Quantum mechanics is traditionally associated with microscopic systems; however, quantum concepts have also been successfully applied to a diverse range of macroscopic systems both within and outside of physics. This book describes how complex systems from a variety of fields can be modeled using quantum mechanical tools, from biology and ecology to sociology and decision-making. The mathematical basis of these models is covered in detail, furnishing a self-contained and consistent approach. This book provides unique insight into the dynamics of these macroscopic systems and opens new interdisciplinary research frontiers. It will be an essential resource for students and researchers in applied mathematics or theoretical physics who are interested in applying quantum mechanics to dynamical systems in the social, biological or ecological sciences.

Fabio Bagarello is Professor of Mathematical Physics and Mathematical Methods at the University of Palermo. His research interests include the application of quantum mechanics to macroscopic systems and the application of functional analysis and operator theory to quantum mechanics. He is the author of numerous scientific articles on these topics in addition to four books and several edited volumes.
QUANTUM CONCEPTS IN THE SOCIAL, ECOLOGICAL AND BIOLOGICAL SCIENCES

FABIO BAGARELLO

University of Palermo
As always, I dedicate this book to my beloved parents, Giovanna and Benedetto, and to Federico, Giovanna and Grazyna, with pure and diverging (to $+\infty$!) love. I wish for them to enjoy their lives much more than I do (and please consider that I am already quite satisfied).
Contents

Preface
Acknowledgments

1 Why a Quantum Tool in Classical Contexts? (Part II)
 1.1 Organization of the Book

Part I The General Framework

2 Some Preliminaries
 2.1 The Bosonic Number Operator
 2.2 The Fermionic Number Operator
 2.3 Other Possibilities
 2.4 Dynamics for a Quantum System
 2.5 Heisenberg Uncertainty Principle
 2.6 A few Words on States
 2.7 More on Dynamics
 2.8 The \((H, \rho)\)-Induced Dynamics
 2.9 A Two-Mode System

Part II Applications

3 Politics
 3.1 Introduction
 3.2 A First Model
 3.3 Extending the Model, Part 1: More Interactions
 3.4 Extending the Model, Part 2: Adding a Rule \(\rho\)
 3.5 Nonlinearities
 3.6 Conclusions

© in this web service Cambridge University Press
www.cambridge.org
Contents

4 Desertification 113
4.1 Introduction 113
4.2 The Model 114
4.3 Numerical Results 120
4.4 Conclusions 139

5 Escape Strategies 141
5.1 Introduction 141
5.2 The Model 142
5.3 Numerical Simulations 147
5.4 Conclusions 167

6 Closed Ecosystems 168
6.1 A Linear Model with a Single Garbage 169
6.2 A Linear Model with Two Garbages 172
6.3 A Nonlinear Model with Two Garbages 179
6.4 A Phenomenological Damping 185
6.5 Conclusions 193

7 More on Biological Systems 194
7.1 Introduction 194
7.2 Tumor Cell Proliferation 195
7.3 Numerical Results 199
7.4 Conclusions 205

8 Quantum Game of Life and Its (H, ρ)-Induced Dynamics 206
8.1 Introduction 206
8.2 The Quantum Game of Life 209
8.3 Some Results 213
8.4 Conclusions 216

9 Prehistoric Data Mining 217
9.1 Introduction 217
9.2 Introducing the Model 219
9.3 Results 229
9.4 Conclusions 233

10 A Simple Model of Information in Stock Markets 234
10.1 Introduction 234
10.2 Before the Trading Begins 235
10.3 After the Trading Has Begun 241
10.4 Conclusions 248
Contents

11 Decision-Making Driven by the Environment
11.1 Introduction
11.2 The Environment and Its Hamiltonian
11.3 Asymptotic Values: Absence of Interferences
11.4 Finite Time Behavior: The Role of Interference
11.5 Conclusions

12 Compatible and Incompatible Questions
12.1 Introduction
12.2 The Mathematical Framework
12.3 An Application to Decision-Making and Order Effect
12.4 Conclusions

13 This Is Not the End...
13.1 What Next?

References
Index
Preface

I like to do research, and I like to move from one topic to another. Otherwise, I easily get bored! But from time to time, I feel the necessity to stop and think of what I have produced up to that moment, alone or with a group of colleagues, who quite often are also friends. And this is exactly the right moment to stop and summarize what has been done during the past few years after adopting my operatorial approach to mathematical modeling – which is exactly what this book is about. Writing a book also gives you a nice opportunity: one needs to reflect again and again on things which, when you write an article, may appear simple and clear. But sometimes you realize that what appeared to be simple years ago is not simple at all, and it possibly deserves a deeper analysis and a better understanding. And this is something I like: my old (or recent) results live again, give new suggestions and drive me toward unexpected directions. I am forced to read material on topics which are, in principle, far away from my usual know-how: ecology, economy, biology and anthropology are just a few such topics, but aren’t the only ones. And this is a nice way to learn many amazing things.... Hence, I consider this book as the conclusion of a long period of study and the beginning of a new one. At least, this is what I hope. And I also do hope that you will enjoy reading this book, and that it will spark your curiosity, encourage you to start forming ideas of your own and then see if those ideas can be transformed into formulas according to the framework described in the chapters to follow. In fact, this is also what a book is for: to attract people! So, please, come and join me: everyone is welcome!
Acknowledgments

It is really a pleasure to thank all the people who significantly contributed to my research in this field along the years, starting with the old ones, Franco Oliveri and Francesco Gargano, going to the recent friends, Emmanuel Haven and Rosa Di Salvo, and ending with the brand-new ones, Andrei Khrennikov, Irina Basieva, Emmanuel Pothos, Lucia Tamburino and Giangiacomo Bravo. Their help has been precious in in situations! And they will soon discover I still need them!

Some of the figures you will see appeared (as they are, or in some slightly modified form) in a few articles of mine. The editors kindly gave me the permission to use them, and for this reason I thank all of them. In particular, I wish to thank SIAM for some figures in Chapters 3 and 4, Elsevier for others in Chapters 3, 5, 6, 8 and 12 and Springer for more figures in Chapter 3. I also wish to thank Entropy, Plos One and Philosophical Transaction A for allowing me to use the figures in Chapters 7, 9 and 11.