
Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

PART ONE

BASICS

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

3

What makes a good algorithm? There are as many answers to this question as there

are to the question of what makes a good cookbook recipe. Is the recipe clear and

easy to follow? Does the recipe use standard and well-understood techniques? Does

it use widely available ingredients? Is the preparation time reasonably short? Does it

involve many pots and pans and a lot of kitchen space? And so on and so on. Some

people when asked this question say that what is most important about a recipe

is whether the dish is attractive or not, a point we will try to bear in mind when

expressing our functional algorithms.

In the first three chapters we review the ingredients we need for designing good

recipes for attractive algorithms in a functional kitchen, and describe the tools we

need for analysing their efficiency. Our functional language of choice is Haskell,

and the ingredients are Haskell functions. These ingredients and the techniques for

combining them are reviewed in the first chapter. Be aware that the chapter is not

an introduction to Haskell; its main purpose is to outline what should be familiar

territory to the reader, or at least territory that the reader should feel comfortable

travelling in.

The second chapter concerns efficiency, specifically the running time of algo-

rithms. We will ignore completely the question of space efficiency, for the plain

fact of the matter is that executing a functional program can take up quite a lot of

kitchen space. There are methods for controlling the space used in evaluating a

functional expression, but we refer the reader to other books for their elaboration.

That chapter reviews asymptotic notation for stating running times, and explores

how recurrence relations, which are essentially recursive functions for determining

the running times of recursive functions, can be solved to give asymptotic estimates.

The chapter also introduces, albeit fairly briefly, the notion of amortised running

times because it will be needed later in the book.

The final chapter in this part introduces a small number of basic data structures

that will be needed at one or two places in the rest of the book. These are symmetric

lists, random-access lists, and purely functional arrays. Mostly we postpone discus-

sion of any data structure required to make an algorithm efficient until the algorithm

itself is introduced, but these three form a coherent group that can be discussed

without having specific applications in mind.

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1

Functional programming

Haskell is a large and powerful language, brimming with clever ideas about how

to structure programs and possessing many bells and whistles. But in this book we

will use only a small subset of the host of available features. So, no Monads, no

Applicatives, no Foldables, and no Traversables. In this chapter we will spell out

what we do need to construct effective algorithms. Some of the material will be

revisited when particular problems are put under the microscope, so you should

regard the chapter primarily as a way to check your understanding of the basic ideas

of Haskell.

1.1 Basic types and functions

We will use only simple types, such as Booleans, characters, strings, numbers of

various kinds, and lists. Most of the functions we use can be found in Haskell’s

Standard Prelude (the Prelude library), or in the library Data.List. Be warned that

the definitions we give of some of these functions may not be exactly the definitions

given in these libraries: the library definitions are tuned for optimal performance

and ours for clarity. We will use type synonyms to improve readability, and data

declarations of new types, especially trees of various kinds. When necessary we

make use of simple type classes such as Eq, Ord, and Num, but we will not introduce

new ones. Haskell provides many kinds of number, including two kinds of integer,

Int and Integer, and two kinds of floating-point number, Float and Double. Elements

of Int are restricted in range, usually [−263,263) on 64-bit computers, though Haskell

compilers are only required to cover the range [−229,229). Elements of Integer are

unrestricted. We will rarely use the floating-point numbers provided by Float and

Double. In one or two places we will use Rational arithmetic, where a Rational

number is the ratio of two Integer values. Haskell does not have a type of natural

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Functional programming

numbers,1 though the library Numeric.Natural does provide arbitrary-precision

ones. Instead, we will sometimes use the type synonym

type Nat = Int

Haskell cannot enforce the constraint that elements of Nat be natural numbers, and

we use the synonym purely to document intention. For example, we can assert

that length :: [a ] → Nat because the length of a list, as defined in the Prelude,

is a nonnegative element of Int. Haskell also provides unsigned numbers in the

Data.Word library. Elements of Word are unsigned numbers and can represent

natural numbers n in the range 0 � n<264 on 64-bit machines. However, defining

type Nat = Word would be inconvenient simply because we could not then assert

that length :: [a ]→ Nat.

Most important for our purposes are the basic functions that manipulate lists.

Of these the most useful are map, filter, and folds of various kinds. Here is the

definition of map:

map :: (a → b)→ [a ]→ [b ]

map f [ ] = [ ]

map f (x : xs) = f x : map f xs

The function map applies its first argument, a function, to every element of its

second argument, a list. The function filter is defined as follows:

filter :: (a → Bool)→ [a ]→ [a ]

filter p [ ] = [ ]

filter p (x : xs) = if p x then x : filter p xs else filter p xs

The function filter filters a list, retaining only those elements that satisfy the given

test. There are various fold functions on lists, most of which will be explained in

due course. Two of the important ones are foldr and foldl. The former is defined as

follows:

foldr :: (a → b → b)→ b → [a ]→ b

foldr f e [ ] = e

foldr f e (x : xs) = f x (foldr f e xs)

The function foldr folds a list from right to left, starting with a value e and using a

binary operator ⊕ to reduce the list to a single value. For example,

foldr (⊕) e [x,y,z ] = x⊕ (y⊕ (z⊕ e))

In particular, foldr (:) [ ] xs = xs for all lists xs, including infinite lists. However, we

will not make much use of infinite lists in what follows, except for idioms such as

1 In the documentation for the GHC libraries, there is the statement “It would be very natural to add a type
Natural providing an unbounded size unsigned integer, just as Prelude.Integer provides unbounded size signed
integers. We do not do that yet since there is no demand for it.” Maybe this book will create such a demand.

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Processing lists 7

label :: [a ]→ [(Nat,a)]

label xs = zip [0 . . ] xs

As another example, we can write

length :: [a ]→ Nat

length = foldr succ 0 where succ x n = n+1

The second main function, foldl, folds a list from left to right:

foldl :: (b → a → b)→ b → [a ]→ b

foldl f e [ ] = e

foldl f e (x : xs) = foldl f (f e x) xs

Thus

foldl (⊕) e [x,y,z ] = ((e⊕ x)⊕ y)⊕ z

For example, we could also write

length :: [a ]→ Nat

length = foldl succ 0 where succ n x = n+1

Note that foldl returns a well-defined value only on finite lists; evaluation of foldl

on an infinite list will never terminate. There is an alternative definition of foldl,

namely

foldl f e = foldr (flip f ) e · reverse

where flip is a useful prelude function defined by

flip :: (a → b → c)→ b → a → c

flip f x y = f y x

Since one can reverse a list in linear time, this definition is asymptotically as fast as

the former. However, it involves two traversals of the input, one to reverse it and the

second to fold it.

1.2 Processing lists

The difference between foldr and foldl prompts a general observation. When a

programmer brought up in the imperative programming tradition meets functional

programming for the first time, they are likely to feel that many computations seem

to be carried out in the wrong order. Recursion has been described as the curious

process of reaching one’s goal by walking backwards towards it. Specifically, lists

often seem to be processed from right to left when the natural way surely appears to

be from left to right. Appeals to naturalness are often suspicious, and appearances

can be deceptive. We normally read an English sentence from left to right, but when

we encounter a phrase such as “a lovely little old French silver butter knife” the

adjectives have to be applied from right to left. If the knife was made of French

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Functional programming

silver, but not necessarily made in France, we have to write “a lovely little old

French-silver butter knife” to avoid ambiguity. Mathematical expressions too are

usually understood from right to left, certainly those involving a chain of functional

compositions. As to deceptiveness, the definition

head = foldr (≪)⊥ where x ≪ y = x

though a little strange is certainly correct and takes constant time. The evaluation

of foldr (≪), conceptually from right to left, is abandoned after the first element is

encountered. Thus

head (x : xs) = foldr (≪)⊥ (x : xs)

= x ≪ foldr (≪)⊥ xs

= x

The last step follows from the fact that Haskell is a lazy language in which eval-

uations are performed only when needed, so evaluation of ≪ does not require

evaluation of its second argument.

Sometimes the direction of travel is important. For example, consider the follow-

ing two definitions of concat:

concat1,concat2 :: [[a ] ]→ [a ]

concat1 = foldr (++) [ ]

concat2 = foldl (++) [ ]

We have concat1 xss = concat2 xss for all finite lists xss (see Exercise 1.10), but

which definition is better? We will look at the precise running times of the two

functions in the following chapter, but here is one way to view the problem. Imagine

a long table on which there are a number of piles of documents. You have to assemble

these documents into one big pile ensuring that the correct order is maintained, so

the second pile (numbering from left to right) has to go under the first pile, the third

pile under the second pile, and so on. You could start from left to right, picking up

the first pile, putting it on top of the second pile, picking the combined pile up and

putting it on top of the third pile, and so on. Or you could start at the other end,

placing the penultimate pile on the last pile, the antepenultimate pile on top of that,

and so on (even English words are direction-biased: the words ‘first’, ‘second’, and

‘third’ are simple, but ‘penultimate’ and ‘antepenultimate’ are not). The left to right

solution involves some heavy lifting, particularly at the last step when a big pile

of documents has to be lifted up and placed on the last pile, but the right to left

solution involves picking up only one pile at each step. So concat1 is potentially a

much more efficient way to concatenate a list of lists than concat2.

Here is another example. Consider the problem of breaking a list of words into

a list of lines, ensuring that the width of each line is at most some given bound.

This problem is known as the paragraph problem, and there is a section devoted

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 Inductive and recursive definitions 9

to it in Chapter 12. It seems natural to process the input from left to right, adding

successive words to the end of the current line until no more words will fit, in

which case a new line is started. This particular algorithm is a greedy one. There

are also non-greedy algorithms for the paragraph problem that process words from

right to left. Part Three of the book is devoted to the study of greedy algorithms.

Nevertheless, these two examples apart, the direction of travel is often unimportant.

The direction of travel is also related to another concept in algorithm design,

the notion of an online algorithm. An online algorithm is one that processes a list

without having the entire list available from the start. Instead, the list is regarded

as a potentially infinite stream of values. Consequently, any online algorithm for

solving a problem for a given stream also has to solve the problem for every prefix

of the stream. And that means the stream has to be processed from left to right. In

contrast, an offline algorithm is one that is given the complete list to start with, and

can process the list in any order it wants. Online algorithms can usually be defined

in terms of another basic Haskell function scanl, whose definition is as follows:

scanl :: (b → a → b)→ b → [a ]→ [b ]

scanl f e [ ] = [e ]

scanl f e (x : xs) = e : scanl f (f e x) xs

For example,

scanl (⊕) e [x,y,z, ...] = [e,e⊕ x,(e⊕ x)⊕ y,((e⊕ x)⊕ y)⊕ z, ...]

In particular, scanl can be applied to an infinite list, producing an infinite list as

result.

1.3 Inductive and recursive definitions

While most functions make use of recursion, the nature of the recursion is different

in different functions. The functions map, filter, and foldr all make use of structural

recursion. That is, the recursion follows the structure of lists built from the empty

list [ ] and the cons constructor (:). There is one clause for the empty list and another,

recursive clause for x : xs in terms of the value of the function for xs. We will call

such definitions inductive definitions. Most inductive definitions can be expressed

as instances of foldr. For example, both map and filter can be so expressed (see the

exercises).

Here is another example, an inductive definition of the function perms that returns

a list of all the permutations of a list (we call it perms1 because later on we will

meet another definition, perms2):

perms1 [ ] = [[ ]]

perms1 (x : xs) = [zs | ys ← perms1 xs,zs ← inserts x ys ]

www.cambridge.org/9781108491617
www.cambridge.org


Cambridge University Press
978-1-108-49161-7 — Algorithm Design with Haskell
Richard Bird , Jeremy Gibbons 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Functional programming

The permutations of a nonempty list are obtained by taking each permutation of

the tail of the list and returning all the ways the first element can be inserted. The

function inserts is defined by

inserts :: a → [a ]→ [ [a ] ]

inserts x [ ] = [[x ] ]

inserts x (y : ys) = (x : y : ys) : map (y:) (inserts x ys)

For example,

inserts 1 [2,3 ] = [[1,2,3 ], [2,1,3 ], [2,3,1 ]]

The definition of perms1 uses explicit recursion and a list comprehension, but

another way is to use a foldr:

perms1 = foldr step [ [ ] ] where step x xss = concatMap (inserts x) xss

The useful function concatMap is defined by

concatMap :: (a → [b ])→ [a ]→ [b ]

concatMap f = concat ·map f

Observe that since

step x xss = (concatMap · inserts) x xss

the definition of perms1 can be expressed even more briefly as

perms1 = foldr (concatMap · inserts) [[ ]]

The idiom foldr (concatMap · steps) e will be used frequently in later chapters for

various definitions of steps and e, so keep the abbreviation in mind.

Here is another way of generating permutations, one that is recursive rather than

inductive:

perms2 [ ] = [[ ]]

perms2 xs = [x : zs | (x,ys)← picks xs,zs ← perms2 ys ]

picks :: [a ]→ [(a, [a ])]

picks [ ] = [ ]

picks (x : xs) = (x,xs) : [(y,x : ys) | (y,ys)← picks xs ]

The function picks picks an arbitrary element from a list in all possible ways,

returning both the element and what remains. The function perms2 computes a

permutation by picking an arbitrary element of a nonempty list as a first element,

and following it with a permutation of the rest of the list.

The function perms2 uses a list comprehension, but an equivalent way is to write

perms2 [ ] = [[ ]]

perms2 xs = concatMap subperms (picks xs)

where subperms (x,ys) = map (x:) (perms2 ys)

www.cambridge.org/9781108491617
www.cambridge.org

