
Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

A L G O R I T H M D E S I G N W I T H H A S K E L L

This book is devoted to five main principles of algorithm design: divide and

conquer, greedy algorithms, thinning, dynamic programming, and exhaustive

search. These principles are presented using Haskell, a purely functional language,

leading to simpler explanations and shorter programs than would be obtained

with imperative languages. Carefully selected examples, both new and standard,

reveal the commonalities and highlight the differences between algorithms. The

algorithm developments use equational reasoning where applicable, clarifying the

applicability conditions and correctness arguments. Every chapter concludes with

exercises (nearly 300 in total), each with complete answers, allowing the reader to

consolidate their understanding and apply the techniques to a range of problems.

The book serves students (both undergraduate and postgraduate), researchers,

teachers, and professionals who want to know more about what goes into a good

algorithm and how such algorithms can be expressed in purely functional terms.

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

ALGORITHM DESIGN WITH HASKELL

RICHARD BIRD
University of Oxford

JEREMY GIBBONS
University of Oxford

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108491617

DOI: 10.1017/9781108869041

© Richard Bird and Jeremy Gibbons 2020

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49161-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of

URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

For Stephen Gill (RB) and Sue Gibbons (JG).

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Preface page xiii

PART ONE BASICS 1

1 Functional programming 5

1.1 Basic types and functions 5

1.2 Processing lists 7

1.3 Inductive and recursive definitions 9

1.4 Fusion 11

1.5 Accumulating and tupling 14

1.6 Chapter notes 16

References 16

Exercises 16

Answers 19

2 Timing 25

2.1 Asymptotic notation 25

2.2 Estimating running times 27

2.3 Running times in context 32

2.4 Amortised running times 34

2.5 Chapter notes 38

References 38

Exercises 38

Answers 40

3 Useful data structures 43

3.1 Symmetric lists 43

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

3.2 Random-access lists 47

3.3 Arrays 51

3.4 Chapter notes 53

References 54

Exercises 54

Answers 56

PART TWO DIVIDE AND CONQUER 59

4 Binary search 63

4.1 A one-dimensional search problem 63

4.2 A two-dimensional search problem 67

4.3 Binary search trees 73

4.4 Dynamic sets 81

4.5 Chapter notes 84

References 84

Exercises 85

Answers 87

5 Sorting 93

5.1 Quicksort 94

5.2 Mergesort 96

5.3 Heapsort 101

5.4 Bucketsort and Radixsort 102

5.5 Sorting sums 106

5.6 Chapter notes 110

References 110

Exercises 111

Answers 114

6 Selection 121

6.1 Minimum and maximum 121

6.2 Selection from one set 124

6.3 Selection from two sets 128

6.4 Selection from the complement of a set 132

6.5 Chapter notes 135

References 135

Exercises 135

Answers 137

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents ix

PART THREE GREEDY ALGORITHMS 141

7 Greedy algorithms on lists 145

7.1 A generic greedy algorithm 145

7.2 Greedy sorting algorithms 147

7.3 Coin-changing 151

7.4 Decimal fractions in TEX 156

7.5 Nondeterministic functions and refinement 161

7.6 Summary 165

7.7 Chapter notes 165

References 166

Exercises 166

Answers 170

8 Greedy algorithms on trees 177

8.1 Minimum-height trees 177

8.2 Huffman coding trees 187

8.3 Priority queues 196

8.4 Chapter notes 199

References 199

Exercises 199

Answers 201

9 Greedy algorithms on graphs 205

9.1 Graphs and spanning trees 205

9.2 Kruskal’s algorithm 208

9.3 Disjoint sets and the union–find algorithm 211

9.4 Prim’s algorithm 215

9.5 Single-source shortest paths 219

9.6 Dijkstra’s algorithm 220

9.7 The jogger’s problem 224

9.8 Chapter notes 228

References 228

Exercises 229

Answers 231

PART FOUR THINNING ALGORITHMS 237

10 Introduction to thinning 241

10.1 Theory 241

10.2 Paths in a layered network 244

10.3 Coin-changing revisited 248

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

x Contents

10.4 The knapsack problem 252

10.5 A general thinning algorithm 255

10.6 Chapter notes 257

References 257

Exercises 257

Answers 261

11 Segments and subsequences 267

11.1 The longest upsequence 267

11.2 The longest common subsequence 270

11.3 A short segment with maximum sum 274

11.4 Chapter notes 280

References 281

Exercises 281

Answers 283

12 Partitions 289

12.1 Ways of generating partitions 289

12.2 Managing two bank accounts 291

12.3 The paragraph problem 294

12.4 Chapter notes 299

References 300

Exercises 300

Answers 303

PART FIVE DYNAMIC PROGRAMMING 309

13 Efficient recursions 313

13.1 Two numeric examples 313

13.2 Knapsack revisited 316

13.3 Minimum-cost edit sequences 319

13.4 Longest common subsequence revisited 322

13.5 The shuttle-bus problem 323

13.6 Chapter notes 326

References 326

Exercises 327

Answers 330

14 Optimum bracketing 335

14.1 A cubic-time algorithm 336

14.2 A quadratic-time algorithm 339

14.3 Examples 341

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents xi

14.4 Proof of monotonicity 345

14.5 Optimum binary search trees 347

14.6 The Garsia–Wachs algorithm 349

14.7 Chapter notes 358

References 358

Exercises 359

Answers 362

PART SIX EXHAUSTIVE SEARCH 365

15 Ways of searching 369

15.1 Implicit search and the n-queens problem 369

15.2 Expressions with a given sum 376

15.3 Depth-first and breadth-first search 378

15.4 Lunar Landing 383

15.5 Forward planning 386

15.6 Rush Hour 389

15.7 Chapter notes 393

References 394

Exercises 395

Answers 398

16 Heuristic search 405

16.1 Searching with an optimistic heuristic 406

16.2 Searching with a monotonic heuristic 411

16.3 Navigating a warehouse 415

16.4 The 8-puzzle 419

16.5 Chapter notes 425

References 425

Exercises 426

Answers 428

Index 432

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

Our aim in this book is to provide an introduction to the principles of algorithm

design using a purely functional approach. Our language of choice is Haskell and all

the algorithms we design will be expressed as Haskell functions. Haskell has many

features for structuring function definitions, but we will use only a small subset of

them.

Using functions, rather than loops and assignment statements, to express algo-

rithms changes everything. First of all, an algorithm expressed as a function is

composed of other, more basic functions that can be studied separately and reused

in other algorithms. For instance, a sorting algorithm may be specified in terms of

building a tree of some kind and then flattening it in some way. Functions that build

trees can be studied separately from functions that consume trees. Furthermore, the

properties of each of these basic functions and their relationship to others can be

captured with simple equational properties. As a result, one can talk and reason

about the ‘deep’ structure of an algorithm in a way that is not easily possible with

imperative code. To be sure, one can reason formally about imperative programs by

formulating their specifications in the predicate calculus, and using loop invariants

to prove they are correct. But, and this is the nub, one cannot easily reason about

the properties of an imperative program directly in terms of the language of its

code. Consequently, books on formal program design have a quite different tone

from those on algorithm design: they demand fluency in both the predicate calculus

and the necessary imperative dictions. In contrast, many texts on algorithm design

traditionally present algorithms with a step-by-step commentary, and use informally

stated loop invariants to help one understand why the algorithm is correct.

With a functional approach there are no longer two separate languages to think

about, and one can happily calculate better versions of algorithms, or parts of

algorithms, by the straightforward process of equational reasoning. That, perhaps, is

the main contribution of this book. Although it contains a fair amount of equational

reasoning, we have tried to maintain a light touch. The plain fact of the matter is

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xiv Preface

that calculation is fun to do but boring to read – well, too much of it is. Although it

does not matter very much whether imperative algorithms are expressed in C or Java

or pseudo-code, the situation changes completely when algorithms are expressed

functionally.

Many of the problems considered in this book, especially in the later parts, begin

with a specification of the task in hand, expressed as a composition of standard

functions such as maps, filters, and folds, as well as other functions such as perms for

computing all the permutations of a list, parts for computing all the partitions, and

mktrees for building all the trees of a particular kind. These component functions

are then combined, or fused, in various ways to construct a final algorithm with the

required time complexity. A final sorting algorithm may not refer to the underlying

tree, but the tree is still there in the structure of the algorithm. The notion of fusion

dominates the technical and mathematical aspects of the design process and is really

the driving force of the book.

The disadvantage for any author of taking a functional approach is that, be-

cause functional languages such as Haskell are not so well known as mainstream

procedural languages, one has to spend some time explaining them. That would

add substantially to the length of the book. The simple solution to this problem

is just to assume the necessary knowledge. There is a growing range of textbooks

on languages like Haskell, including our own Thinking Functionally with Haskell

(Cambridge University Press, 2014), and we will just assume the reader is familiar

with the necessary material. Indeed, the present book was designed as a companion

volume to the earlier book. A brief summary of what we do assume, and an even

briefer reprise of some essential ideas, is given in the first chapter, but you will

probably not be able to learn enough about Haskell there to understand the rest

of the book. Even if you do know something about functional programming, but

not about how equational reasoning enters the picture (some books on functional

programming simply don’t mention equational reasoning), you will probably still

have to refer to our earlier book. In any case, the mathematics involved in equational

reasoning is neither new nor difficult.

Books on algorithm design traditionally cover three broad areas: a collection of

design principles, a study of useful data structures, and a number of interesting and

intriguing algorithms that have been discovered over the centuries. Sometimes the

books are arranged by principles, sometimes by topic (such as graph algorithms, or

text algorithms), and sometimes by a mixture of both. This book mostly takes the

first approach. It is devoted to five main design strategies underlying many effective

algorithms: divide and conquer, greedy algorithms, thinning algorithms, dynamic

programming, and exhaustive search. These are the design strategies that every

serious programmer should know. The middle strategy, on thinning algorithms,

is new, and serves in many problems as an alternative to dynamic programming.

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xv

Each design strategy is allocated a part to itself, and the chapters on each strategy

cover a variety of algorithms from the well-known to the new. There is only a

little material on data structures – only as much as we need. In the first part of the

book we do discuss some basic data structures, but we will also rely on some of

Haskell’s libraries of other useful ways of structuring data. One reason for doing so

is that we wanted the book not to be too voluminous; another reason is that there

does exist one text, Chris Okasaki’s Purely Functional Data Structures (Cambridge

University Press, 1998), that covers a lot of the material. Other books on functional

data structures have been published since we began writing this book, and more are

beginning to appear.

Another feature of this book is that, as well as some firm favourites, it describes a

number of algorithms that do not usually appear in books on algorithm design. Some

of these algorithms have been adapted, elaborated, and simplified from yet another

book published by Cambridge University Press: Pearls of Functional Algorithm

Design (2010). The reason for this novelty is simply to make the book entertaining

as well as instructive. Books on algorithm design are read, broadly speaking, by

three kinds of people: academics who need reference material, undergraduate or

graduate students on a course, and professional programmers simply for interest

and enjoyment. Most professional programmers do not design algorithms but just

take them from a library. Yet they too are a target audience for this book, because

sometimes professional programmers want to know more about what goes into a

good algorithm and how to think about them.

Algorithms in real life are a good deal more intricate than the ones presented in

this book. The shortest-path algorithm in a satellite navigation system is a good

deal more complicated than a shortest-path algorithm as presented in a textbook

on algorithm design. Real-life algorithms have to cope with the problems of scale,

with the effective use of a computer’s hardware, with user interfaces, and with many

other things that go into a well-designed and useful product. None of these aspects

is covered in the present book, nor indeed in most books devoted solely to the

principles of algorithm design.

There is another feature of this book that deserves mention: all exercises are

answered, if sometimes somewhat briefly. The exercises form an integral part of

the text, and the questions and answers should be read even if the exercises are not

attempted. Rather than have a complete bibliography at the end of the book, each

chapter ends with references to (some of) the books and articles pertinent to the

chapter.

Most of the major programs in this book are available on the web site

www.cs.ox.ac.uk/publications/books/adwh

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xvi Preface

You can also use this site to see a list of all known errors, as well as report new ones.

We also welcome suggestions for improvement, including ideas for new exercises.

Acknowledgements

Preparation of this book has benefited enormously from careful reading by Sue

Gibbons, Hsiang-Shang Ko, and Nicolas Wu. The manuscript was prepared using

the lhs2TEX system of Ralf Hinze and Andres Löh, which pretty-prints the Haskell

code and also allows it to be extracted and type-checked. The extracted code was

then tested using the wonderful QuickCheck tool developed by Koen Claessen and

John Hughes. Type-checking and QuickChecking the code has saved us from many

infelicities; any errors that remain are, of course, our own responsibility.

We also thank David Tranah and the team at Cambridge University Press for their

advice and hard work in the generation of the final version of the text.

Richard Bird

Jeremy Gibbons

www.cambridge.org/9781108491617
www.cambridge.org

