
Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

A L G O R I T H M D E S I G N W I T H H A S K E L L

This book is devoted to five main principles of algorithm design: divide and

conquer, greedy algorithms, thinning, dynamic programming, and exhaustive

search. These principles are presented using Haskell, a purely functional language,

leading to simpler explanations and shorter programs than would be obtained

with imperative languages. Carefully selected examples, both new and standard,

reveal the commonalities and highlight the differences between algorithms. The

algorithm developments use equational reasoning where applicable, clarifying the

applicability conditions and correctness arguments. Every chapter concludes with

exercises (nearly 300 in total), each with complete answers, allowing the reader to

consolidate their understanding and apply the techniques to a range of problems.

The book serves students (both undergraduate and postgraduate), researchers,

teachers, and professionals who want to know more about what goes into a good

algorithm and how such algorithms can be expressed in purely functional terms.
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Preface

Our aim in this book is to provide an introduction to the principles of algorithm

design using a purely functional approach. Our language of choice is Haskell and all

the algorithms we design will be expressed as Haskell functions. Haskell has many

features for structuring function definitions, but we will use only a small subset of

them.

Using functions, rather than loops and assignment statements, to express algo-

rithms changes everything. First of all, an algorithm expressed as a function is

composed of other, more basic functions that can be studied separately and reused

in other algorithms. For instance, a sorting algorithm may be specified in terms of

building a tree of some kind and then flattening it in some way. Functions that build

trees can be studied separately from functions that consume trees. Furthermore, the

properties of each of these basic functions and their relationship to others can be

captured with simple equational properties. As a result, one can talk and reason

about the ‘deep’ structure of an algorithm in a way that is not easily possible with

imperative code. To be sure, one can reason formally about imperative programs by

formulating their specifications in the predicate calculus, and using loop invariants

to prove they are correct. But, and this is the nub, one cannot easily reason about

the properties of an imperative program directly in terms of the language of its

code. Consequently, books on formal program design have a quite different tone

from those on algorithm design: they demand fluency in both the predicate calculus

and the necessary imperative dictions. In contrast, many texts on algorithm design

traditionally present algorithms with a step-by-step commentary, and use informally

stated loop invariants to help one understand why the algorithm is correct.

With a functional approach there are no longer two separate languages to think

about, and one can happily calculate better versions of algorithms, or parts of

algorithms, by the straightforward process of equational reasoning. That, perhaps, is

the main contribution of this book. Although it contains a fair amount of equational

reasoning, we have tried to maintain a light touch. The plain fact of the matter is
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xiv Preface

that calculation is fun to do but boring to read – well, too much of it is. Although it

does not matter very much whether imperative algorithms are expressed in C or Java

or pseudo-code, the situation changes completely when algorithms are expressed

functionally.

Many of the problems considered in this book, especially in the later parts, begin

with a specification of the task in hand, expressed as a composition of standard

functions such as maps, filters, and folds, as well as other functions such as perms for

computing all the permutations of a list, parts for computing all the partitions, and

mktrees for building all the trees of a particular kind. These component functions

are then combined, or fused, in various ways to construct a final algorithm with the

required time complexity. A final sorting algorithm may not refer to the underlying

tree, but the tree is still there in the structure of the algorithm. The notion of fusion

dominates the technical and mathematical aspects of the design process and is really

the driving force of the book.

The disadvantage for any author of taking a functional approach is that, be-

cause functional languages such as Haskell are not so well known as mainstream

procedural languages, one has to spend some time explaining them. That would

add substantially to the length of the book. The simple solution to this problem

is just to assume the necessary knowledge. There is a growing range of textbooks

on languages like Haskell, including our own Thinking Functionally with Haskell

(Cambridge University Press, 2014), and we will just assume the reader is familiar

with the necessary material. Indeed, the present book was designed as a companion

volume to the earlier book. A brief summary of what we do assume, and an even

briefer reprise of some essential ideas, is given in the first chapter, but you will

probably not be able to learn enough about Haskell there to understand the rest

of the book. Even if you do know something about functional programming, but

not about how equational reasoning enters the picture (some books on functional

programming simply don’t mention equational reasoning), you will probably still

have to refer to our earlier book. In any case, the mathematics involved in equational

reasoning is neither new nor difficult.

Books on algorithm design traditionally cover three broad areas: a collection of

design principles, a study of useful data structures, and a number of interesting and

intriguing algorithms that have been discovered over the centuries. Sometimes the

books are arranged by principles, sometimes by topic (such as graph algorithms, or

text algorithms), and sometimes by a mixture of both. This book mostly takes the

first approach. It is devoted to five main design strategies underlying many effective

algorithms: divide and conquer, greedy algorithms, thinning algorithms, dynamic

programming, and exhaustive search. These are the design strategies that every

serious programmer should know. The middle strategy, on thinning algorithms,

is new, and serves in many problems as an alternative to dynamic programming.
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Preface xv

Each design strategy is allocated a part to itself, and the chapters on each strategy

cover a variety of algorithms from the well-known to the new. There is only a

little material on data structures – only as much as we need. In the first part of the

book we do discuss some basic data structures, but we will also rely on some of

Haskell’s libraries of other useful ways of structuring data. One reason for doing so

is that we wanted the book not to be too voluminous; another reason is that there

does exist one text, Chris Okasaki’s Purely Functional Data Structures (Cambridge

University Press, 1998), that covers a lot of the material. Other books on functional

data structures have been published since we began writing this book, and more are

beginning to appear.

Another feature of this book is that, as well as some firm favourites, it describes a

number of algorithms that do not usually appear in books on algorithm design. Some

of these algorithms have been adapted, elaborated, and simplified from yet another

book published by Cambridge University Press: Pearls of Functional Algorithm

Design (2010). The reason for this novelty is simply to make the book entertaining

as well as instructive. Books on algorithm design are read, broadly speaking, by

three kinds of people: academics who need reference material, undergraduate or

graduate students on a course, and professional programmers simply for interest

and enjoyment. Most professional programmers do not design algorithms but just

take them from a library. Yet they too are a target audience for this book, because

sometimes professional programmers want to know more about what goes into a

good algorithm and how to think about them.

Algorithms in real life are a good deal more intricate than the ones presented in

this book. The shortest-path algorithm in a satellite navigation system is a good

deal more complicated than a shortest-path algorithm as presented in a textbook

on algorithm design. Real-life algorithms have to cope with the problems of scale,

with the effective use of a computer’s hardware, with user interfaces, and with many

other things that go into a well-designed and useful product. None of these aspects

is covered in the present book, nor indeed in most books devoted solely to the

principles of algorithm design.

There is another feature of this book that deserves mention: all exercises are

answered, if sometimes somewhat briefly. The exercises form an integral part of

the text, and the questions and answers should be read even if the exercises are not

attempted. Rather than have a complete bibliography at the end of the book, each

chapter ends with references to (some of) the books and articles pertinent to the

chapter.

Most of the major programs in this book are available on the web site

www.cs.ox.ac.uk/publications/books/adwh
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You can also use this site to see a list of all known errors, as well as report new ones.

We also welcome suggestions for improvement, including ideas for new exercises.
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