Index

ability grouping, 173
abortion, 306
academic intelligence, 64
ACT, for admission to colleges and universities, 186–188
exthnic/racial groups scores, 187
Operation Varsity Blues and, 191–192
as optional in college admissions, 194
sex differences in scoring for, 244
as tool for equality, 192–193
admissions tests, for colleges and universities.
See also advanced placement tests
ACT, 186–188
Operation Varsity Blues and, 191–192
as optional, 194
scores by ethnic/racial groups, 187
as tool for equality, 192–193
demographic limitations of, 187–188
manipulation of admissions process, 189–192
through coaching, 189–190
through grade inflation, 190
through legacy admissions, 190–191
Operation Varsity Blues, 191–192
for student-athletes, 190–191
overview of, 193–194
public opinions on, 186–188
SAT, 186–188
Operation Varsity Blues and, 191–192
as optional, 194
scores by ethnic/racial groups, 187
as tool for equality, 192–193
selection criteria and, 188–189
college admissions personnel as factor in, 189
high school grades as factor in, 188–189
as tool for equality, 188–193
through ACT, 192–193
through diversification of student body, 192–193
through SAT, 192–193
weighting of grades and, 189
admixture studies, 255–256
adolescents, intelligence testing for, 33–34
adoption, in IQ score studies, 126
advanced placement (AP) tests, 164–166
scoring for, 165
affirmative action, 325
African Americans. See also ethnic/racial
groups; hereditarian hypothesis
bias in intelligence testing of, 96
Black Intelligence Test of Cultural Homogeneity, 96–97
Milwaukee Project, 136–137
race against, 266–268
stereotype threat on, 273–274
in Tuskegee Syphilis Study, 288, 289
analytical intelligence, 63–64
"AP for All," 165–166
AP tests. See advanced placement tests
arithmetic items, in intelligence tests, 4
Army Alpha test, 22
for workplace intelligence, 205–207
Army Beta test, 22
for workplace intelligence, 205–207
Atkins v. Virginia, 294
Index

behavioral genetics, 109
The Bell Curve (Herrnstein and Murray), 26, 235–236, 310
between-group heritability, 251, 252, 264, 290–291, 293, 339
Bias in Mental Testing (Jensen), 336
bifactor model, for intelligence, 9–10, 36, 343–344
far transfer process and, 147–148
schematic of, 11
Big Five personality trait theory, 177
Binet, Alfred, 21–22, 157
on measurement of intelligence, 82–83
Stanford-Binet Test, 22
Black Intelligence Test of Cultural Homogeneity (BITCH), 96–97
block design items, in intelligence tests, 4
bodily-kinesthetic intelligence, 53
brain function
g concept and, 43–45
IQ scores and, 41–43
cortex volume as factor in, 42–43
grey/white matter volume as factor in, 43
size of brain as factor in, 41–42, 128
predictive processing and, 44–45
principles of, 41
brain training
definition of, 143–144
evaluation of, 144–146
by FTC, 147
far transfer process, 145–146
bifactor model and, 147–148
CHC model and, 147–148
Lumosity program, 147
Stratum II abilities and, 147–148
function and purpose of, 143–144
intelligence improvements through, 144
Lumosity program, 147
Mozart effect, 148
near transfer process, 144–145
realistic expectations from, 148
SMART program, 145–146
websites for, 144
working memory and, 144
Brigham, Carl, 300, 307
Burt, Cyril, 26–27
CAM battery tests. See Cognitive Abilities Measurement battery tests
cancellation items, in intelligence tests, 4
Carolina Abecedarian Project, 137
Carroll, John, 25–26
CAS. See Cognitive Assessment System
Cartell Culture Fair Test, 34
Cartell-Horn-Carroll (CHC) model, 9–10, 26, 36, 343–344
far transfer process and, 147–148
schematic of, 10
structure of, 9
CHC model. See Cartell-Horn-Carroll model cheating, 146
children, intelligence testing for. See also giftedness
Kaufman Assessment Battery for Children II, 33–34
Panga Munthu test, 97–98
Weschler Intelligence Scale for Children, 33–34, 95
Cleary, T. Anne, 336
coaching, in college admissions process, 189–190
coding items, in intelligence tests, 4
cognitive abilities. See g; intelligence;
test standardization of, 94–95
test standardization, 94–95
Cognitive Abilities Measurement (CAM) battery tests, 33, 73–74
Cognitive Assessment System (CAS), 73–74
Cohen’s d, 17–19
expressed values, 17
colleges and universities. See admissions tests
cognitive training
componential subtheory, in triarchic theory of intelligence, 63
Conant, James Bryant, 192
cognitive subtheory, 177–178
cognitive subtheory, in triarchic theory of intelligence, 63–64
correlation coefficient, 13–17
restriction of range in, 17
scatterplots, 14, 15, 16
creativity
components of, 343
intelligence and, 342–343
jangle fallacy and, 343
psychological tests of, 343
culture, intelligence as concept influenced by, 46–51
bias in intelligence testing and, 94
definitions of intelligence, 48
limitations of, culture-based influences on, 47
by ethnic/racial groups, 261–262
culture, intelligence (cont.)
factor analysis of, 48–49
 g concept of intelligence and, 49–51
 intelligence tests and, 49
 on international scale, 46
 non-cognitive abilities and, 47
 sex differences in, 245
 task-working as, 47
 in Western cultures, 46–49

Darwin, Charles, 21, 297–298
decision making, intelligence as influence on, 329
default hypothesis, for IQ differences among ethnic/racial groups, 262
Defining Issues Test (DIT), 74
descriptive statistics, 13
 mean in, 13
 standard deviation in, 13
 variability in, 13
 variance in, 13
deviant score method, for intelligence score testing, 7–9
discrimination, 266–268
intelligence research and, 326–327
DIT. See Defining Issues Test
Duckworth, Angela, 183–184. See also mindset theory
Dweck, Carol S., 180–183
education level, IQ scores influenced by, 128
education programs
 for gifted students, 164–168
 AP tests, 164–166
 costs of, 168
 creation of, 168
 intelligence research on, 325–326
 purpose of, 167–168
 purpose of, 167–168
education systems, in U.S. See also admissions tests
Every Student Succeeds Act and, 170
failures of, 170–172
 genetic issues, 171–172
 genome-wide association studies, 171–172, 346
 through individual academic achievement, 170
 g denialism and, consequences of, 172–174
 ability grouping, 173
 policy-making and, 174
 NCLB Act, 169–170

Index

408

policy strategies for, 175
 g denialism influenced by, 174
educational outcomes, in threshold hypothesis, 225–226
elderly, stereotype threat on, 275
emotional intelligence
 definition of, 229–230
 emotional self-regulation and, 233
 emotional stability and, 233
 g concept of intelligence and, 232
 measures of, 230–231
 as personal intelligence, 230
real-world outcomes as result of, 230–231
 for interpersonal outcomes, 231
 reasoning as component of, 230
emotions as separate from, 232
 verbal, 230
tests of, 231
theoretical problems with, 232
 thinking ability improved by, 230
emotional outcomes, in threshold hypothesis, 226–227
emotional self-regulation, 233
emotional stability, 233
emotions, reasoning as separate from, 232
environment, intelligence influenced by
ethnic/racial group differences influenced by IQ differences among, 261–262, 266
Flynn effect
 IQ scores and, 126–130
 as X-factor, 270
genetics and, 110–111, 120–122, 153–154
 heritability of intelligence and, 117–119
 within-group differences, 265–266
 intelligence research and, 313–314
IQ differences among ethnic/racial groups
 influenced by, 261–262
IQ scores and, 125–132, 265
 in adoption studies, 126
 by country, 129–130
 education levels as factor in, 128
 fluctuations in, by age, 130–131
 Flynn Effect and, 126–130
 for individuals, 129, 130–131
 socioeconomic status as factor for, 110–111
 specific influences, 345
stereotype threat and, 275–276
X-factor in, 265–266
 burden of proof for, 271
discrimination as, 266–268
Flynn effect, 270
Index

involuntary minority status as cause of, 268–270
parsimony and, 271
racism as, 266–268
unknown, 270–271
environmentalist school, for IQ differences among ethnic/racial groups, 248
equality, intelligence research as threat to, 317–327
affirmative action policy and, 325
discrimination and, 326–327
ethnic/racial groups, IQ score cutoffs for, 321, 322, 323–324
for gifted programs, 325–326
of group outcomes, 319–326
of individual outcomes, 317–319
legal equality, 326–327
Spearman’s hypothesis and, 322–323
equalizing intelligence, 149–155
through environmental improvements, 149–150
educational interventions, 150, 152
for IQ scores, 151–152
in Poland, 149–150
standard deviations in, 151–152, 241
through genetics, 151–152
through improvement of individual lives, 154
ers, in intelligence test scoring, 85–86
ethnic/racial groups
ACT scores by, 187
cultural influences on, 261–262
environmental influences on, 261–262
within-group heritability, 265–266
environmentalist school of, 248
eugenics movement and, 299
Flynn effect and, 248
ethnic origins of, 261–262
environmental influences on, 261–262
within-group heritability, 265–266
value of, 262–263
IQ differences among. See hereditarian hypothesis
myths about, 247
narrowing the gap for, strategies to, 339–341
SAT scores by, 187
score cutoffs for, 321, 322, 323–324
theoretical approach to, 247–248
eugenics movement, 23–24, 297–308
abortion and, 306
early development of, 297–298
endorsement of, by prominent people, 304
Galton and, 23–24, 297–298
through gene editing, 306–307
global expansion of, 298–299, 303
Goddard and, 299–301, 307
history of, 301–307
intelligence research and, 299–301, 305
intelligence testing in, 300–301, 302
International Eugenics Congresses, 305
in Nazi Germany, 299, 305
ethnic/racial components in, 299
through euthanasia, 299
Lebensborn program, 299
through sterilization programs, 299
race and, 297
in Scandinavian countries, 306
in U.S., through forced sterilization, 298–299, 305–306
in vitro fertilization and, 307
IQ differences among ethnic/racial groups and, 261
practical intelligence and, 68
existential intelligence, 53
experiential subtheory, in triarchic theory of intelligence, 63
exploratory factor analysis, 19
factor analysis, 19–20
confirmatory, 19
of cultural factors regarding intelligence, 48–49
exploratory, 19
fadeout, after social interventions, 138
fairness in intelligence testing, 102–103
of meritocracy, 215–216
far transfer process, 145–146
bifactor model and, 147–148
CHC model and, 147–148
g intelligence and, 147–148
Lumosity program, 147
Stratum II abilities and, 147–148
Federal Trade Commission (FTC), 147
females. See also sex differences
stereotype threat on, 279–280
Flynn effect, 126–130, 134
IQ differences among ethnic/racial groups, 248
as X-factor, 270

© in this web service Cambridge University Press
www.cambridge.org
Flynn, James, 126–130, 290, 294–295
Frames of Mind (Gardner), 52, 54, 55, 57
FTC. See Federal Trade Commission
g, as intelligence concept, 11–12, 26, 32–34,
36–39
as analytical intelligence, 63–64
brain function and, 43–45
criticism of, 23
culture and, 49–51
denialism of, in education systems,
172–174
ability grouping, 173
policy-making and, 174
evolutionary intelligence and, 232
developmental influences of, 341–342
far transfer process and, 147–148
influence on, 345–346
high-g individuals, 331
in research, 236
policy development with, 315–316
intelligence tests as measure of, 32–34
IQ meritocracy and, 217–218
IQ scores and, socioeconomic status and, 108
limitations of, 37–38
low-g citizens, 316
low-g individuals, 316, 331
measurement of intelligence and, 76–77
neurological basis of, 45
P-FIT theory and, 43–45
positive manifold and, 36–37, 38–39
practical intelligence and, 63–65, 67–68
as problem solving ability, 37, 39
socioeconomic status and, for IQ scores,
108
test-taking abilities and, 202–203
universality of, 50–51
The g Factor (Jensen), 25–26
Galton, Francis, 21, 31
eugenics movement and, 23–24, 297–298
on measurement of intelligence, 82–83
Gardner, Howard, 25, 52, 60–61. See also
multiple intelligences
Frames of Mind, 52, 54, 55, 57, 59–60
gene editing, 306–307
genetic inferiority and superiority, 290
Genetic Studies of Genius, 200–201
 genetics
behavioral, 109
environmental variables and, 110–111,
120–122
equalizing intelligence through, 151–152

Index

genome-wide association studies,
171–172, 346
polygenic score in, 171–172
in hereditarian hypothesis, 256–258
heritability and, 109–110
as group-level statistic of variance,
112
impact on g, 345–346
intelligence and, 120–124
environmental influences on, 120–122
genetic differences as factor in, 123
genetic similarities as factor in, 122–124
reaction range limits and, 121
IQ differences among ethnic/racial groups
and, 109–110, 261–262
evolutionary principles in, 261
U.S. education systems and, 171–172
genome-wide association studies (GWAS),
171–172, 346
polygenic scores in, 171–172
giftedness, in children
definition of, 160
limitations of, 160–164
education programs for, 164–168
AP tests, 164–166
costs of, 168
creation of, 168
intelligence research on, 325–326
purpose of, 167–168
Pygmalion in the Classroom study,
161–163, 164
IQ score calculations in, 166
replication issues with, 163
testing for, 166
theoretical approach to, 159–160
Warne’s First Law of Behavioral
Interventions, 163–164
Goddard, Henry H., 299–301
grade inflation, 190
grades. See grade inflation; high school grades;
weighting of grades
grit, 183–184
growth mindset, 181–182
Guilford, J. P., 23
GWAS. See genome-wide association studies
harm, from scientific research
Tuskegee Syphilis Study, 288,
289
during World War II, 287–288
He Jiankui, 306–307

© in this web service Cambridge University Press
www.cambridge.org
hereditarian hypothesis, for ethnic/racial groups, 248, 251–260
admixture studies, 255–256
behavioral differences in, 260
criticism of, 260
experts’ debate on, 258–260
consensus among experts, 258–260
molecular genetics data in, 256–258
projected mean environmental differences in, 252
tests of measurement invariance, 253–255
heritability between-group, 251, 252, 264, 290–291, 293, 339
genetics and, 109–110
global studies on, 338–339
for intelligence
environmental conditions, 117–119
PKU and, 115
theoretical approach to, 114
IQ differences among ethnic/racial groups and, 250–251
default hypothesis for, 262
value of, 262–263
of myopia, 114–115
within-group, 251, 265–266, 339
Herrnstein, Richard, 26, 235–236, 310
high IQ groups, 223–224
calculation of, 224
distribution of IQ scores, 224
empathy for less intelligent individuals, 331–332
Genetic Studies of Genius, 200–201
life outcomes for, 200–202
exceptions in, 202
positive, 223–224
overview of, 227–228
positive life outcomes for, 223–224
Study of Mathematically Precocious Youth, 201–202
threshold hypothesis. See threshold hypothesis
high school grades, as college admissions factor, 188–189
high self-efficacy, 180
high-g individuals, 331
Hispanics. See ethnic/racial groups; hereditarian hypothesis
Holmes, Oliver Wendell, 298
Human Cognitive Abilities (Carroll), 25–26
Hume, David, 311
immigrants, bias in intelligence testing and, 98–102, 103
immigration policy, intelligence research and, 312–313
in vitro fertilization, 307
indifference of the indicator, in measurement of intelligence, 32, 75–77
intellectual disabilities, research on, 296
intelligence. See also g; specific topics
academic, 64
bifactor model, 9–10, 36, 343–344
far transfer process and, 147–148
schematic of, 11
bodily-kinesthetic, 53
brain training and, improvements through, 144
CHC model, 9–10, 26, 36, 343–344
far transfer process and, 147–148
schematic of, 10
structure of, 9
cognitive abilities and, 11
creativity and, 342–343
culture and. See culture
decision making influenced by, 329
definition of, 2–9, 48
environmental influences on. See environment
existential, 53
genetics and, 120–124
differences in genetics as factor in, 123
environmental influences on, 110–111, 120–122
reaction range limits and, 121
heritability of environmental conditions for, 117–119
iodine deficiency, 116–117
lead exposure, 117–119
PKU and, 115
theoretical approach to, 114
international development and, 346–347
interpersonal, 53
interventions to raise, 114–119
intrapersonal, 53
IQ scores and, 12
life outcomes influenced by, 197–200
longevity as, 200
positive, 199–200
linguistic, 53
logical-mathematical, 53
malleability of, 128–128
musical, 53
overview of, 336–337
Index

on intellectual disabilities, 296
“intelligence genes,” 27
negative social policies from
conflict between policies, 312–313
environmental interventions as factor in,
313–314
from hereditarian ideas, 313–314
historical context for, 310, 314–315
on immigration, 312–313
is/ought distinction, 310–312
moralistic fallacy and, 311–312
past as influence on, 296–297
peer review in, 292
replication crisis in, 278
intelligence tests, 2–9. See also scores
for adolescents and children, 33–34, 95
alternative characteristics of, 5
arithmetic items, 4
Army Alpha test, 22
for workplace intelligence, 205–207
Army Beta, 22
for workplace intelligence, 205–207
Atkins v. Virginia, 294
bias in. See test bias
Black Intelligence Test of Cultural
Homogeneity (BITCH), 96–97
block design items, 4
cancellation items, 4
Cattell Culture Fair Test, 34
coding items, 4
Cognitive Abilities Measurement battery
tests, 33, 73–74
Cognitive Assessment System, 73–74
content of, 80–84
through cognitive tasks, 81–83
criteria for, 82
cultural relevance in, 96–97
in Stanford-Binet Test, 81
validity of, 82
creation of, professional standards for, 78
culture and, 49. See also culture
development history of, from, 1904–1939,
21–22
digit span procedure item, 3–4
DIT, 74
environmental variables for, 265
in eugenics movement, 300–301, 302
g concept and, 32–34
test-taking abilities and, 202–203
for giftedness, 166
as imperfect, 85–89
decision accuracy and, 87–88
measurement of imperfections, 85–87
measurement of scoring imperfections,
85–87
information items, 4
matrix items in, 3
myths about, 71–72
Panga Munthu test, 97–98
perfection of, illusion of, 88–89
picture absurdity items, 4–5
picture completion items, 4
sequence completion items, 4
spatial reasoning measurement items, 5, 6
standardized test scores and, 200
Stanford-Binet Test, 22, 36
content of, 81
Stratum I abilities, 147–148, 344
Stratum II abilities, 22, 37–38, 147–148,
343–344
sex differences with, 240–241
test-taking abilities and, 202–203
g concept and, 202–203
test-taking strategies for, 202–203
vocabulary items in, 2–3
Weschler-Bellevue Test, 33–34, 95
in workplace, 212–213
for job knowledge, 213
International Eugenics Congresses, 305
interpersonal intelligence, 53
interventions. See also social interventions
to raise IQ, 114–119
intrapersonal intelligence, 53
involuntary minority status, intelligence and,
269–270
iodine deficiency, 116–117
IQ meritocracy, 217–220
alternatives to, 220–221
disadvantages of, 218–220, 221–222
g concept of intelligence and, 217–218
as inherited, 219
IQ scores. See intelligence quotient scores
is/ought distinction, in intelligence research,
310–312
jangle fallacy, 343
Jensen, Arthur, 24–26, 258–259, 336. See also
hereditarian hypothesis
job complexity, intelligence and
correlation between, 207
job performance and, 210
job knowledge, intelligence tests
for, 213

© in this web service Cambridge University Press
www.cambridge.org
Index

job performance, intelligence and, 207–211
exceptions with, 209–209
IQ and, 211
job complexity and, 210
meta-analysis and, 209
predictors of, 210
job prestige, intelligence and, 207
Johnson, Wendy, 34
Kaufman Assessment Battery for Children II, 33–34
knowledge. See tacit knowledge
Law School Admission Test (LSAT), 76
lead exposure, intelligence and, 117–119
Lebensborn program, 299
legacy admissions, to colleges and universities, 190–191
legal equality, intelligence research as threat to, 326–327
Lewontin’s fallacy, 249–250
life outcomes
for high IQ groups, 200–202, 223–224
exceptions in life outcomes, 202
intelligence as factor in, 197–200
longevity influenced by, 200
positive outcomes, 199–200
in threshold hypothesis
educational outcomes, 225–226
emotional outcomes, 226–227
occupational outcomes, 225–226
social outcomes, 226–227
linguistic intelligence, 53
literacy tests
National Adult Literacy Survey (NALS), 74–75
Test of Functional Health Literacy of Adults (TOFHLA), 74–75
logical-mathematical intelligence, 53
longevity, intelligence and, 200
low IQ groups, compensation for, 213–214
low-g individuals, 316, 331
LSAT. See Law School Admission Test
Lumosity program, 147
males. See sex differences
matrix items, in intelligence tests, 3
measurement of intelligence. See also intelligence tests
accidental measurements, 73–75. See also specific tests
Binet on, 82–83
caveats to, 78
g concept of intelligence, 76–77
Galton on, 82–83
indifference of the indicator in, 32, 75–77
length of tests as factor for, 77–78
overview of, 83–84
reliability and, 77–78
score calculation methods, 78
test of measurement variance, in hereditarian hypothesis, 253–255
MENSA, 226
meritocracy
criticism of, 216–220
definition of, 215–216
fairness of, 215–216
IQ, 217–220
alternatives to, 220–221
disadvantages of, 218–220, 221–222
g concept of intelligence and, 217–218
as inherited, 219
myth of, 216
social hierarchy and, 216
military
Project 100,000, 329–330
as workplace, intelligence in, 205–207
Army Alpha and Army Beta tests for, 205–207
Milwaukee Project, 136–137
mindset theory, 180–183
benefits of, 181
growth, 181–182
praise for effort as influence on, 181
randomized clinical trials for, 182
real-world impact of, 183
replications in, 182
molecular genetics data, for hereditarian hypothesis, 256–258
morality
fallacy, 311–312
motivation, 178–179
educational performance influenced by, 179
IQ scores and, 178–179
Mozart effect, 141, 148
multiple intelligences theory, 53–61
case studies of eminent people in, 55–56
empirical problems with, 54–57
limitations of studies on, 55–57
theoretical problems with, 57–59
incoherence of theory, 57–58
vagueness of theory, 57
types of intelligences in, 53
Murray, Charles, 26, 235–236, 310
musical intelligence, 53

Index

National Adult Literacy Survey (NALS), 74–75
National Football League (NFL), practical intelligence applications for, 65
Nazi Germany, eugenics movement in, 299, 305
ethnic/racial components in, 299
through euthanasia, 299
Lebensborn program, 299
through sterilization programs, 299
NCLB Act. See No Child Left Behind Act
near transfer process, 144–145
neglect, IQ scores influenced by, 134–135
neuroscience
Broca’s area, 40–41
development of, 40–41
brain functioning and, principles of, 41
g and, 45
Wernicke’s area, 40–41
NFL. See National Football League
No Child Left Behind (NCLB) Act, U.S., 169–170
non-cognitive abilities, cultural context for, 47
non-cognitive variables
grit, 183–184
mindset theory, 180–183
benefits of, 181
growth, 181–182
praise for effort as influence on, 181
randomized clinical trials for, 182
real-world impact of, 183
replications in, 182
motivation, 178–179
educational performance influenced by, 179
IQ scores and, 178–179
overview of, 184–185
personality traits, 177–178
Big Five personality trait theory, 177
conscientiousness, 177–178
self-efficacy, 179–180
high, 180
observed scores, in intelligence tests, 85–86
occupational outcomes, in threshold hypothesis, 223–226
Ogbu, John, 268–270
On the Origin of Species (Darwin), 21
Operation Varsity Blues, 191–192
orphan status, IQ scores influenced by, 134–135
overexcitabilities, 226–227
Panga Munthu test, 97–98
Parieto-Frontal Integration Theory (P-FIT), 43–45
parsimony, 271
peer review, in intelligence research, 292
Perry Preschool Project, 138
personal intelligence, 230
personality traits, 177–178
Big Five personality trait theory, 177
conscientiousness, 177–178
P-FIT. See Parieto-Frontal Integration Theory
phenylketonuria (PKU), 115
picture absurdity items, in intelligence tests, 4
picture completion items, in intelligence tests, 4
polygenic score, 171–172
positive manifold, g concept and, 36–37, 38–39
practical intelligence
academic intelligence as distinct from, 64
claims about, 64–66
definition of, 63–64
evolutionary theory and, 68
g concept of intelligence and, 63–65, 67–68
real world applications of, 65–66
in National Football League, 65
scope of, 63–64
“street smarts” as, 63
tacit knowledge in, 63
theoretical problems with, 66–68
test specificity as, 67
in triarchic theory of intelligence, 63–64
componential subtheory in, 63
tacit knowledge in, 63–64
experiential subtheory in, 63
practice effects, 162
praise, mindset theory and, 181
predictive processing, brain processing and, 44–45
predictive processing theory, 44–45
preschool
equalizing intelligence through, 150, 152
as social intervention. See social interventions
doing problem solving ability, g as, 37, 39
Project 100,000, 329–330
projected mean environmental differences, in hereditarian hypothesis, 252
psychologist’s fallacy, 329
psychometricians, 85–86
publication bias, 277–278, 279–280

© in this web service Cambridge University Press
www.cambridge.org
Pygmalion in the Classroom study, 161–163, 164
IQ score calculations in, 162–163
replication issues with, 163
quotient score method, 5–7
race. See also ethnic/racial groups
biological basis of, 249–250
boundaries of, 250
classification by, 249–250
definition of, 248–249
eugenics movement and, 297
Lewontin’s fallacy, 249–250
as social construct, 248–250
replication issues with, 163
IQ score calculations in, 162–163
epistemic self-regulation. See emotional self-regulation
sequence completion items, in intelligence tests, 4
sex differences, in intelligence and IQ scores, 239–245
in ACT scoring, 244
in college admission testing, 244
cultural causes of, 245
female-to-male ratios, 242, 243
for global IQ, 239–240
overview of, 245–246
score differences in, consequences of, 243–245
for Stratum II abilities, 240–241
variability differences, 241–243
sleeper effects, from social interventions, 140–141
SMART program. See Strengthening Mental Abilities with Relational Training program
SMPY. See Study of Mathematically Precocious Youth
social hierarchy, meritocracy and, 216
social interventions, IQ scores and, 133–142
adoption, 134
education as, 134
fadeout after, 138
Flynn Effect and, 141
Mozart effect, 141
neglect, 134–135
orphan status and, 134–135
preschool involvement, 135–141
Carolina Abecedarian Project, 137–139
Milwaukee Project, 136–137
modern studies of, 139–141
Perry Preschool Project, 138
in randomized control trials, 139–140
sleeper effects from, 140–141
social outcomes, in threshold hypothesis, 226–227
social priming, 280
social psychology, replication crisis in, 278
socioeconomic status
definition of, 107
IQ scores and
correlational evidence for, 107–109
environmental variables, 110–111

416

Index

standard deviation in, 8
test scores, 85–86
self-efficacy, 179–180
high, 180
self-regulation. See emotional self-regulation
scores, for intelligence tests, 5–9
development of, 35–38
non-random, 86
factors/general factors in, 11–12
IQ scores, 5–7, 12
measurement of
errors in, 85–86
imperfections in, 85–87
reliability of, 86–87
quotient score method, 5–7

Cambridge University Press
978-1-108-49334-5 — In the Know
Russell T. Warne
Index
More Information

© in this web service Cambridge University Press
www.cambridge.org
Index

g scoring and, 108
spatial intelligence, 53
spatial reasoning measurement items, in intelligence tests, 5, 6
Spearman, Charles, 11–12, 23, 322–323
indifference of the indicator, 32, 75–77
stability. See emotional stability
standard deviation
in descriptive statistics, 13
in intelligence tests, 8
standardized test scores, IQ and, 200
Stanford-Binet Test, 22, 36
content of, 81
statistical methodology, 13–20
Cohen’s d, 17–19
expressed values, 17
correlation coefficient, 13–17
restriction of range, 17
scatterplots, 14, 15, 16
descriptive statistics, 13
mean in, 13
standard deviation in, 13
variability in, 13
variance in, 13
factor analysis, 19–20
confirmatory, 19
exploratory, 19
stereotype threat
on African Americans, 273–274
criticisms of, 273–277
environmental differences, 275–276
on elderly, 275
on females, 275, 279
future of, 280
IQ scores and, 275–276
replication crisis and, 278–280
statistical power probability, 279
SAT scores and, 275
Sternberg, Robert, 25, 62–69. See also practical intelligence
on analytical intelligence, 63–64
Stratum I abilities, 147–148, 344
Stratum II abilities, 22, 37–38, 147–148, 343–344
sex differences with, 240–241
“street smarts” as practical intelligence, 63
Strengthening Mental Abilities with Relational Training (SMART) program, 145–146
student-athletes, 190–191

Study of Mathematically Precocious Youth (SMPY), 201–202, 225–226
"success sequence," 328
tacit knowledge, in practical intelligence, 63
Terman, Lewis, 22, 157, 307
Genetic Studies of Genius, 200–201
Stanford-Binet Test, 22
test bias
in intelligence research, 24
in intelligence testing, against diverse populations, 91–94
African American students and, 96
criticism of, 94–102
cultural appropriateness as factor in, 94
definition of, 91–93
fairness and, 102–103
identification procedures for, 93–94
immigrant populations and, 98–102, 103
IQ scores, distribution of, 91
lawsuits over, 93–94
limited scope of, 92–93
professional reactions to, 93–94
public perceptions about, 90–91
through test content, 94–98
as tool of oppression, 98–102
publication bias, 277–278, 279–280
Test of Functional Health Literacy of Adults (TOFHLA), 74–75
test of measurement variance, in hereditarian hypothesis, 253–255
test-taking abilities, intelligence tests and, 202–203
g concept and, 202–203
test-taking strategies, for intelligence tests, 202–203
testing ability. See also reasoning
emotional intelligence and, 230
threshold hypothesis, 224–228
educational outcomes, 225–226
emotional outcomes, 226–227
MENSA, 226
occupational outcomes, 225–226
overexcitabilities in, 226–227
research into, limitations of, 227
social outcomes, 226–227
testing of, 224–225
Thurstone, L. L., 23
TOFHLA. See Test of Functional Health Literacy of Adults
testing hypothesis, 214
traits. See personality traits
Index

triarchic theory of intelligence, 63–64
componential subtheory in, 63
contextual subtheory in, 63–64
experiential subtheory in, 63
true scores, for intelligence tests, 85–86
Tuskegee Syphilis Study, 288, 289

United States (U.S.)
eugenics movement in, 298–299, 305–306
Every Student Succeeds Act, 170
No Child Left Behind Act, 170
Project 100,000, 329–330

very high intelligence. See high IQ groups
vocabulary items, in intelligence tests, 2–3

Warne’s First Law of Behavioral Interventions, 163–164
weighting of grades, 189

Weschler, David, 22
Weschler Intelligence Scale for Children (WISC), 33–34, 95
Weschler-Bellevue Test, 22

Western culture, intelligence concept influenced by, 46–49
Williams, Robert L., 96–97

WISC. See Weschler Intelligence Scale for Children

within-group heritability, 251, 339
Wonderlic Personnel Test (WPT), 65
working memory, brain training and, 144
workplace, intelligence in
compensation for low IQ groups, 213–214
early research on, 205–207

Army Alpha/Beta tests, 205–207
intelligence tests in, 212–213
for job knowledge, 213
job complexity and correlation with intelligence, 207
job performance and, 210
job performance and, 207–211
exceptions with, 209
IQ and, 211
job complexity and, 210
meta-analysis and, 209
predictors of, 210
job prestige and, correlation with, 207
in military, 205–207
Army Alpha/Beta tests, 205–207
misconceptions about, 204
training hypothesis and, 214
World War II, harm from scientific research during, 287–288
WPT. See Wonderlic Personnel Test

X-factor, for intelligence, 265–266
burden of proof for, 271
discrimination as, 266–268
Flynn effect, 270
involuntary minority status as, 268–270
parsimony and, 271
racism as, 266–268
unknown, 270–271

Yerkes, Robert, 22