47</td>
</tr>
<tr>
<td>3.5 Games with chance moves</td>
<td>49</td>
</tr>
<tr>
<td>3.6 Games with imperfect information</td>
<td>51</td>
</tr>
<tr>
<td>3.7 Exercises</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Strategic-form games</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
</tr>
<tr>
<td>4.1</td>
<td>Examples and definition of strategic-form games</td>
</tr>
<tr>
<td>4.2</td>
<td>The relationship between the extensive form and the strategic form</td>
</tr>
<tr>
<td>4.3</td>
<td>Strategic-form games: solution concepts</td>
</tr>
<tr>
<td>4.4</td>
<td>Notation</td>
</tr>
<tr>
<td>4.5</td>
<td>Domination</td>
</tr>
<tr>
<td>4.6</td>
<td>Second-price auctions</td>
</tr>
<tr>
<td>4.7</td>
<td>The order of elimination of dominated strategies</td>
</tr>
<tr>
<td>4.8</td>
<td>Stability: Nash equilibrium</td>
</tr>
<tr>
<td>4.9</td>
<td>Properties of the Nash equilibrium</td>
</tr>
<tr>
<td>4.10</td>
<td>Security: the maxmin concept</td>
</tr>
<tr>
<td>4.11</td>
<td>The effect of elimination of dominated strategies</td>
</tr>
<tr>
<td>4.12</td>
<td>Two-player zero-sum games</td>
</tr>
<tr>
<td>4.13</td>
<td>Games with perfect information</td>
</tr>
<tr>
<td>4.14</td>
<td>Games on the unit square</td>
</tr>
<tr>
<td>4.15</td>
<td>Remarks</td>
</tr>
<tr>
<td>4.16</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Mixed strategies</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>The mixed extension of a strategic-form game</td>
<td>144</td>
</tr>
<tr>
<td>5.2</td>
<td>Computing equilibria in mixed strategies</td>
<td>151</td>
</tr>
<tr>
<td>5.3</td>
<td>The proof of Nash’s Theorem</td>
<td>165</td>
</tr>
<tr>
<td>5.4</td>
<td>Generalizing Nash’s Theorem</td>
<td>169</td>
</tr>
<tr>
<td>5.5</td>
<td>Utility theory and mixed strategies</td>
<td>171</td>
</tr>
<tr>
<td>5.6</td>
<td>The maxmin and the minmax in n-player games</td>
<td>175</td>
</tr>
<tr>
<td>5.7</td>
<td>Imperfect information: the value of information</td>
<td>179</td>
</tr>
<tr>
<td>5.8</td>
<td>Rationalizability</td>
<td>185</td>
</tr>
<tr>
<td>5.9</td>
<td>Evolutionarily stable strategies</td>
<td>190</td>
</tr>
<tr>
<td>5.10</td>
<td>The dependence of Nash equilibria on the payoffs of the game</td>
<td>197</td>
</tr>
<tr>
<td>5.11</td>
<td>Remarks</td>
<td>202</td>
</tr>
<tr>
<td>5.12</td>
<td>Exercises</td>
<td>203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Behavior strategies and Kuhn’s Theorem</th>
<th>230</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Behavior strategies</td>
<td>232</td>
</tr>
<tr>
<td>6.2</td>
<td>Kuhn’s Theorem</td>
<td>236</td>
</tr>
<tr>
<td>6.3</td>
<td>Equilibria in behavior strategies</td>
<td>246</td>
</tr>
<tr>
<td>6.4</td>
<td>Kuhn’s Theorem for infinite games</td>
<td>249</td>
</tr>
<tr>
<td>6.5</td>
<td>Remarks</td>
<td>254</td>
</tr>
<tr>
<td>6.6</td>
<td>Exercises</td>
<td>255</td>
</tr>
</tbody>
</table>
Contents

Equilibrium refinements

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Subgame perfect equilibrium</td>
<td>263</td>
</tr>
<tr>
<td>7.2</td>
<td>Rationality, backward induction, and forward induction</td>
<td>271</td>
</tr>
<tr>
<td>7.3</td>
<td>Perfect equilibrium</td>
<td>273</td>
</tr>
<tr>
<td>7.4</td>
<td>Sequential equilibrium</td>
<td>282</td>
</tr>
<tr>
<td>7.5</td>
<td>Remarks</td>
<td>294</td>
</tr>
<tr>
<td>7.6</td>
<td>Exercises</td>
<td>294</td>
</tr>
</tbody>
</table>

Correlated equilibria

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Examples</td>
<td>312</td>
</tr>
<tr>
<td>8.2</td>
<td>Definition and properties of correlated equilibrium</td>
<td>316</td>
</tr>
<tr>
<td>8.3</td>
<td>Remarks</td>
<td>324</td>
</tr>
<tr>
<td>8.4</td>
<td>Exercises</td>
<td>324</td>
</tr>
</tbody>
</table>

Games with incomplete information and common priors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>The Aumann model of incomplete information and the concept of knowledge</td>
<td>333</td>
</tr>
<tr>
<td>9.2</td>
<td>The Aumann model of incomplete information with beliefs</td>
<td>344</td>
</tr>
<tr>
<td>9.3</td>
<td>An infinite set of states of the world</td>
<td>354</td>
</tr>
<tr>
<td>9.4</td>
<td>The Harsanyi model of games with incomplete information</td>
<td>356</td>
</tr>
<tr>
<td>9.5</td>
<td>Incomplete information as a possible interpretation of mixed strategies</td>
<td>371</td>
</tr>
<tr>
<td>9.6</td>
<td>The common prior assumption: inconsistent beliefs</td>
<td>375</td>
</tr>
<tr>
<td>9.7</td>
<td>Remarks</td>
<td>377</td>
</tr>
<tr>
<td>9.8</td>
<td>Exercises</td>
<td>378</td>
</tr>
</tbody>
</table>

Games with incomplete information: the general model

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Belief spaces</td>
<td>396</td>
</tr>
<tr>
<td>10.2</td>
<td>Belief and knowledge</td>
<td>401</td>
</tr>
<tr>
<td>10.3</td>
<td>Examples of belief spaces</td>
<td>404</td>
</tr>
<tr>
<td>10.4</td>
<td>Belief subspaces</td>
<td>410</td>
</tr>
<tr>
<td>10.5</td>
<td>Games with incomplete information</td>
<td>416</td>
</tr>
<tr>
<td>10.6</td>
<td>The concept of consistency</td>
<td>424</td>
</tr>
<tr>
<td>10.7</td>
<td>Remarks</td>
<td>432</td>
</tr>
<tr>
<td>10.8</td>
<td>Exercises</td>
<td>432</td>
</tr>
</tbody>
</table>

The universal belief space

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Belief hierarchies</td>
<td>451</td>
</tr>
<tr>
<td>11.2</td>
<td>Types</td>
<td>459</td>
</tr>
<tr>
<td>11.3</td>
<td>Definition of the universal belief space</td>
<td>462</td>
</tr>
</tbody>
</table>
Contents

11.4 Remarks
11.5 Exercises

12 Auctions
12.1 Notation
12.2 Common auction methods
12.3 Definition of a sealed-bid auction with private values
12.4 Equilibrium
12.5 The symmetric model with independent private values
12.6 The Envelope Theorem
12.7 Risk aversion
12.8 Mechanism design
12.9 Individually rational mechanisms
12.10 Finding the optimal mechanism
12.11 Remarks
12.12 Exercises

13 Repeated games
13.1 The model
13.2 Examples
13.3 The T-stage repeated game
13.4 Characterization of the set of equilibrium payoffs of the T-stage repeated game
13.5 Infinitely repeated games
13.6 The discounted game
13.7 Subgame perfectness
13.8 Uniform equilibrium
13.9 Discussion
13.10 Remarks
13.11 Exercises

14 Repeated games with vector payoffs
14.1 Notation
14.2 The model
14.3 Examples
14.4 Connections between approachable and excludable sets
14.5 A geometric condition for the approachability of a set
14.6 Characterizations of convex approachable sets
14.7 Application 1: Repeated games with incomplete information
14.8 Application 2: Challenge the expert
14.9 Discussion
14.10 Remarks
14.11 Exercises
Contents

15 Stochastic games 631

15.1 The model 632
15.2 The T-stage stochastic game 636
15.3 The infinite discounted game 643
15.4 Remarks 661
15.5 Exercises 662

16 Bargaining games 673

16.1 Notation 676
16.2 The model 676
16.3 Properties of the Nash solution 677
16.4 Existence and uniqueness of the Nash solution 681
16.5 Another characterization of the Nash solution 686
16.6 The minimality of the properties of the Nash solution 690
16.7 Critiques of the properties of the Nash solution 691
16.8 Monotonicity properties 693
16.9 Bargaining games with more than two players 701
16.10 Remarks 703
16.11 Exercises 704

17 Coalitional games with transferable utility 709

17.1 Examples 711
17.2 Strategic equivalence 718
17.3 A game as a vector in a Euclidean space 720
17.4 Special families of games 721
17.5 Solution concepts 722
17.6 Geometric representation of the set of imputations 725
17.7 Remarks 727
17.8 Exercises 727

18 The core 735

18.1 Definition of the core 736
18.2 Balanced collections of coalitions 739
18.3 The Bondareva–Shapley Theorem 744
18.4 Market games 750
18.5 Additive games 760
18.6 The consistency property of the core 762
18.7 Convex games 765
18.8 Spanning tree games 768
18.9 Flow games 772
18.10 The core for general coalitional structures 780
Contents

18.11 Remarks 782
18.12 Exercises 783

19 The Shapley value 796
19.1 The Shapley properties 797
19.2 Solutions satisfying some of the Shapley properties 800
19.3 The definition and characterization of the Shapley value 802
19.4 Examples 806
19.5 An alternative characterization of the Shapley value 808
19.6 Application: the Shapley–Shubik power index 811
19.7 Convex games 815
19.8 The consistency of the Shapley value 816
19.9 Remarks 822
19.10 Exercises 822

20 The bargaining set 830
20.1 Definition of the bargaining set 832
20.2 The bargaining set in two-player games 836
20.3 The bargaining set in three-player games 836
20.4 The bargaining set in convex games 842
20.5 Discussion 845
20.6 Remarks 846
20.7 Exercises 846

21 The nucleolus 849
21.1 Definition of the nucleolus 850
21.2 Nonemptiness and uniqueness of the nucleolus 853
21.3 Properties of the nucleolus 857
21.4 Computing the nucleolus 862
21.5 Characterizing the prenucleolus 863
21.6 The consistency of the nucleolus 870
21.7 Weighted majority games 873
21.8 The bankruptcy problem 879
21.9 Discussion 890
21.10 Remarks 891
21.11 Exercises 892

22 Social choice 901
22.1 Social welfare functions 904
22.2 Social choice functions 912
Contents

22.3 Non-manipulability .. 918
22.4 Discussion .. 921
22.5 Remarks .. 921
22.6 Exercises ... 922

23 Stable matching .. 931

23.1 The model ... 933
23.2 Existence of stable matching: the men’s courtship algorithm 935
23.3 The women’s courtship algorithm 937
23.4 Comparing matchings ... 939
23.5 Extensions ... 945
23.6 Remarks .. 951
23.7 Exercises ... 952

24 Appendices ... 962

24.1 Fixed point theorems ... 962
24.2 The Separating Hyperplane Theorem 989
24.3 Linear programming .. 991
24.4 Remarks .. 995
24.5 Exercises ... 996

References .. 1004
Index .. 1014
ACKNOWLEDGMENTS

A great many people helped in the composition of the book and we are grateful to all of them. We thank Ziv Hellman, the devoted translator of the book. When he undertook this project he did not know that it would take up so much of his time. Nevertheless, he implemented all our requests with patience. We also thank Mike Borns, the English editor, who efficiently read through the text and brought it to its present state. We thank Ehud Lehrer who contributed exercises and answered questions that we had while writing the book, Uzi Motro who commented on the section on evolutionarily stable strategies, Dov Samet who commented on several chapters and contributed exercises, Tzachi Gilboa, Sergiu Hart, Aviad Heifetz, Bo’az Klartag, Vijay Krishna, Rida Laraki, Nimrod Megiddo, Abraham Neyman, Guni Orshan, Bezalel Peleg, David Schmeidler, Rann Smorodinsky, Peter Sudhölter, Yair Tauman, Rakesh Vohra, and Peter Wakker who answered our questions, and the many friends and students who read portions of the text, suggested improvements and exercises and spotted mistakes, including Alon Amit, Itai Arieli, Galit Ashkenazi-Golan, Yaron Azrieli, Shani Bar-Gera, Asaf Cohen, Ronen Eldan, Gadi Fibich, Tal Galili, Yuval Heller, John Levy, Maya Liran, C Maor, Ayala Mashiah-Yaakovi, Noa Nitzan, Gilad Pagi, Dori Reuveni, Erez Sheiner, Eran Shmaya, Omri Solan, Ron Solan, Roeve Teper, Zorit Varmaz, and Saar Zilberman. Samson Alva, Krzysztof Apt and his students, Dolev Bracha, Clemens Buchen, Yonatan Elhanani, Kousha Etessami, Piotr Frackiewicz, Yotam Gafni, Ronald Harstad, Guy Holdengreber, Johannes Hörner, Vincent Lin, Ismael Martínez-Martínez, Shiva Navabi, Todd Neller, Oriel Nofekh, Bezalel Peleg, Ron Peretz and his students, Justin Sun, Yair Tauman, Son Trung To, Yevgeny Tsodikovich, Avishay Weinbaum, Amir Weiss, Lin Zhang, and Chang Zhao. Finally, we thank the Center for the Study of Rationality at the Hebrew University of Jerusalem and Hana Shemesh for the assistance they provided from the beginning of this project.

We thank Dr. Ron Peretz and his students, Prof. Krzysztof Apt and his students, Prof. Ehud Lehrer, Prof. Bezalel Peleg, Yotam Gafni, and Yonatan Elhanani for spotting typos in the first print of the book. These typos are corrected in this print.
The book makes use of a large number of notations; we have striven to stick to accepted notations and to be consistent throughout the book. The coordinates of a vector are always denoted by a subscript index, \(x = (x_i)_{i=1}^n \), while the indices of the elements of sequences are always denoted by a superscript index, \(x^1, x^2, \ldots \). The index of a player in a set of players is always denoted by a subscript index, while a time index (in repeated games) is always denoted by a superscript index. The end of the proof of a theorem is indicated by \(\Box \), the end of an example is indicated by \(\diamond \), and the end of a remark is indicated by \(\blacklozenge \).

For convenience we provide a list of the mathematical notations used throughout the book, accompanied by a short explanation and the pages on which they are formally defined. The notations that appear below are those that are used more than once.

- \(0 \) chance move in an extensive-form game 50
- \(\emptyset \) origin of a Euclidean space 579
- \(\emptyset \) strategy used by a player who has no decision vertices in an extensive-form game 5
- \(1_A \) function that is equal to 1 on event \(A \) and to 0 otherwise 595
- \(2^Y \) collection of all subsets of \(Y \) 336
- \(|X| \) number of elements in finite set \(X \) 603
- \(||x||_\infty \) \(L_\infty \) norm, \(||x||_\infty := \max_{i=1,2,\ldots,n} |x_i| \) 539
- \(||x|| \) norm of a vector, \(||x|| := \sqrt{\sum_{i=1}^d (x_i)^2} \) 579
- \(A \lor B \) maximum matching (for men) in a matching problem 942
- \(A \land B \) maximum matching (for women) in a matching problem 943
- \(A \subseteq B \) set \(A \) contains set \(B \) or is equal to it 942
- \(A \subset B \) set \(A \) strictly contains set \(B \) 942
- \(\langle x, y \rangle \) inner product 579
- \(\langle x^0, \ldots, x^k \rangle \) \(k \)-dimensional simplex 965
- \(\asymp_i \) preference relation of player \(i \) 13
- \(>_i \) strict preference relation of player \(i \) 10
- \(\approx_i \) indifference relation of player \(i \) 10, 944
- \(\asymp_p \) preference relation of an individual 905
- \(>Q \) strict preference relation of society 905
- \(\approx Q \) indifference relation of society 905
- \(x \geq y \) \(x_k \geq y_k \) for each coordinate \(k \), where \(x, y \) are vectors in a Euclidean space 676
- \(x > y \) \(x \geq y \) and \(x \neq y \) 676
Notations

- \(x \succ y \): \(x_k > y_k \) for each coordinate \(k \), where \(x, y \) are vectors in a Euclidean space
- \(x + y \): sum of vectors in a Euclidean space, \((x + y)_k := x_k + y_k \)
- \(xy \): coordinatewise product of vectors in a Euclidean space, \((xy)_k := x_k y_k \)
- \(x + S \): \(\{ x + s : s \in S \} \), where \(x \in \mathbb{R}^d \) and \(S \subseteq \mathbb{R}^d \)
- \(xS \): \(\{ xs : s \in S \} \), where \(x \in \mathbb{R}^d \) and \(S \subseteq \mathbb{R}^d \)
- \(cx \): product of real number \(c \) and vector \(x \)
- \(cS \): \(\{ cs : s \in S \} \), where \(c \) is a real number and \(S \subseteq \mathbb{R}^d \)
- \(S + T \): sum of sets, \(S + T := \{ x + y : x \in S, y \in T \} \)
- \([c] \): smallest integer greater than or equal to \(c \)
- \([c] \): largest integer less than or equal to \(c \)
- \(x^T \): transpose of a vector, column vector that corresponds to row vector \(x \)
- \(\text{argmax}_{x \in X} f(x) \): set of all \(x \) where function \(f \) attains its maximum in the set \(X \)
- \(a(i) \): producer \(i \)'s initial endowment in a market
- \(A \): set of actions in a decision problem with experts
- \(A \): set of alternatives
- \(A_i \): player \(i \)'s action set in an extensive-form game, \(A_i := \bigcup_{j=1}^k A(U_j^i) \)
- \(A_k \): possible outcome of a game
- \(A(x) \): set of available actions at vertex \(x \) in an extensive-form game
- \(A(U_i) \): set of available actions at information set \(U_i \) of player \(i \) in an extensive-form game
- \(b_i \): buyer \(i \)'s bid in an auction
- \(b(S) \): \(b(S) = \sum_{b \in S} b_i \) where \(b \in \mathbb{R}^N \)
- \(\text{br}_1(y) \): Player I's set of best replies to strategy \(y \)
- \(\text{br}_2(x) \): Player II's set of best replies to strategy \(x \)
- \(B_i \): player \(i \)'s belief operator
- \(B_i^\omega \): set of states of the world in which the probability that player \(i \) ascribes to event \(E \) is at least \(p \), \(B_i^\omega(E) := \{ \omega \in Y : \pi_i(E \mid \omega) \geq p \} \)
- \(\text{BZ}_i(N; v) \): Banzhaf value of a coalitional game
- \(B \): coalitional structure
- \(B_i^T \): set of behavior strategies of player \(i \) in a \(T \)-repeated game
- \(B_i^\infty \): set of behavior strategies of player \(i \) in an infinitely repeated game
- \(c \): coalitional function of a cost game
- \(c_+ \): maximum of \(c \) and 0
- \(c_i \): \(c_i(v_i) := v_i - \frac{1 - E_i(v_i)}{f_i(v_i)} \)
- \(C \): function that dictates the amount that each buyer pays given the vector of bids in an auction
Notations

- **$C(x)$** set of children of vertex x in an extensive-form game
- **$C(N, v)$** core of a coalitional game
- **$C(N, v; \mathcal{B})$** core for a coalitional structure
- **conv$\{x_1, \ldots, x_k\}$** smallest convex set that contains the vectors $\{x_1, \ldots, x_k\}$, also called the convex hull of $\{x_1, \ldots, x_k\}$
- **d** disagreement point of a bargaining game
- **d_i** debt to creditor i in a bankruptcy problem
- **$d(x,y)$** Euclidean distance between two vectors in Euclidean space
- **$d(x,S)$** Euclidean distance between point and set
- **$D(\alpha, x)$** collection of coalitions whose excess is at least α
- **$e(S,x)$** excess of coalition S, $e(S,x) := v(S) - x(S)$
- **E** set of feasible payoffs in a repeated game
- **E** social welfare function
- **F_i** cumulative distribution function of buyer i’s private values in an auction
- **$F_i(\omega)$** atom of the partition \mathcal{F}_i that contains ω
- **F^N** cumulative distribution function of joint distribution of vector of private values in an auction
- **\mathcal{F}** collection of all subgames in the game of chess
- **\mathcal{F}_i** player i’s information in an Aumann model of incomplete information
- **g^T** average payoff up to stage T (including) in a repeated game
- **G** graph
- **G** social choice function
- **h** history of a repeated game
- **h_t** history at stage t of a repeated game
- **$H(t)$** set of t-stage histories of a repeated game
- **$H(\infty)$** set of plays in an infinitely repeated game
- **$H(\alpha, \beta)$** hyperplane
- **$H^+(\alpha, \beta)$** half-space
- **$H^-(\alpha, \beta)$** half-space
- **i** player
- **$\neg i$** set of all players except player i
Notations

\(I \)
function that dictates the winner of an auction given the vector of bids 474

\(J \)
number of lotteries that compose a compound lottery 14

\(J(x) \)
player who chooses a move at vertex \(x \) of an extensive-form game 44

\(-k\)
player who is not \(k \) in a two-player game 580

\(k_i \)
number of information sets of player \(i \) in an extensive-form game 54

\(K \)
number of outcomes of a game 16

\(K_i \)
player \(i \)'s knowledge operator 336

\(KS, KS(S) \)
Kalai–Smorodinsky solution to bargaining games 699

\(L \)
lottery: \(L = [p_1(A_1), p_2(A_2), \ldots, p_K(A_K)] \) 13

\(L \)
number of commodities in a market 751

\(\hat{L} \)
compound lottery: \(\hat{L} = [q_1(L_1), \ldots, q_J(L_J)] \) 14

\(\mathcal{L} \)
set of lotteries 13

\(\hat{\mathcal{L}} \)
set of compound lotteries 15

\(m(\epsilon) \)
minimal coordinate of vector \(\epsilon \) 275, 279

\(m_i \)
number of pure strategies of player \(i \) 146

\(m_i(S) \)
highest possible payoff to player \(i \) in a bargaining game 694

\(M \)
maximal absolute value of a payoff in a game 528

\(M_{m,l} \)
space of matrices of dimension \(m \times l \) 213

\(M(\epsilon) \)
maximal coordinate of vector \(\epsilon \) 275, 279

\(\mathcal{M}(N; v; B) \)
bargaining set for coalitional structure \(B \) 834

\(n \)
number of players 77

\(n \)
number of buyers in an auction 474

\(n_x \)
number of vertices in subgame \(\Gamma(x) \) 5

\(N \)
set of players 43, 881, 710

\(N \)
set of buyers in an auction 474

\(N \)
set of individuals 904

\(N \)
set of producers in a market 751

\(\mathbb{N} \)
set of natural numbers, \(\mathbb{N} := \{1, 2, 3, \ldots\} \)

\(\mathcal{N} \)
\(\mathcal{N}(S, d) \), Nash’s solution to bargaining games 681

\(\mathcal{N}(N; v) \)
nucleolus of a coalitional game 853

\(\mathcal{N}(N; v; B) \)
nucleolus of a coalitional game for coalitional structure \(B \) 853

\(\mathcal{N}(N; v; K) \)
nucleolus relative to set \(K \) 852

\(O \)
set of outcomes 13, 43

\(p \)
common prior in a Harsanyi game with incomplete information 358

\(pk \)
probability that the outcome of lottery \(L \) is \(A_k \) 13

\(px \)
probability distribution over actions at chance move \(x \) 50

\(P \)
binary relation 905
Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>set of all weakly balancing weights for collection D^* of all coalitions</td>
</tr>
<tr>
<td>P</td>
<td>common prior in an Aumann model of incomplete information</td>
</tr>
<tr>
<td>$P_\sigma(x)$</td>
<td>probability that the play reaches vertex x when the players implement strategy vector σ in an extensive-form game</td>
</tr>
<tr>
<td>$P_\sigma(U)$</td>
<td>probability that the play reaches a vertex in information set U when the players implement strategy vector σ in an extensive-form game</td>
</tr>
<tr>
<td>p^N</td>
<td>vector of preference relations</td>
</tr>
<tr>
<td>$PO(S)$</td>
<td>set of efficient (Pareto optimal) points in S</td>
</tr>
<tr>
<td>$PO^W(S)$</td>
<td>set of weakly efficient points in S</td>
</tr>
<tr>
<td>$P(A)$</td>
<td>set of all strict preference relations over a set of alternatives A</td>
</tr>
<tr>
<td>$P(N)$</td>
<td>collection of nonempty subsets of N, $P(N) := {S \subseteq N, S \neq \emptyset}$</td>
</tr>
<tr>
<td>$P^*(A)$</td>
<td>set of all preference relations over a set of alternatives A</td>
</tr>
<tr>
<td>$P^\mathcal{N}(N; v)$</td>
<td>prenucleolus of a coalitional game</td>
</tr>
<tr>
<td>$P^\mathcal{N}(N; v; \mathcal{B})$</td>
<td>prenucleolus of a coalitional game for coalitional structure \mathcal{B}</td>
</tr>
<tr>
<td>q</td>
<td>quota in a weighted majority game</td>
</tr>
<tr>
<td>$q(w)$</td>
<td>minimal weight of a winning coalition in a weighted majority game, $q(w) := \min_{S \in \mathcal{W}^m} w(S)$</td>
</tr>
<tr>
<td>Q_{++}</td>
<td>set of positive rational numbers</td>
</tr>
<tr>
<td>r_k</td>
<td>total probability that the result of a compound lottery is A_k</td>
</tr>
<tr>
<td>$R_1(p)$</td>
<td>set of possible payoffs when Player 1 plays mixed action p, $R_1(p) := {pu^q : q \in \Delta(J)}$</td>
</tr>
<tr>
<td>$R_2(p)$</td>
<td>set of possible payoffs when Player 2 plays mixed action q, $R_2(p) := {pu^q : q \in \Delta(I)}$</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>real line</td>
</tr>
<tr>
<td>\mathbb{R}_+</td>
<td>set of nonnegative numbers</td>
</tr>
<tr>
<td>\mathbb{R}_{++}</td>
<td>set of positive numbers</td>
</tr>
<tr>
<td>\mathbb{R}^n</td>
<td>n-dimensional Euclidean space</td>
</tr>
<tr>
<td>\mathbb{R}^+_n</td>
<td>nonnegative orthant in an n-dimensional Euclidean space, $\mathbb{R}^+_n := {x \in \mathbb{R}^n : x_i \geq 0, \ \forall i = 1, 2, \ldots, n}$</td>
</tr>
<tr>
<td>\mathbb{R}^S</td>
<td>$</td>
</tr>
<tr>
<td>$\text{range}(G)$</td>
<td>range of a social choice function</td>
</tr>
<tr>
<td>s</td>
<td>strategy vector</td>
</tr>
<tr>
<td>s</td>
<td>function that assigns a state of nature to each state of the world</td>
</tr>
<tr>
<td>s'</td>
<td>action vector played at stage t of a repeated game</td>
</tr>
<tr>
<td>s_i</td>
<td>strategy of player i</td>
</tr>
</tbody>
</table>
Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_t</td>
<td>state of nature that corresponds to type vector t in a Harsanyi game with incomplete information</td>
</tr>
<tr>
<td>$s^{-1}(C)$</td>
<td>set of states of the world that correspond to a state of nature in C, $s^{-1}(C) := {\omega \in Y: s(\omega) \in C}$</td>
</tr>
<tr>
<td>S</td>
<td>set of all vectors of pure strategies</td>
</tr>
<tr>
<td>S</td>
<td>set of states of nature in models of incomplete information</td>
</tr>
<tr>
<td>S</td>
<td>set of states of nature in a decision problem with experts</td>
</tr>
<tr>
<td>S_i</td>
<td>set of player i's pure strategies</td>
</tr>
<tr>
<td>supp</td>
<td>support of a probability distribution</td>
</tr>
<tr>
<td>supp</td>
<td>support of a vector in \mathbb{R}^n</td>
</tr>
<tr>
<td>t_i</td>
<td>player i's type in models of incomplete information</td>
</tr>
<tr>
<td>T</td>
<td>set of vectors of types in a Harsanyi model of incomplete information</td>
</tr>
<tr>
<td>T</td>
<td>number of stages in a finitely repeated game</td>
</tr>
<tr>
<td>T_i</td>
<td>player i's type set in a Harsanyi model of incomplete information</td>
</tr>
<tr>
<td>u</td>
<td>payoff function in a strategic-form game</td>
</tr>
<tr>
<td>u_i</td>
<td>player i's utility function</td>
</tr>
<tr>
<td>u_i</td>
<td>player i's payoff function</td>
</tr>
<tr>
<td>u_i^p</td>
<td>producer i's production function in a market</td>
</tr>
<tr>
<td>u^t_i</td>
<td>payoff of player i at stage t in a repeated game</td>
</tr>
<tr>
<td>u^t</td>
<td>vector of payoffs at stage t in a repeated game</td>
</tr>
<tr>
<td>$u(s)$</td>
<td>outcome of a game under strategy vector s</td>
</tr>
<tr>
<td>U_i^j</td>
<td>information set of player i in an extensive-form game</td>
</tr>
<tr>
<td>U_i</td>
<td>mixed extension of player i's payoff function</td>
</tr>
<tr>
<td>$U(C)$</td>
<td>uniform distribution over set C</td>
</tr>
<tr>
<td>$U[\alpha]$</td>
<td>scalar payoff function generated by projecting the payoffs in direction α in a game with payoff vectors</td>
</tr>
<tr>
<td>v</td>
<td>value of a two-player zero-sum game</td>
</tr>
<tr>
<td>v</td>
<td>coalitional function of a coalitional game</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>maxmin value of a two-player non-zero-sum game</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>minmax value of a two-player non-zero-sum game</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>maximal private value of buyers in an auction</td>
</tr>
<tr>
<td>v_0</td>
<td>root of a game tree</td>
</tr>
<tr>
<td>v_i</td>
<td>buyer i's private value in an auction</td>
</tr>
<tr>
<td>v^s</td>
<td>superadditive closure of a coalitional game</td>
</tr>
<tr>
<td>\bar{v}_i</td>
<td>player i's maxmin value in a strategic-form game</td>
</tr>
<tr>
<td>\bar{v}_i</td>
<td>player i's minmax value in a strategic-form game</td>
</tr>
<tr>
<td>$\text{val}(A)$</td>
<td>value of a two-player zero-sum game whose payoff function is given by matrix A</td>
</tr>
<tr>
<td>V</td>
<td>set of edges in a graph</td>
</tr>
</tbody>
</table>
Notations

\(\set V \) \hspace{1cm} set of individually rational payoffs in a repeated game \hspace{1cm} 538

\(\set V_0 \) \hspace{1cm} set of vertices in an extensive-form game where a chance move takes place \hspace{1cm} 43

\(\set V_i \) \hspace{1cm} set of player \(i \)'s decision points in an extensive-form game \hspace{1cm} 43

\(\set V_i \) \hspace{1cm} random variable representing buyer \(i \)'s private value in an auction \hspace{1cm} 475

\(\set V \) \hspace{1cm} buyer’s set of possible private values in a symmetric auction \hspace{1cm} 479

\(\set V_j \) \hspace{1cm} buyer \(i \)'s set of possible private values \hspace{1cm} 474

\(\set V^N \) \hspace{1cm} set of vectors of possible private values: \(\set V^N := \set V_1 \times \set V_2 \times \cdots \times \set V_n \) \hspace{1cm} 474

\(w_i \) \hspace{1cm} player \(i \)'s weight in a weighted majority game \hspace{1cm} 714

\(\set W \) \hspace{1cm} collection of minimal winning coalitions in a simple monotonic game \hspace{1cm} 873

\(x_{-i} \) \hspace{1cm} \(x_{-i} := (x_j)_{j \neq i} \) \hspace{1cm} 85

\(x(S) \) \hspace{1cm} \(x(S) := \sum_{i \in X} x_i \), where \(x \in \mathbb{R}^N \) \hspace{1cm} 719

\(X \) \hspace{1cm} \(X := \times_{i \in X} X_i \) \hspace{1cm} 2

\(X_k \) \hspace{1cm} space of belief hierarchies of order \(k \) \hspace{1cm} 451

\(X_{-i} \) \hspace{1cm} \(X_{-i} := \times_{j \neq i} X_j \) \hspace{1cm} 85

\(X(n) \) \hspace{1cm} standard \((n-1) \)-dimensional simplex, \(X(n) := \{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, \ x_i \geq 0 \ \forall i \} \) \hspace{1cm} 981

\(X(N; v) \) \hspace{1cm} set of imputations in a coagional game, \(X(N; v) := \{ x \in \mathbb{R}^n : x(N) = v(N), x_i \geq v(i) \ \forall i \in N \} \) \hspace{1cm} 724, 850

\(X^0(N; v) \) \hspace{1cm} set of preimputations, \(X^0(N; v) := \{ x \in \mathbb{R}^n : x(N) = v(N) \} \) \hspace{1cm} 852

\(X(B; v) \) \hspace{1cm} set of imputations for coalitional structure \(B \), \(X(B; v) := \{ x \in \mathbb{R}^n : x(S) = v(S) \ \forall S \in B, x_i \geq v_i \ \forall i \} \) \hspace{1cm} 724

\(X^0(B; v) \) \hspace{1cm} set of preimputations for coalitional structure \(B \), \(X^0(B; v) := \{ x \in \mathbb{R}^n : x(S) = v(S) \ \forall S \in B \} \) \hspace{1cm} 852

\(Y \) \hspace{1cm} set of states of the world \hspace{1cm} 334, 345

\(\bar{Y}(\omega) \) \hspace{1cm} minimal belief subspace in state of the world \(\omega \) \hspace{1cm} 411

\(\bar{Y}_i(\omega) \) \hspace{1cm} minimal belief subspace of player \(i \) in state of the world \(\omega \) \hspace{1cm} 412

\(Z_k \) \hspace{1cm} space of coherent belief hierarchies of order \(k \) \hspace{1cm} 454

\(Z(P, Q; R) \) \hspace{1cm} preference relation in which alternatives in \(R \) are preferred to alternatives not in \(R \), the preference over alternatives in \(R \) is determined by \(P \), and the preference over alternatives not in \(R \) is determined by \(Q \) \hspace{1cm} 914

\(Z(P^N, Q^N; R) \) \hspace{1cm} preference profile in which the preference of individual \(i \) is \(Z(P_i, Q_i; R) \) \hspace{1cm} 914

\(\beta_i \) \hspace{1cm} buyer \(i \)'s strategy in an auction \hspace{1cm} 475

\(\beta_i \) \hspace{1cm} buyer \(i \)'s strategy in a selling mechanism \hspace{1cm} 502

\(\beta_i^w \) \hspace{1cm} buyer \(i \)'s strategy in a direct selling mechanism in which he reports his private value \hspace{1cm} 503

\(\Gamma \) \hspace{1cm} extensive-form game \hspace{1cm} 43, 50, 54
Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>extension of a strategic-form game to mixed strategies</td>
<td>146</td>
</tr>
<tr>
<td>Γₜ</td>
<td>T-stage repeated game</td>
<td>536</td>
</tr>
<tr>
<td>Γₖ</td>
<td>discounted game with discount factor λ</td>
<td>552</td>
</tr>
<tr>
<td>Γ₁</td>
<td>infinitely repeated game</td>
<td>547</td>
</tr>
<tr>
<td>Γ(ᵣ)</td>
<td>subgame of an extensive-form game that starts at vertex r</td>
<td>5, 45, 55</td>
</tr>
<tr>
<td>Γ⁺(p)</td>
<td>extended game that includes a chance move that selects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a vector of recommendations according to the probability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distribution p in the definition of a correlated equilibrium</td>
<td></td>
</tr>
<tr>
<td>Δ(S)</td>
<td>set of probability distributions over S</td>
<td>145</td>
</tr>
<tr>
<td>ε</td>
<td>vector of constraints in the definition of perfect equilibrium</td>
<td>275</td>
</tr>
<tr>
<td>εᵢ</td>
<td>vector of constraints of player i in the definition of perfect equilibrium</td>
<td>275</td>
</tr>
<tr>
<td>εᵢ(ₛᵢ)</td>
<td>minimal probability in which player i selects pure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>strategy sᵢ in the definition of perfect equilibrium</td>
<td>274</td>
</tr>
<tr>
<td>θ(x)</td>
<td>vector of excesses in decreasing order</td>
<td>850</td>
</tr>
<tr>
<td>θᵢₖ</td>
<td>Aᵢ ≈ [θᵢₖ(Aᵢ), (1 - θᵢₖ)(A₀)]</td>
<td>20</td>
</tr>
<tr>
<td>λ</td>
<td>discount factor in a repeated game</td>
<td>551</td>
</tr>
<tr>
<td>λₜ</td>
<td>egalitarian solution with angle α of bargaining games</td>
<td>691</td>
</tr>
<tr>
<td>µₖ</td>
<td>belief hierarchy of order k</td>
<td>451</td>
</tr>
<tr>
<td>χ</td>
<td>incidence vector of a coalition</td>
<td>741</td>
</tr>
<tr>
<td>Π</td>
<td>belief space: Π = (Y, F, s, (πᵢ)ᵢ∈N)</td>
<td>474</td>
</tr>
<tr>
<td>πᵢ</td>
<td>player i’s belief in a belief space</td>
<td>397</td>
</tr>
<tr>
<td>σ</td>
<td>strategy in a decision problem with experts</td>
<td>609</td>
</tr>
<tr>
<td>σᵢ</td>
<td>mixed strategy of player i</td>
<td>145</td>
</tr>
<tr>
<td>σ₋ₖ</td>
<td>strategy of the player who is not player k in a two-player game</td>
<td>580</td>
</tr>
<tr>
<td>Σᵢ</td>
<td>set of mixed strategies of player i</td>
<td>146</td>
</tr>
<tr>
<td>τᵢ</td>
<td>strategy in a game with an outside observer Γ⁺(p)</td>
<td>316</td>
</tr>
<tr>
<td>τᵢₜ</td>
<td>player i’s strategy in a repeated game</td>
<td>533, 546</td>
</tr>
<tr>
<td>τᵢₜₖ</td>
<td>strategy in a game with an outside observer in which</td>
<td></td>
</tr>
<tr>
<td></td>
<td>player i follows the observer’s recommendation</td>
<td>317</td>
</tr>
<tr>
<td>ϕ, ϕ(ₛ, d)</td>
<td>solution concept for bargaining games</td>
<td>677</td>
</tr>
<tr>
<td>ϕ</td>
<td>solution concept for coalitional games</td>
<td>723</td>
</tr>
<tr>
<td>ϕ</td>
<td>solution concept for bankruptcy problems</td>
<td>881</td>
</tr>
<tr>
<td>Ω</td>
<td>universal belief space</td>
<td>462</td>
</tr>
</tbody>
</table>