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1 A Brief History of Space

Space is a central notion in both mathematics and physics and has always been

at the heart of their interactions. From Greek geometry to Galileo experiences,

mathematics and physics have been rooted in constructions performed in

the same ambient physical space. But both mathematics and physics have

eventually left the safe experience of this common ground for more abstract

notions of space.

The 17th century witnessed the development of projective geometry and

the strange, yet effective, idea of points at infinity. This century witnessed

also the advent of analytic geometry (with its use of coordinates) with

Descartes and of differential calculus with Newton and Leibniz. Both have

led to an approach to geometry fundamentally based on the manipulation

of algebraic formulas. The capacity to manipulate spaces without relying on

a spatial intuition has laid the foundations for one of the most important

revolutions in geometry: the conception of spaces of arbitrary dimension.
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2 Mathieu Anel and Gabriel Catren

During the same time, the successful geometrization of astronomy, optics,

and mechanics anchored physics to the paradigm of a differential Euclidean

space.

The 18th century essentially develops differential calculus for spaces of

high dimensions. Analytic geometry and physics converge into analytical

mechanics. This is a revolution that introduces abstract spaces in physics (like

the six-dimensional spaces of trajectories) and reduces the actual physical

space to be a mere starting point out of which other relevant spaces can

be constructed. In mathematics, the invention of complex numbers laid the

groundwork for the future algebraic geometry. In turn, the contradictions of

logarithm theory and the study of polyhedra and graphs planted the seeds

of algebraic topology. Moreover, analytical methods forecast a new notion of

space: the infinite-dimensional spaces of functions.

In the 19th century, geometry exploded in diversity. The use of local coor-

dinates in analytical mechanics gave rise to the intrinsic theory of manifolds

and the fundamental local–global dialectic. The points at infinity, the points

with complex coordinates, and the multiple points of intersection theory are

all unified in the framework of algebraic geometry. The geometric study of

linear equations led to the notion of vector space. The development of Lie

group theory created a completely new branch of geometry centered on the

characterization of the symmetries of spaces. The construction of models for

non-Euclidean geometry revived the old synthetic/axiomatic geometry, and the

development of analysis prepares the notions of metric spaces. In physics,

thermodynamics and electromagnetism are successfully developed within the

framework of the differential calculus of Rn. The latter entangles space with

time in an unusual way, but the geometric paradigm of classical mechanics

remains well secured.

The mathematics of the 20th century started with the successful definition

of topological spaces. At the heart of the notion of space are now the set of

its points, the open subsets, and the continuous-discontinuous dialectic. From

function spaces to manifolds and unseparated spaces, topological spaces are

powerful enough to unify many kinds of spaces. Lie groups and the paradigm

of symmetry are also everywhere, from differential equations to manifolds and

linear algebra. Another major revolution was the discovery that the spaces of

high dimensions have specific shapes and can be different from each other.

This qualitative study of spaces gave birth to algebraic topology and its two

branches of homotopy and homology theories. With higher-dimensional spaces

and algebraic topology, figures have essentially disappeared from geometry

books, and geometry has become the study of spaces that cannot be “seen”

anymore.

www.cambridge.org/9781108490634
www.cambridge.org


Cambridge University Press
978-1-108-49063-4 — New Spaces in Mathematics
Volume 1
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 3

In physics, the contradictions raised by the constancy of the speed of

light and the spectrum of the black body were the source of a schism on

the role of space. Relativity grounded the geometry of physics in the new

dynamical object that is spacetime and successfully formalized gravity in

purely geometrico-differential terms. Yang–Mills theory extended this pro-

gram to the other (electromagnetic and nuclear) fundamental interactions.

On the other side, the formalism of quantum mechanics required abandoning

geometric intuition and, rather, focusing on algebras of operators. Despite the

fundamental role played by symmetries and Lie group theory in both theories,

the geometric unity of physics was to a certain extent broken.

By the middle of the 20th century, mathematics and physics are much better

structured than they were at the beginning. The notions of sets, topological

spaces, manifolds (Riemannian or not), algebraic varieties, and vector spaces

organize the geography of mathematical spaces. General relativity, classical

mechanics, and quantum mechanics divide the physical space in three scales,

each with its own geometric formalism. The situation is summarized in Tables

0.1 and 0.2. All things seems to fall into place, and, for our purposes in this

book, we shall refer to this situation as the classical paradigm of space. The

conceptual categories that organize this paradigm on the mathematical side

are points, open and closed subsets, coordinates and functions, local/global,

measure of distances, continuity/discontinuity, infinitesimal variations, and

approximation. On the physical side, the classical paradigm relies on a dif-

ferentiable spacetime, trajectories and fields, infinitesimal equations, and sym-

metries and covariance. The intuition of space has been pushed far away from

the original intuition of the ambient physical space, but in a clear continuity.

The evolution of the notion of space in mathematics and physics has

continued until now. However, the results of these developments are less

universally known in the mathematical and physical communities where the

common background stays, even nowadays, the classical paradigm. It is the

purpose of this book and its companion to illustrate and explain some of these

“postclassical” developments.

2 Contemporary Mathematical Spaces

2.1 Algebraic Topology

One of the most important geometric achievements of the postclassical period

is the revisitation of algebraic topology (homotopy and homology theory) in

terms of higher category theory. Homotopy theory evolved from the definition
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Table 0.1. The “classical” kinds of mathematical spaces

Basic
structures

Topology
Differential
geometry

Linear
spaces

Algebraic
geometry

Sets
Topological

space

Differential
manifold, Lie

groups

Vector
spaces,
function
spaces,

modules over
rings

Algebraic
variety,

algebraic
groups

Preorder,
equivalence

relations
Metric space

Riemannian
manifold

Banach,
Fréchet,
Hilbert...
spaces

Table 0.2. The “classical” kinds of physical spaces

General relativity
Mechanics and

thermodynamics
Quantum
mechanics

(large scale) (medium scale) (small scale)

Ambient
space and time

Lorentzian
4-manifold

Galilean
spacetime R×R3

Galilean or
Poincaré Lie

group

Phase spaces
Spaces with

action of the local
Poincaré group

Manifolds with
action of the

Galilean group

Representations
of various Lie

groups in Hilbert
spaces

of the fundamental group of a space (and its applications to classify covering

spaces and to explain the multiple values of analytic continuations) to a

general study of continuous maps and spaces up to continuous deformations

(homotopies and homotopy equivalences) [25, 43]. The central object ended

up to be that of the homotopy type of a space, that is, the equivalent classes

of this space up to homotopy equivalence. Homological algebra evolved from

a computation of numbers and groups to a calculus of resolutions of modules

over a ring (or sheaves of such) [16, 63]. The notion of abelian category put

some order in this calculus [13, 36], but it is only with triangulated categories

that a central object emerged: chain complexes up to quasi-isomorphisms

[23, 93]. In a separated approach, the axiomatization of homology theories

in terms of functors had also led to a new kind of object: spectra, of which

chain complexes are a particular instance [1, 57, 77]. Any space defines both a
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homotopy type and a spectrum (its stable homotopy type), but until the 1970s,

the nature of these two objects was somehow elusive.

The development in the 1970s of homotopical algebra (i.e., model category

theory) provided for the first time a unified framework for both homotopy and

homology theories [31, 73]. But even with this unification, the theory was

still highly technical and, many times, ad hoc. The concepts that revealed the

meaning of these constructions were only found in the 1980s, when higher

category theory emerged [11, 28, 38, 72]. The main progress was to understand

that homotopy types of spaces were the same thing as ∞-groupoids, that is,

a particular kind of higher category in which all morphisms are invertible

(see Chapter 5). By viewing homotopy types as ∞-groupoids, it was possible

to revisit homotopical algebra from the standpoint provided by the whole

conceptual apparatus of higher category theory. This has provided conceptual

simplification of many of the homotopical constructions, but this story lies

beyond the scope of this book (see [18, 61]). We have limited our study to the

utilization of ∞-groupoids in geometry, namely, in topos theory (Chapter 4), in

stack theory (Chapter 8), and in the theory of derived schemes (Chapter 9). We

have also included a chapter explaining how ∞-groupoids have permitted us to

revisit the foundations of mathematics (Chapter 6). Moreover, Chapters 4 and

5 of the companion volume, New Spaces in Physics, show how ∞-groupoids

are useful in symplectic geometry and physics.

2.2 Algebraic Geometry

The field of geometry that has undergone the deepest postclassical transfor-

mation is algebraic geometry. From the 1950s to the 1980s, Grothendieck’s

school brought many definitions and improvements for the objects of algebraic

geometry. The definition of Zariski spectra and schemes as ringed spaces

permitted for the first time the unification of all the notions of algebraic

varieties. Moreover, the notion of affine scheme provided a perfect duality

between some geometric objects and arbitrary commutative rings of coordi-

nates [39]. An important difference that schemes have with manifolds is the

fact that they can accommodate singular points. This singular structure is

encoded algebraically by the existence of nilpotent elements in the ring of local

coordinates, a feature that is possible only if arbitrary rings are considered.

Nilpotent elements provide an efficient infinitesimal calculus, which is one

of the nicest achievements of algebraic geometry (see [21] and volume IV

of [39]).1

1 This calculus is also at the core of synthetic differential geometry; see Chapter 2.
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The theory of ringed spaces was efficient to define general schemes by

pasting of affine schemes. However, motivated by the study of algebraic groups

and the construction of moduli spaces, schemes were almost immediately

redefined as functors, making the previous construction somehow superfluous

(see Chapter 7 on the functor of points and [24, 37]). Later on, the definition of

étale spectra of rings (which was needed to define cohomology theories with

étale descent) came back to a definition in terms of ringed spaces with the

difference that the base space was now a topos (see Chapter 4 and [5, 23, 64]).

The functorial point of view continued to be used simultaneously.2

The definitive approach to constructing moduli spaces (e.g., the spaces of

curves or bundles on a given space) was eventually found with stacks, which

are a variation on the notion of sheaf (see Chapter 8 and [3, 22, 33, 38, 55, 81]).

Essentially, stacks provide a notion of space where the set of points is

enhanced into a groupoid of points. This feature makes them perfectly suited to

classifying objects (such as curves or bundles) together with their symmetries.

From a geometric point of view, stack theory is a formalism intended to

deal properly with the possible singularities created by taking a quotient (see

Chapter 9).

The most recent development has been derived algebraic geometry. This

formalism enhances the theory of stacks in order also to tame the singularities

created by nontransverse intersections (see Chapter 9 and [62, 86, 87]). At

the end of the story, derived algebraic geometry provides by far the most

sophisticated notion of space ever invented.3 Derived stacks have become a

powerful archetype for a new paradigm of geometric spaces (see Chapter 9

and [48, 58, 70, 84, 88]). However, so many turns in only 60 years have been

hard to follow, and the community of algebraic geometers is largely spread out

between different technologies and viewpoints on its objects.

An important field related to algebraic geometry is complex geometry.

In comparison with their differential analogs, complex manifolds have the

problem that they admit too few globally defined holomorphic functions. This

has deeply grounded the field in sheaf theory and cohomological methods

and kept it close to algebraic geometry, where the same methods were used

for similar reasons [34, 44, 79, 94]. Nonetheless, complex manifolds have

2 For example, the notion of a connection on a singular scheme X was successfully defined by
means of the de Rham shape of X, which is the quotient of X by the equivalence relation
identifying two infinitesimally closed points. The result of such a quotient is not a scheme, but
it can be described nicely as a sheaf on schemes (see Chapters 4 and 5 of New Spaces in Physics

and [21, 80]).
3 Algebraic geometry was able to deal successfully with “multiple points with complex

coordinates at infinity”; derived algebraic geometry added to these features the possibility to
work with quotients by nonfree group actions and self-intersection of such points.
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not really evolved into more sophisticated types of spaces (incorporating

singularities and points with symmetries). The recent rise of derived analytic

geometry might change this [59, 70, 71].

Algebraic geometry depends on the existence of a well-defined dictionary

between the geometric features of affine schemes and the algebraic features of

commutative rings. This successful translation has led to several attempts to

generalize it for other kinds of algebraic structures. The most famous attempt

is given by the geometry of noncommutative rings. The attempts to build an

actual topological space (a spectrum) from noncommutative rings have not

been entirely satisfactory [74, 91],4 but the dual attempt to characterize geo-

metric features in noncommutative terms has had more success (see Chapter 10

and Chapter 1 of the companion volume, and references therein). However,

some important geometric notions are absent from both these approaches (e.g.,

open subsets, étale maps, the local/global dialectic), preventing a geometric

intuition of noncommutative features in classical terms. Other offsprings of

algebraic geometry have been relative geometry, which develops a geometry

for various contexts of commutative monoids (see Chapter 7 and [88]), the

geometry of Berkovich spaces dual to non-Archimedean fields [9, 12], the

tropical geometry dual to tropical semirings [35, 66], and the conjectural

geometry over the field with one element [19, 27, 82].

2.3 Topology

The notion of topological space has been robust enough to successfully deal

with some of the new spaces invented in the second half of the 20th century,

such as fractals, strange attractors, and nonseparated spaces (such as the Zariski

spectrum of a commutative ring). Even the study of topological spaces by

means of rings of continuous functions (motivated by Stone and Gelfand

dualities) has not introduced new objects [32].

Nonetheless, new spaces have been invented for the needs of topology.

For example, the close relationship between topology and intuitionist logic

à la Heyting has led to locale theory, a variation on topological spaces well

suited to define interpretations of logical theories (see Chapter 4 and [45, 92]).

Also, in algebraic geometry, the remarkable analogy between Galois theory

of fields and the theory of covering spaces [26] has motivated the search for

a functor associating a topological space to a commutative ring (a spectrum)

that could transport, so to speak, the former theory into the latter. The Zariski

spectrum fails to satisfy this, and the proper answer was found with the étale

4 Mostly by lack of functoriality of the spectra.
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spectrum. However, étale spectra could no longer be defined as topological

spaces anymore but rather were defined as topoi [5, 23]. Essentially, a topos is

a new kind of space defined by its category of sheaves instead of its poset of

open subspaces. This broader definition led to many new topological objects

that are not topological spaces (see Chapter 4 and [46, 64]).

Another motivation for enhancing the notion of topological space was the

study of badly separated spaces [2], for example, spaces that have many points

but a trivial topology, such as the irrational torus Tα := R/(Z ⊕ αZ) (α �∈ Q),

the leaf spaces of foliations with dense leaves, or even bizarre quotients

like R/Rdis (the continuous R quotiented by the discrete R). The theory

of topoi turned out to be well suited to studying these spaces.5 But other

methods have been developed, like topological sheaves and stacks (inspired

by algebraic geometry) [10, 17, 20] or noncommutative geometry à la Connes

(see Chapter 1 of the companion volume, and references therein), diffeologies

(see Chapter 1, and references therein), or orbifolds and Lie groupoids

[56, 67, 75, 90].

2.4 Differential Geometry

Differential geometry has not escaped the development of new types of

spaces, but the size of the field has perhaps kept most of it within the

classical paradigm. From Riemannian geometry to knot theory, the basic

notion is still that of the manifold. Overall, the field does not seem to be

in a hurry to incorporate the developments of algebraic geometry (e.g.,

duality algebra/geometry, singular spaces, functorial approach to moduli

spaces and infinite dimensions, relativization with respect to a base space,

tangent complexes). Many attempts have been made to improve manifolds, but

none of them seems to have become central. An example is diffeology theory,

which provides a nice framework to deal with infinite-dimensional spaces

as well as quotients (see Chapter 1, and references therein). Another one is

synthetic differential geometry, which enhances the notion of the manifold

by authorizing singular points and nilpotent coordinates (see Chapter 2, and

references therein).6 Related approaches have tried to ground differential

geometry in the algebraic notion of the C∞-ring [48, 68, 69]. The most

5 They are called étendues in topos theory; see [5, 46].
6 Synthetic differential geometry, as its name suggests, also promulgates an axiomatic approach

to geometry.
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successful new notion of differentiable space is perhaps that of orbifolds,

motivated among other things by Thurston’s geometrization program [75, 85].

Orbifolds have brought to the field some tools from higher category theory

like stacks [56, 67] and equivariant homotopy theory [76].

Another domain using such methods is microlocal analysis, where sheaves

and their derived categories are of great help for dealing with the problem

of extending local solutions of differential equations (see Chapter 3, and

references therein).

The most impressive display of postclassical methods in differential geom-

etry can be found in symplectic geometry (together with the related fields

of Poisson and contact geometries). Symplectic geometry is a contemporary

descendent of analytical mechanics. The notions of symplectic manifold and

their Lagrangian submanifolds have given a new geometrical meaning to many

constructions of mechanics (e.g., extremal principles and generating functions,

covariant phase spaces, Nœther symmetries and reduction [40, 50, 83]). A

central operation in the theory is symplectic reduction, which combines the

restriction to a subspace of a symplectic manifold with a group quotient [65].

Since these two operations might create singularities, symplectic geometry has

been forced to deal with both nontransverse intersections and quotients of non-

free group actions. These issues have led to the use of new formalisms, such as

cohomological methods [41, 54], Lie groupoids and stacks [95, 96], and, even-

tually, derived geometry (see Chapter 4 of the companion volume and [14, 89]).

Also, the application of symplectic geometry to physics has imported many

methods from higher category theory: cohomological methods in deformation

quantization [15, 53], Fukaya categories in mirror symmetry [52, 78], and,

more recently, a whole new interpretation of gauge theory in terms of stacks

(see Chapter 5 of the companion volume, and references therein). In fact,

more than a simpler user of higher categories and derived algebraic geometry,

symplectic geometry has been an important catalyzer in the development of

these theories.

Another important innovation with respect to the notion of manifold has

been the interpretation of manifolds with boundaries and cobordisms in terms

of higher categories with duals, a viewpoint that was inspired by topological

field theories in physics [6, 7, 60]. In the same way that homotopy theory

has transformed topological spaces into tools that can be used to work with

∞-groupoids, this view on cobordisms does not address manifolds as an object

on its own but rather as a tool to encode the combinatorial structure of some

higher categories.
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2.5 Conclusion

We have referred to the understanding of the notion of space in the middle

of the 20th century as the “classical paradigm.” This raises the question of

whether the many evolutions undergone by the notion of space since then qual-

ify as a new paradigm. As the previous presentation and Table 0.3 illustrate,

the classical geography of mathematical spaces is still pertinent today. The

conceptual categories organizing the intuition of space have not fundamentally

changed (points, functions, local/global dialectic, etc.). If something radical

has changed, it will not be found there.

In our opinion, the most important postclassical change has in fact not

concerned spaces directly – although it had a tremendous impact on them –

but sets. If there has been a paradigm shift in mathematics, it has been

the enhancement of set theory in category theory (in which we include

higher categories). Category theory is responsible for most of the new spatial

features:

1. The most important change has been that sets of points have been enhanced

in categories of points (in particular, points can have symmetries).

2. The definition of a space by means of a poset of open subsets has been

enhanced in a definition by means of categories of sheaves (topoi, dg-

categories, stable categories, etc.).

3. Functions with values in set-based objects (numbers, manifolds, etc.) have

been enhanced by functions with values in category-based objects (stacks,

moduli spaces, etc.).

4. Many spaces are defined as functors (schemes, moduli spaces, stacks,

diffeologies, etc.).

5. Homotopy types are now seen as ∞-groupoids.

6. Also, the relation with logic and axiomatization is made by means of

categorical semantics for logical theories.

In the classical paradigm, sets can be thought of as the most primitive notion

of space – collecting things together in a minimalist way – from which other

notions of space are formally derived. In the new paradigm, categories, and

particularly higher categories, are the new primitive spatial notion from which

the others are derived. Nowadays, categories are everywhere in topology and

geometry, from the definition of the basic objects to the problems and methods

of study. The reader will realize that category theory is central in all the

chapters of this volume.
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