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1. Graph theory

This section presents the basic definitions, terminology and notation of graph theory,

along with some fundamental results. Further information can be found in the many

standard books on the subject – for example, Bondy and Murty [1], Chartrand,

Lesniak and Zhang [2], Golumbic [4], Gross and Yellen [5] or West [7], or, for a

simpler treatment, Even [3], Marcus [6] or Wilson [8].

Graphs

A graph G is a pair of sets (V,E), where V is a finite non-empty set of elements

called vertices, and E is a finite set of elements called edges, each of which has

two associated vertices. The sets V and E are the vertex-set and edge-set of G, and

are sometimes denoted by V(G) and E(G). The number of vertices in G is called

the order of G and is usually denoted by n (but sometimes by |G| or |V(G)|); the

number of edges is denoted by m. A graph with only one vertex and no edges is

called trivial.

An edge whose vertices coincide is a loop, and if two edges have the same pair

of associated vertices, they are called multiple edges. In this book, unless otherwise

specified, graphs are assumed to have no loops ormultiple edges; that is, they are taken

to be simple. Hence, an edge e can be considered as its associated pair of vertices,

e = {v,w}, usually shortened to vw. An example of a graph of order 5 is shown in

Fig. 1(a).
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The complement G of a graph G has the same vertices as G, but two vertices

are adjacent in G if and only if they are not adjacent in G. Figure 1(b) shows the

complement of the graph in Fig. 1(a).

G G

)b()a(

Fig. 1. A graph and its complement

Adjacency and degrees

The vertices of an edge are its endpoints or ends, and the edge is said to join these

vertices. An endpoint of an edge and the edge are incident with each other. Two

vertices that are joined by an edge are called neighbours and are said to be adjacent; if

v and w are adjacent vertices, we sometimes write v ∼ w, and if they are not adjacent

we write v ≁ w. Two edges are adjacent if they have a vertex in common.

The set N(v) of neighbours of a vertex v is called its neighbourhood. If X ⊂ V ,

then N(X) denotes the set of vertices not in X that are adjacent to some vertex of X.

The closed neighbourhood of a vertex v is defined as N[v] = N(v)∪{v}. Two vertices

v and w are true twins if N[v] = N[w] and are false twins if N(v) = N(w).

The degree deg v, or d(v), of a vertex v is the number of its neighbours; in a non-

simple graph, it is the number of occurrences of the vertex as an endpoint of an edge,

with loops counted twice. A vertex of degree 0 is an isolated vertex and one of degree 1

is a pendant vertex. A graph is regular if all of its vertices have the same degree,

and is k-regular if that degree is k; a 3-regular graph is sometimes called cubic. The

maximum degree in a graphG is denoted by�(G) or just�, and the minimum degree

by δ(G) or δ. The degree sequence of a graph is the non-increasing sequence of its

vertex degrees, for example, [3,2,2,2,1] in both Fig. 1(a) and Fig. 1(b), although

they are not the same graph. Determining whether a given sequence of numbers is

the degree sequence of a simple graph can be done using an algorithm by Havel and

Hakimi or a characterization theorem of Erdős and Gallai.

Isomorphisms, automorphisms and homomorphisms

An isomorphism between two graphs G and H is a bijection between their vertex-sets

that preserves both adjacency and non-adjacency. The graphsG andH are isomorphic,

written G ∼= H, if there exists an isomorphism between them.
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An automorphism of a graph G is an isomorphism of G with itself. The set of all

automorphisms of a graph G forms a group, called the automorphism group of G and

denoted by Aut(G).

A homomorphism of a graph G to a graph H is a mapping of the vertex-set of G

to the vertex-set of H that preserves adjacency (but not necessarily non-adjacency).

The graph G is homomorphic to H if there exists such a homomorphism. Graph

homomorphisms are the subject of Chapter 13.

Walks, paths and cycles

A walk in a graph is a sequence of vertices and edges v0,e1,v1, . . . ,ek,vk, in which

each edge ei joins the vertices vi−1 and vi. This walk is said to go from v0 to vk or to

connect v0 and vk, and is called a v0–vk walk. It is frequently shortened to v0v1 · · · vk,

for a simple graph. A walk is closed if the first and last vertices are the same. Some

important types of walk are the following:

• a path is a walk in which no vertex is repeated;

• a cycle is a non-trivial closed walk in which no vertex is repeated, except the first

and last;

• a trail is a walk in which no edge is repeated;

• a circuit is a non-trivial closed trail.

Connectedness and distance

Agraph is connected if it has a path connecting each pair of vertices, and disconnected

otherwise. A (connected) component of a graph is a maximal connected subgraph.

The number of occurrences of edges in awalk is called its length, and in a connected

graph, the distance d(v,w) from v to w is the length of a shortest v–w path. It is easy

to check that distance satisfies the properties of a metric. The diameter of a connected

graph G is the greatest distance between any pair of vertices in G. If G has a cycle,

the girth of G is the length of a shortest cycle.

A connected graph is Eulerian if it has a closed trail containing all of its edges; such

a trail is an Eulerian trail. The following statements are equivalent for a connected

graph G:

• G is Eulerian;

• every vertex of G has even degree;

• the edge-set of G can be partitioned into cycles.

A graph of order n is Hamiltonian if it has a cycle containing all of its vertices,

and is pancyclic if it has a cycle of every length from 3 to n. It is traceable if it has a

path containing all of its vertices. No ‘good’ characterizations of these properties are

known.
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Bipartite graphs and trees

If the set of vertices of a graph G can be partitioned into two non-empty subsets

so that no edge joins two vertices in the same subset, then G is bipartite. The two

subsets are called partite sets and, if they have orders r and s, G is an r × s bipartite

graph. (For convenience, the trivial graph is also called bipartite.) Bipartite graphs

are characterized by having no cycles of odd length.

Among the bipartite graphs are trees, those connected graphs with no cycles. Any

graph without cycles is a forest; thus, each component of a forest is a tree. Trees have

been characterized in many ways, some of which we give here. For a graphG of order

n, the following statements are equivalent:

• G is a tree;

• G is connected and has no cycles;

• G is connected and has n− 1 edges;

• G has no cycles and has n− 1 edges;

• G has exactly one path between any two vertices.

The set of trees can also be defined inductively: a single vertex is a tree; and for

n ≥ 1, the trees with n+ 1 vertices are those graphs obtainable from some tree with

n vertices by adding a new vertex adjacent to precisely one of its vertices.

This definition has a natural extension to higher dimensions. The k-dimensional

trees, or k-trees for short, are defined as follows: the complete graph on k vertices is a

k-tree, and for n ≥ k, the k-trees with n+ 1 vertices are those graphs obtainable from

some k-tree with n vertices by adding a new vertex adjacent to k mutually adjacent

vertices in the k-tree. Figure 2 shows a tree and a 2-tree. An important concept in the

study of graph minors (introduced later) is the tree-width of a graph G, the minimum

dimension of any k-tree that contains G as a subgraph.

Fig. 2. A tree and a 2-tree

Special graphs

We now introduce some individual types of graph:

• the complete graph Kn has n vertices, each adjacent to all the others; a complete

graph is often called a clique;
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• the null graph Kn has n vertices and no edges;

• the path graph Pn consists of the vertices and edges of a path of length n− 1;

• the cycle graph Cn consists of the vertices and edges of a cycle of length n;

for k ≥ 4, the graph Ck is often called a chordless cycle or a hole and Ck is an

antihole;

• the complete bipartite graph Kr,s is the r × s bipartite graph in which each vertex

is adjacent to all of the vertices in the other partite set;

• the complete k-partite graph Kr1,r2,...,rk has its vertices in k sets with orders

r1,r2, . . . ,rk, and every vertex is adjacent to all of the vertices in the other sets;

if the k sets all have order r, the graph is denoted by Kk(r).

Examples of these graphs are given in Fig. 3.

K5: P5:K5:

C5:
K3,3:

K3(2):

Fig. 3. Examples of special graphs

Operations on graphs

Let G and H be graphs with disjoint vertex-sets V(G) = {v1,v2, . . . ,vr} and V(H) =

{w1,w2, . . . ,ws}.

• The union G ∪ H has vertex-set V(G) ∪ V(H) and edge-set E(G) ∪ E(H). The

union of k graphs isomorphic to G is denoted by kG.

• The join G+ H is obtained from G ∪ H by adding an edge from each vertex in G

to each vertex in H.

• The Cartesian product G×H (orG�H) has vertex-set V(G)×V(H), with (vi,wj)

adjacent to (vh,wk) if either vi is adjacent to vh in G and wj = wk, or vi = vh and

wj is adjacent to wk in H; in less formal terms, G× H can be obtained by taking n

copies of H and joining corresponding vertices in different copies whenever there

is an edge in G.
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• The lexicographic product (or composition)G[H] also has vertex-set V(G)×V(H),

but with (vi,wj) adjacent to (vh,wk) if either vi is adjacent to vh in G or vi = vh and

wj is adjacent to wk in H.

Examples of these binary operations are given in Fig. 4.

G H :

G + H :G H :

G :

H :

G[H] :

Fig. 4. Binary operations on graphs

Subgraphs and minors

If G and H are graphs with V(H) ⊆ V(G) and E(H) ⊆ E(G), then H is a subgraph of

G, and is a spanning subgraph if V(H) = V(G). The subgraph 〈S〉 (or G[S]) induced

by a non-empty set of S of vertices of G is the subgraph H whose vertex-set is S and

whose edge-set consists of those edges of G that join two vertices in S. A subgraph

H of G is called an induced subgraph if H = 〈V(H)〉. In Fig. 5, H1 is a spanning

subgraph of G, and H2 is an induced subgraph.

A graph G is called H-free if it contains no induced subgraph isomorphic to the

graph H. For example, a forest is {Ck : k ≥ 3}-free, a claw-free graph has no induced

K1,3 and a triangle-free graph has no induced K3. Similarly, for a set of graphsH, we

say that G is H-free if it is H-free for each graph H ∈ H. For example, the class of

threshold graphs (introduced later) has a forbidden subgraph characterization as the

{P4,C4,2K2}-free graphs.
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G: H1: H2:

induced subgraph
spanning subgraphgraph

Fig. 5. Spanning and induced subgraphs of the graph G

The deletion of a vertex v from a graph G results in the subgraph obtained by

removing v and all of its incident edges; it is denoted by G − v and is the subgraph

induced by V − {v}. More generally, if S is any set of vertices in G, then G− S is the

graph obtained from G by deleting all of the vertices in S and their incident edges –

that is, G− S = 〈V(G) − S〉.

A class (or family) F of graphs is called hereditary if it is closed under vertex

deletion. For example, the class of bipartite graphs is hereditary, but the class of

connected graphs is not.

The deletion of an edge e removes it from the graph without deleting its associated

vertices, resulting in the subgraph G− e. Similarly, for any set X of edges, G− X is

the graph obtained from G by deleting all the edges in X.

If the edge e joins vertices v and w, then the subdivision of e replaces e by a new

vertex u and two new edges vu and uw. Two graphs are homeomorphic if there is

some graph from which each can be obtained by a sequence of subdivisions. The

contraction of e replaces its vertices v and w by a new vertex u and edges uz for every

vertex z adjacent to either v or w in G. The operations of subdivision and contraction

are illustrated in Fig. 6.

If H can be obtained from G by a sequence of edge-contractions and the removal

of isolated vertices, thenG is contractible toH. Aminor ofG is any graph that can be

obtained from G by a sequence of edge-deletions and edge-contractions, along with

deletions of isolated vertices. Note that ifG has a subgraph homeomorphic toH, then

H is a minor of G.

v

e

u

u

v

w

w

contractionsubdivision

Fig. 6. The operations of subdivision and contraction
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2. Connectivity

In this section, we give the primary definitions and some of the basic results on

connectivity, including several versions of the most important one of all, Menger’s

theorem.

Vertex-connectivity

A vertex v in a graph G is a cut-vertex if G − v has more components than G. For a

connected graph, this is equivalent to saying thatG−v is disconnected, and that there

exist vertices u and w, different from v, for which v is on every u–w path.

A non-trivial graph is non-separable if it is connected and has no cut-vertices.

Note that under this definition the graph K2 is non-separable. There are many

characterizations of the other non-separable graphs, as the following statements are

all equivalent for a connected graph G with at least three vertices:

• G is non-separable;

• every two vertices of G are on a cycle;

• every vertex and edge of G are on a cycle;

• every two edges of G are on a cycle;

• for any three vertices u, v and w in G, there is a v–w path that contains u;

• for any three vertices u, v and w in G, there is a v–w path that does not contain u;

• for any two vertices v and w and any edge e inG, there is a v–w path that contains e.

A block in a graph is a maximal non-separable subgraph. Each edge of a graph lies

in exactly one block, and a vertex that is in more than one block is a cut-vertex. An

end-block is a block with only one cut-vertex; every connected separable graph has

at least two end-blocks. The graph in Fig. 7 illustrates these concepts.

Fig. 7. A graph with 4 blocks, 3 end-blocks and 2 cut-vertices

The basic idea of non-separability has a natural generalization: a graph G is

k-connected if the removal of fewer than k vertices always leaves a non-trivial

connected graph. The main result on graph connectivity is Menger’s theorem, first

published in 1927. It has many equivalent forms, and the first that we give here is the
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global vertex version due to H. Whitney. Paths joining the same pair of vertices are

called internally disjoint if they have no other vertices in common.

Whitney’s theorem (Global vertex version) A graph is k-connected if and only if

every pair of vertices are joined by k internally disjoint paths.

The connectivity κ(G) of a graph G is the largest non-negative integer k for which

G is k-connected; for example, the connectivity of the complete graph Kn is n − 1,

and a graph has connectivity 0 if and only if it is trivial or disconnected.

For non-adjacent vertices v and w in a graph G, a v–w separating set is a set

of vertices whose removal leaves v and w in different components, and the v–w

connectivity κ(v,w) is the minimum order of a v–w separating set.

Menger’s theorem (Local vertex version) If v and w are non-adjacent vertices in a

graph G, then the maximum number of internally disjoint v–w paths is κ(v,w).

Edge-connectivity

There is an analogous body of material that involves edges rather than vertices, and

because of the similarities, we treat it in less detail.

An edge e is a cut-edge (or bridge) of a graph G if G − e has more components

than G. (In contrast to the situation with vertices, the removal of an edge cannot

increase the number of components by more than 1.) An edge e is a cut-edge if and

only if there exist vertices v and w for which e is on every v–w path. The cut-edges in

a graph are also characterized by the property of not lying on a cycle; thus, a graph

is a forest if and only if every edge is a cut-edge. Graphs having no cut-edges can

be characterized in a variety of ways similar to those having no cut-vertices – that

is, non-separable graphs. The concepts corresponding to cycles and paths for vertices

are circuits and trails for edges.

Moving beyond cut-edges, we have the following definitions. A graph G is l-edge-

connected if the removal of fewer than l edges always leaves a connected graph. Here

is a third version of Menger’s theorem.

Menger’s theorem (Global edge version) A graph is l-edge-connected if and only

if each pair of its vertices are joined by l edge-disjoint paths.

The edge-connectivity λ(G) of a graph G is the largest non-negative integer l for

which G is l-edge-connected. Obviously, λ(G) cannot exceed the minimum degree of

a vertex of G; furthermore, it is at least as large as the connectivity – that is,

κ(G) ≤ λ(G) ≤ δ(G).

For non-adjacent vertices v and w in a graphG, a v–w cutset is a set of edges whose

removal leaves v andw in different components, and the v–w edge-connectivity λ(v,w)

is the minimum number of edges in a v–w cutset.

www.cambridge.org/9781108492607
www.cambridge.org


Cambridge University Press
978-1-108-49260-7 — Topics in Algorithmic Graph Theory
Edited by Lowell W. Beineke , Martin Charles Golumbic , Robin J. Wilson
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Lowell W. Beineke, Martin Charles Golumbic and Robin J. Wilson

Menger’s theorem (Local edge version) If v and w are vertices in a graph G, then

the maximum number of edge-disjoint v–w paths is λ(v,w).

Alongwith the four undirected versions ofMenger’s theorem, there are correspond-

ing directed versions (with directed paths and strong connectivity) and also weighted

versions.

3. Optimization problems on graphs

In this section, we present some classical graph problems that have become fundamen-

tal in graph theory and have motivated the development of many graph algorithms.

Independent sets and cliques

A set of vertices of a graphG is an independent set (or stable set) if no two vertices are

adjacent. An independent set of G is called maximal if it is not contained in a larger

independent set, and maximum if its cardinality is largest possible. The independence

number (or stability number) α(G) is the size of the largest independent set.

A set of vertices ofG is complete if all pairs of vertices are adjacent. A complete set

is a clique if it is a maximal complete set, and it is a maximum clique if its cardinality

is largest possible. The clique number ω(G) is the size of a largest complete set.

An independent set in a graph is strong if it intersects every maximal clique.

A strong clique is defined analogously. These concepts are related to others in graph

theory, including perfect matchings, well-covered graphs and perfect graphs, as well

as in other areas of mathematics. Chapter 10 gives an introduction to strong cliques

and strong independent sets.

Colourings

A colouring of a graph G is an assignment of a colour to each vertex of G so that

adjacent vertices always have different colours, and G is k-colourable if it has a

colouring with k colours. The chromatic number χ(G) is the smallest value of k for

which G has a k-colouring. It is easy to see that a graph is 2-colourable if and only if

it is bipartite, but there is no ‘good’ way to determine which graphs are k-colourable

for k ≥ 3.

The complete graphKn of order n has chromatic number n. Thus,ω(G) ≤ χ(G), for

every graph G – that is, its clique number is a lower bound on its chromatic number.

Brooks’s theorem provides one of the best-known upper bounds on the chromatic

number of a graph.

Brooks’s theorem If G is a graph with maximum degree � that is neither an odd

cycle nor a complete graph, then χ(G) ≤ �.

Brooks’s theorem also provides a greedy heuristic colouring algorithm. Graph

algorithms form the topic of Chapter 1.
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