Principles of Turbomachinery in Air-Breathing Engines

Second Edition

Acquire complete knowledge of the basics of air-breathing turbomachinery with this handson practical text. This updated new edition for students in mechanical and aerospace engineering discusses the role of entropy in assessing machine performance, provides a review of flow structures, and includes an applied review of boundary layer principles. New coverage describes approaches used to smooth initial design geometry into a continuous flow path, the development of design methods associated with the flow over blade shape (cascades loss theory) and annular type flows, as well as a discussion of the mechanisms for the setting of shaft speed. This essential text is also fully supported by over 200 figures, numerous examples, and homework problems, many of which have been revised for this edition.

Erian A. Baskharone was a Professor Emeritus of Mechanical and Aerospace Engineering at Texas A&M University and a member of the Rotordynamics/Turbomachinery Laboratory Faculty.

D. Lee Hill is a Compressor Technology Team Leader at Trane Technologies. He has over 30 years of experience in design, troubleshooting, and failure analysis of static and rotating equipment.

CAMBRIDGE AEROSPACE SERIES

Editors: Wei Shyy and Vigor Yang

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instrument Design*
- 10. G. A. Khoury (ed.): Airship Technology, Second Edition
- 11. J. P. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, Second Edition
- 13. J. Katz and A. Plotkin: Low-Speed Aerodynamics, Second Edition
- 14. M. J. Abzug and E. E. Larrabee: *Airplane Stability and Control: A History of the Technologies that Made Aviation Possible*, Second Edition
- 15. D. H. Hodges and G. A. Pierce: *Introduction to Structural Dynamics and Aeroelasticity*, Second Edition
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. D. D. Knight: Numerical Methods for High-Speed Flows
- 20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): Large-Eddy Simulation for Acoustics
- 21. D. D. Joseph, T. Funada, and J. Wang: Potential Flows of Viscous and Viscoelastic Fluids
- 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: Aerodynamics of Low Reynolds Number Flyers
- 23. J. H. Saleh: Analyses for Durability and System Design Lifetime
- 24. B. K. Donaldson: Analysis of Aircraft Structures, Second Edition
- 25. C. Segal: The Scramjet Engine: Processes and Characteristics
- 26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
- 27. A. K. Kundu: Aircraft Design
- 28. M. I. Friswell, J. E. T. Penny, S. D. Garvey, and A. W. Lees: *Dynamics of Rotating Machines*
- 29. B. A. Conway (ed): Spacecraft Trajectory Optimization
- 30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry
- 31. G. A. Flandro, H. M. McMahon, and R. L. Roach: Basic Aerodynamics
- 32. H. Babinsky and J. K. Harvey: Shock Wave-Boundary-Layer Interactions
- 33. C. K. W. Tam: Computational Aeroacoustics: A Wave Number Approach
- 34. A. Filippone: Advanced Aircraft Flight Performance
- 35. I. Chopra and J. Sirohi: Smart Structures Theory
- 36. W. Johnson: Rotorcraft Aeromechanics vol. 3
- 37. W. Shyy, H. Aono, C. K. Kang, and H. Liu: An Introduction to Flapping Wing Aerodynamics
- 38. T. C. Lieuwen and V. Yang: Gas Turbine Emissions
- 39. P. Kabamba and A. Girard: Fundamentals of Aerospace Navigation and Guidance

- 40. R. M. Cummings, W. H. Mason, S. A. Morton, and D. R. McDaniel: *Applied Computational Aerodynamics*
- 41. P. G. Tucker: Advanced Computational Fluid and Aerodynamics
- 42. Iain D. Boyd and Thomas E. Schwartzentruber: *Nonequilibrium Gas Dynamics and Molecular Simulation*
- 43. Joseph J. S. Shang and Sergey T. Surzhikov: *Plasma Dynamics for Aerospace Engineering*
- 44. Bijay K. Sultanian: Gas Turbines: Internal Flow Systems Modeling
- 45. J. A. Kéchichian: Applied Nonsingular Astrodynamics: Optimal Low-Thrust Orbit Transfer
- 46. J. Wang and L. Feng: Flow Control Techniques and Applications
- 47. D. D. Knight: Energy Disposition for High-Speed Flow Control
- 48. Eric Silk: Introduction to Spacecraft Thermal Design
- 49. Antony Jameson: Computational Aerodynamics
- 50. Peretz Friedmann, George Lesieutre and Daning Huang: *Structural Dynamics: Theory and Applications to Aerospace and Mechanical Engineering*
- 51. Ronald D. Flack: Fundamentals of Jet Propulsion with Power Generation Applications
- 52. Rafael Palacios and Carlos E. S. Cesnik: *Dynamics of Flexible Aircraft: Coupled Flight Mechanics, Aeroelasticity, and Control*
- 53. Erian A. Baskharone and D. Lee Hill: *Principles of Turbomachinery in Air-Breathing Engines,* Second Edition

Principles of Turbomachinery in Air-Breathing Engines

SECOND EDITION

Erian A. Baskharone Texas A & M University

D. Lee Hill Trane Technologies

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781108491822

DOI: 10.1017/9781108648936

© Erian A. Baskharone and D. Lee Hill 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2006 Second edition 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Names: Baskharone, Erian A., 1947– author. | Hill, D. Lee, 1961– author. Title: Principles of turbomachinery in air-breathing engines / Erian A. Baskharone, Texas A & M University, D. Lee Hill, Trane Technologies.

Description: 2nd edition. | Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2022. | Series: Cambridge aerospace series | Includes bibliographical references and index.

Identifiers: LCCN 2022002201 | ISBN 9781108491822 (hardback) Subjects: LCSH: Gas-turbines. | Turbomachines. Classification: LCC TJ778 .B33 2022 | DDC 621.43/3 23/eng/20220-dc08

LC record available at https://lccn.loc.gov/2022002201

ISBN 978-1-108-49182-2 Hardback

Additional resources for this publication at www.cambridge.org/baskharone-hill

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> I dedicate the second edition of this book to my late father and original author of this book, Dr. Erian Aziz Baskharone. May God bless your soul for all of time. I miss you every day. I would also like to offer my sincerest of thanks to Dr. Lee Hill for his significant contributions to getting this edition of the book published. Your help has been immense and words can't express how appreciative I am for that.

> > —Daniel Erian Baskharone

Contents

1	Introduction to Gas Turbine Engines	1
	1.1 Definition	1
	1.2 Advantages of Gas Turbine Engines	1
	1.3 Applications of Gas Turbine Engines	2
	1.4 The Gas Generator	4
	1.5 Air Intake and Inlet Flow Passage	4
	1.6 Engine Exhaust Component	5
	1.7 Multispool Engine Arrangements	5
	1.8 Thermodynamic Cycle in a Single-Combustor Engine	6
	1.9 Importance of Metallurgical Progress	7
2	Overview of Turbomachinery Nomenclature	8
	2.1 Definition of a Turbomachine	8
	2.2 General Classification of Turbomachines	9
	2.3 Stage Definition	12
	2.4 Coordinate System	15
	2.5 Velocity Diagrams	16
	2.6 Multiple Staging	20
	2.7 Viscosity and Compressibility Factors	21
	2.8 Stator/Rotor Interaction	23
	Reference	24
3	Aerothermodynamics of Turbomachines and Design-Related Topics	25
	3.1 Assumptions and Limitations	25
	3.2 Energy-Conservation Law	27
	3.3 Introduction of Total Properties	28
	3.4 Ideal Gas as a Working Medium	28
	3.5 Entropy-Based Loss Coefficient	34
	3.6 Comments	38
	3.7 Compressibility of the Working Medium	39
	3.8 Sonic Speed in Ideal Gases	40
	3.9 Mach Number and Compressibility of a Flow Field	40
	3.10 Total Properties in Terms of the Mach Number	41

ix

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-49182-2 — Principles of Turbomachinery in Air-Breathing Engines Erian A. Baskharone, D. Lee Hill Frontmatter <u>More Information</u>

x Contents

	3.11 Definition of the Critical Mach Number	41
	3.12 Total Properties in Terms of the Critical Mach Number	43
	3.13 Definition of the Pitch Line in Turbomachines	44
	3.14 Continuity Equation in Terms of Total Properties	45
	3.15 Isentropic Flow in Varying-Area Passages	47
	3.16 The Sonic State	50
	3.17 Nozzle and Diffuser-Like Airfoil Cascades	51
	3.18 Bernoulli's Equation: Applicability and Limitations	52
	3.19 Favorable and Unfavorable Pressure Gradients	57
	3.20 Design Point and Off-Design Operation Modes	62
	3.21 Choice of the Design Point	63
	3.22 Variable-Geometry Turbomachines	64
	3.23 Means of Assessing Turbomachinery Performance	68
	3.24 Total-Relative Flow Properties	73
	3.25 Introduction to the Relative Critical Mach Number	74
	3.26 Losses in Constant-Area Annular Ducts (Fanno Process)	75
	3.27 Fanno Flow Relationships	78
	3.28 Exhaust Diffusers	94
	3.29 Definition of the Momentum Thickness	97
	Problems	105
	References	111
4	Energy Transfer between a Fluid and a Rotor	112
	4.1 Axial Momentum Equation	112
	4.2 Radial Momentum Equation	113
	4.3 Tangential Momentum Equation	114
	4.4 Stationary and Rotating Frames of Reference	115
	4.5 Flow and Airfoil Angles	119
	4.6 Components of Energy Transfer	120
	4.7 Definition of the Stage Reaction	121
	4.8 Reaction of Axial-Flow Stages	122
	4.9 Introduction of the Utilization Factor	124
	4.10 Impulse Turbines	125
	4.11 Reaction Turbines	126
	4.12 Fifty Percent Reaction Turbines	126
	4.13 Reaction-Alternative Option	127
	4.14 Reaction-Related Topic Summary	128
	4.15 Invariant Thermophysical Properties	129
	4.16 Importance of the Invariant Properties	131
	4.17 Total Delative Properties	
	4.17 Total-Relative Properties	132
	4.17 Total-Relative Properties 4.18 Incidence and Deviation Angles	132 134

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-49182-2 — Principles of Turbomachinery in Air-Breathing Engines Erian A. Baskharone, D. Lee Hill Frontmatter <u>More Information</u>

		Contents	xi
	410 Comments		140
	4.19 Comments		140
	4.20 Kellialk 4.21 Flow in Vaneless Passages		142
	4.21 Flow across Bends		170
	4.22 Flow across bends 4.23 Flat Plate Parallel to the Flow		170
	4.25 Flat Plate Normal to the Flow Direction		174
	4.25 Flow over Airfoil Sections		174
	4.26 Pressure Distribution		175
	4.27 Effect of Compressibility		178
	4.28 Blade Terminology		180
	4.29 Fluid Angles		182
	4.30 Cascades of Blades		184
	4.31 Theoretical Methods		189
	4.32 Flow Deviation		191
	4.33 Energy Transfer and Loss in Terms of Lift and Drag		193
	4.34 Arrangement of Blades		196
	4.35 Optimum Performance of a Stagger: Degree of Reaction		199
	4.36 Optimum Stage Performance: Effect of Blade Spacing		201
	4.37 Free- versus Forced-Vortex Flows		205
	4.38 Discussion of Vortex Flow		207
	4.39 Effects of Vortex Flows on Design		208
	4.40 Blade-to-Blade Hub-to-Casing Drag Coefficients		209
	4.41 Wall (or Annulus) Friction Loss		210
	4.42 Secondary Flow Loss		211
	Problems		217
	References		230
5	Dimensional Analysis, Maps, and Specific Speed		231
	5.1 Introduction		231
	5.2 Geometrical Similarity		231
	5.3 Dynamic Similarity		231
	5.4 Buckingham's π Theorem: Incompressible Flows		232
	5.5 Application to Compressible-Flow Turbomachines		233
	5.6 Compressor and Turbine Maps		234
	5.7 Choking of Compressors and Turbines		237
	5.8 Specific Speed		239
	5.9 Application to Incompressible-Flow Turbomachines		240
	5.10 Application to Compressible-Flow Turbomachines		241
	5.11 Design Role of the Specific Speed		243
	5.12 Traditional Specific-Speed Approximations		245
	Problems		260

xii Contents

6	Radial Equilibrium Theory	269
	 6.1 Assumptions 6.2 Implications 6.3 Derivation of the Radial Equilibrium Equation 6.4 Special Forms of the Radial Equilibrium Equation 6.5 Further Simplifications Problems 	269 269 271 274 275 290
7	Polytropic (Small-Stage) Efficiency	298
	7.1 Derivation of the Polytropic Efficiency7.2 Multistage Compressors and TurbinesProblems	298 302 308
8	Axial-Flow Turbines	314
	 8.1 Stage Definition 8.2 The Preliminary Design Process 8.3 First Step: Investigate a Single-Stage Configuration 8.4 Second Step: Define the Stage-to-Stage Work Split 8.5 Third Step: Stage-by-Stage Turbine Design 8.6 Stage Design: A Simplified Approach 8.7 Definition of the Incidence and Deviation Angles 8.8 Detailed Design of Airfoil Cascades 8.9 Airfoil Cascade Geometry Variables 8.10 Airfoil Aerodynamic Loading 8.11 Geometrical Discontinuities 8.12 Performance-Controlling Variables 8.13 Aspect Ratio 	314 315 317 318 318 319 344 346 349 351 354 355 355
	 8.14 Tip Clearance Effects 8.15 Reynolds Number Effect 8.16 Incidence Angle Effect 8.17 Suction-Side Flow Diffusion 8.18 Location of the Front Stagnation Point 	356 358 360 362 364
	 8.19 Trailing-Edge Thickness 8.20 Design-Oriented Empirical Correlations 8.21 Stacking of the Vane and Blade Airfoil Sections 8.22 Shaft-Work Extraction in Low Aspect-Ratio Blades 8.23 The Supersonic Stator Option 	365 366 369 370 370
	8.24 Comment8.25 Shape of the Stagnation Streamlines	375 376

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-49182-2 — Principles of Turbomachinery in Air-Breathing Engines Erian A. Baskharone, D. Lee Hill Frontmatter <u>More Information</u>

	Contents	xiii
8.26 Simple Component Adaptation Means		377
8.20 Simple Component Adaptation Means		370
8.27 The-to-Cold Dimensions Conversion 8.28 Cooling Flow Extraction and Path of Delivery		379
8.20 Comment		300
Problems		300
References		410
9 Avial-Flow Compressors		412
		712
9.1 Introduction		412
9.2 Comparison with Axial-Flow Turbines		412
9.3 Stage Definition and Multiple Staging		415
9.4 Normal Stage Definition		417
9.5 Standard Airfoil Profiles		418
9.6 Real Flow Effects: Effect of the Incidence Angle		421
9.7 Effect of the Reynolds Number		422
9.8 Effect of the Mach Number		423
9.9 The Clearance Effect		424
9.10 Complessor On-Design Characteristics		424
9.11 Rotating Stan and Total Surge		423
9.13 Means of Suppressing Startup Problems		429
Problems		455
Reference		466
10 Radial-Inflow Turbines		467
10.1 Introduction		467
10.1 Infoduction		407
10.3 Flow Angles		469
10.4 Stage Reaction		469
10.5 Other Performance-Related Dimensionless Variables		469
10.6 Total-Relative Properties and Critical Mach Number		470
10.7 Conventional-Stage Geometrical Configurations		472
10.8 Compressibility Effects		478
10.9 Stage Design Approach		485
10.10 Closed-Form Loss Correlations		488
10.11 Effect of the "Scallop" Radius and Backface Clearance		495
10.12 Stage Placement in a Multistage Turbine		532
10.13 Cooling Techniques		532
Problems		535
References		547

xiv Contents

11	Centrifugal Compressors	548
	11.1 Component Identification	549
	11.2 Impeller Inlet System	552
	11.3 Inlet-Duct Total-Pressure Loss	552
	11.4 Compressor Thermodynamics	553
	11.5 Impeller Blading Options	554
	11.6 Components of Energy Transfer and Stage Reaction	558
	11.7 Performance Consequences of the Static Head	559
	11.8 Performance Consequences of the Dynamic Head	562
	11.9 Acceleration Components within the Impeller	563
	11.10 Slip Phenomenon	565
	11.11 Slip Factor	565
	11.12 Stage Total-to-Total Efficiency	566
	11.13 Volute Flow Field	566
	11.14 One-Dimensional Approach to Volute Design	570
	11.15 Total-to-Static Efficiency	571
	11.16 Tip Clearance Effect	571
	11.17 Multiple Staging	573
	11.18 Impeller–Stator Unsteady Flow Interaction	573
	Problems	597
	References	608
12	Turbine-Compressor Matching	609
	12.1 Problem Category 1	612
	12.2 Problem Category 2	616
	12.3 Performance-Related Variables in Propulsion Systems	618
	12.4 Mechanism of Shaft-Speed Setting	620
	12.5 Gas Generator Operating Lines on Compressor Maps: Constant	
	T_{t4}/T_{t2} Lines	622
	12.6 Outer Loop	623
	12.7 Inner Loop	624
	12.8 Required Postprocessing Work	625
	Problems	643

Index

654