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New Spaces in Physics

Two fundamental scientific revolutions took place in physics during the

first decades of the 20th century: Einstein’s geometric description of the

gravitational interaction by means of the general theory of relativity and the

development of quantum mechanics. These two revolutions radically modified

our understanding of the laws that rule the physical phenomena taking place at

opposite (astrophysical and microscopic) spatiotemporal scales.

On one hand, general relativity introduced into physics essential geometric

ideas and tools mainly developed during the 19th century in pure mathematics,

notably differential geometry, Riemannian geometry, and tensor calculus.

Moreover, general relativity provided the motivating example of the general

program – launched by H. Weyl around 1918 – intended to provide similar

geometric descriptions of the other fundamental (electromagnetic and nuclear)

interactions. This “geometrization program” was finally achieved in the 1950s

in the framework of the Yang–Mills theories and acquired a solid mathematical

foundation and geometric interpretation with the theory of Cartan (for general

relativity) and Ehresmann (for Yang–Mills theories) connections on principal
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fiber bundles.1 Both general relativity and Yang–Mills theories define the so-

called gauge theories of fundamental interactions, where the term gauge refers

to the fact that these theories are endowed with a local symmetry associated

to the possibility to choose different coordinate systems (“gauges”) at each

spatiotemporal location. Moreover, this geometrization of the fundamental

interactions provided the cornerstone of the so-called standard model of

elementary particles and the associated attempts to unify the four fundamental

interactions (where the most celebrated success of this program up to now was

the Glashow–Weinberg–Salam unification of the electromagnetic and weak

interactions).

On the other hand, quantum mechanics – with its utilization of noncommu-

tative operator algebras on Hilbert spaces – has a strong algebraic flavor that

has obstructed to a certain extent the construction of a conceptual interpretation

based on a geometric intuition. The main obstacle to the comprehension

of quantum mechanics in geometric terms is given by the noncommutative

character of the algebras of quantum observables. Indeed, this central feature

of the quantum formalism has as a consequence that – differently from the

commutative algebras of classical observables – the quantum observables

cannot be understood as functions on an “ordinary” space. This essential

feature of quantum mechanics introduces a sort of discontinuity between this

theory on one hand and both classical mechanics (which relies on a solid

geometric intuition) and the gauge theories of the fundamental interactions

on the other.

Roughly speaking, the main lines of research leading to new notions of

space in physics after the quantum and the relativistic revolutions can be

understood as attempts to understand quantum mechanics in more geometric

terms on one hand and to quantize general relativity on the other. Let us

consider first the “geometrization” of quantum mechanics. Is it possible to

construct noncommutative quantum algebras out of geometric structures?

What would be gained by doing so? First, it is worth stressing that quantum

mechanics is a formalism that – up to now – could not be endowed with a

unanimously accepted conceptual interpretation, being the landscape of com-

peting interpretations populated with radically different conceptual schemes.

Now, casting quantum mechanics in more geometric terms redounds in a gain

of a conceptual and more intuitive understanding that might pave the road for

solving this interpretative conundrum. For instance, the geometric quantization

formalism developed by Kirillov, Kostant, and Souriau presents quantum

mechanics in the same geometric formalism – the theory of connections on

fiber bundles – used in gauge theories (see [5, 18, 19, 31]). Now, since gauge

1 For a history of the path that led from general relativity to Yang–Mills theories (and a collection
of some of the corresponding seminal papers), see [27].
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Introduction 3

theories are better understood than quantum mechanics from a conceptual

standpoint, geometric quantization provides a useful bridge to transport this

conceptual clarity to quantum mechanics. Second, since classical mechanics

relies on a clear geometric basis, the geometrization of quantum mechanics

might improve the comprehension of the relationship between quantum me-

chanics and classical mechanics.

Among the different ways according to which mathematicians can construct

noncommutative algebras from geometry, three constructions became relevant

in physics, namely,

• the deformation of a ring of functions (giving rise in particular to the

deformation quantization of a Poisson manifold; see, for instance, [32] and

references therein);

• the endomorphisms of a fiber bundle (giving rise in particular to the

geometric quantization of a symplectic manifold [5, 18, 19, 31]);

• the convolution algebra of a groupoid (giving rise to noncommutative

methods [6]).

Now, both deformation quantization and geometric quantization strongly

rely on the symplectic formulation of classical mechanics. Here a main

player for the development of physical geometry during the 20th century

enters the scene: symplectic geometry. Thanks to the work of mathematicians

like Arnold, Maslov, Souriau, and Weinstein, among others, the explosion

of research in symplectic geometry during the 20th century led to a deep

transformation of our comprehension of classical mechanics (see, for instance,

[1, 2, 10, 21, 22, 31]). In the framework of this symplectic geometrization of

classical mechanics, fundamental new notions and theories were introduced,

such as Souriau’s moment map [25, 31], the Marsden–Weinstein symplectic

reduction [23], and Weinstein’s symplectic “category” and Lagrangian cor-

respondences [33]. In the wake of this symplectic refoundation of classical

mechanics, it is also worth mentioning the development of the theory of

variational calculus on jet bundles and the development of multisymplectic

geometry launched by De Donder and Weyl and continued – more recently –

by Kijowski, among others. In this extended context, important new notions

were introduced, such as the covariant phase space, the Peierls bracket, and

the variational bicomplex (see, for instance, [7, 8, 17, 26, 31, 34]).

From a conceptual standpoint, the great importance of symplectic (and

Poisson) geometry is that it encodes what we could call the classical seeds

of quantum mechanics. By doing so, the development of symplectic geometry

allowed us to significantly reduce the gap between classical and quantum

mechanics. It could even be argued that symplectic geometry opened the path

to the comprehension of quantum mechanics as a continuous extension of
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classical mechanics and no longer as a sort of “new paradigm” discontinuously

separated from the classical one (see Schreiber’s contribution in Chapter 5).

For instance, both in deformation quantization and in geometric quantization,

classical structures (namely, the Poisson structure and the symplectic structure,

respectively) encode fundamental quantum features. While in deformation

quantization the Poisson structure provides the first term of the “quantum” de-

formation (in the formal parameter h̄) of the commutative algebra of functions

on a phase space, in geometric quantization the symplectic structure defines the

curvature (on the prequantization fiber bundle) that explains the noncommuta-

tivity of quantum operators.2 Moreover, one of the central facts of symplectic

geometry is the existence of a correspondence defined by the symplectic struc-

ture between observables (functions on a phase space) and what could be called

classical operators (Hamiltonian vector fields). In this way, the fundamental

role played by operators in mechanics – far from being a quantum innovation –

is already a central feature of classical mechanics.3 It is also worth mentioning

that the category-theoretic “points” of a symplectic manifold are given by

its Lagrangian submanifolds.4 According to Guillemin and Sternberg, the

notion of Lagrangian submanifold encodes the classical seeds of the quantum

indeterminacies:

The Heisenberg uncertainty principle says that it is impossible to determine

simultaneously the position and momentum of a quantum-mechanical particle. This

can be rephrased as follows: the smallest subsets of classical phase space in which

the presence of a quantum-mechanical particle can be detected are its Lagrangian

submanifolds. For this reason it makes sense to regard the Lagrangian submanifolds

of phase space [rather than its set-theoretic points] as being its true ‘points’ [11].

In this way, it could be argued that if the notion of localization in phase

space (in the sense of “being at a certain point” of phase space) is not

defined with respect to its set-theoretic points but rather with respect to the

Lagrangian “points,” then the Heisenberg indeterminacy principle does not

forbid a localization of a quantum particle in phase space. All in all, these

2 It is worth noting that this is in complete analogy to the fact that in general relativity and
Yang–Mills theories, the noncommutativity of parallel transports results from the presence of
a nontrivial curvature.

3 In the framework of geometric quantization, quantum operators are in fact defined by means
of a vertical extension (where vertical means in the direction of the fibers of the corresponding
prequantization fiber bundle) of these classical operators (see, for instance, [5]).

4 Considered from the standpoint of category theory, the Lagrangian submanifolds of a symplectic
manifold (M,ω) are the (˚,0)-points of M in Weinstein’s symplectic “category” (where (˚,0)

is the trivial symplectic manifold), that is, the morphisms (Lagrangian correspondences)
(˚,0) Ñ (M,ω).
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different insights brought forward by the development of symplectic geometry

are permitting us to progressively sublate the simplistic opposition between the

supposedly stable and well-understood realm of classical mechanics and the

still-unsolved conceptual problems posited by quantum mechanics. By pushing

this line of thought to its limit, it could even be argued that the missing insights

permitting us to construct a satisfactory conceptual interpretation of quantum

mechanics might stem from a better comprehension of classical mechanics

and its symplectic foundations. In this sense, the explosion of research in

symplectic geometry is pulling back the problem of interpreting quantum

mechanics to an unexpected problem: the problem of reinterpreting classical

mechanics.

Another direct repercussion on geometry elicited by the development of

quantum mechanics is given by the study of hypothetical “spaces” supporting

(or dual to) noncommutative “algebras of functions.” The new branch of

geometry known as noncommutative geometry might have been inspired by the

capacity to generate new notions of space associated to the geometry–algebra

dualities, that is, to the dualities between spaces and the algebras of “functions”

on them (for instance, the duality between affine schemes and commutative

rings or the Gelfand–Naimark duality between compact Hausdorff topological

spaces and commutative unital C˚-algebras). Indeed, the geometry–algebra

dualities naturally lead to the introduction of new spaces by means of the

following pattern: given a particular instantiation of a geometry–algebra

duality, one can generalize the corresponding algebra of functions – by passing,

for instance, to noncommutative algebras – and try to interpret the new algebra

as an “algebra of functions” on a generalized space. However, it is not clear

to what extent the noncommutative approaches to geometry do really produce

“noncommutative spaces” dual to the corresponding algebras. An alternative

way to understand noncommutative geometry could be the following. Given

“ordinary” (commutative) spaces, one can define noncommutative invariants.

These invariants do not always allow us to reconstruct the space, but they

encode nonetheless certain important geometric aspects like properness or

smoothness (see, for instance, Chapter 10 of New Spaces in Mathematics).

The important fact is that these noncommutative invariants endowed with a

geometric meaning permit us to introduce certain geometric concepts and

intuitions into the realm of noncommutative algebra.

The formulation of quantum mechanics and general relativity naturally

leads to the quantum gravity program, that is, to the different research

programs intended to quantize general relativity (for instance, superstring

theory, loop quantum gravity, semiclassical quantum gravity, causal sets,

dynamical triangulations, lattice quantum gravity, and the asymptotic safety
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program, among others5). The general expression quantize general relativity

denotes here both the application of standard quantization methods (e.g.,

canonical quantization, path integral) to general relativity in its Lagrangian or

Hamiltonian formulation and the direct construction of a theory out of which

general relativity and the continuum description of spacetime is supposed to

emerge in some “classical” approximation.

The supposed necessity to quantize general relativity can be justified on

different grounds, for instance,

• the idea that quantum gravity is required to deal with spacetime singularities

taking place at very high energies and very small scales (such as the big bang

and black hole singularities);

• the fact that while general relativity describes (by means of the Einstein

field equations) the coupling between classical matter and the geometry of

spacetime, all matter is currently described in the framework of quantum

field theory;

• the idea that the unification between gravity and the other quantum gauge

fields carrying the electromagnetic and nuclear interactions requires us also

to describe gravity in quantum terms – by taking into account that the

nongravitational interactions are mediated by the so-called gauge bosons

(like the photon for the electromagnetic interaction), this argumentative line

led (mainly in the framework of perturbative string theory) to the postulation

of a hypothetical massless spin-2 particle that mediates the gravitational

interaction, the graviton;6

• the arguments based on the finite character of black hole entropy (see, for

instance, [29]).

Besides these particular motivations, a more straightforward argument is

the following. Since

1. general relativity is already a classical theory in the sense that it can be cast

in terms of classical (Hamiltonian or Lagrangian) mechanics (e.g., ADM

formalism, Einstein–Hilbert action); and

2. classical mechanics has been superseded by (or extended to) quantum

mechanics,

then general relativity has to be recast in quantum-mechanical terms.

5 For an overview of different approaches to quantum gravity, see, for instance, [24] and references
therein.

6 It is worth noting that a straightforward application of the perturbative methods of quantum field
theory to the gravitational interaction leads to a perturbative nonrenormalizability. This obstacle
has been the main motivation for the development of nonperturbative approaches to quantum
gravity.
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Despite the still highly speculative nature of the field, research in quantum

gravity has already had a significant impact on mathematical geometry. First,

string theory already had important repercussions on research in pure geometry

(e.g., mirror symmetry, Gromov–Witten invariants, and enumerative geometry;

see, for instance, [3, 15, 16]). Second, research in quantum gravity opened

the field of quantum geometry, that is, the study of different geometric

structures, out of which the classical and continuum spacetime geometry

described by general relativity can be reobtained in some form of “classical”

limit. In very general terms, the field of quantum geometry explores ideas

such as

• a fundamental discretization of spacetime (an idea that goes back to

Riemann [28] and reappears in almost every approach to quantum

gravity);

• spaces described by noncommutative coordinates (e.g., noncommutative

geometry);

• quantum indeterminacies and fluctuations of geometric quantities;

• linear superpositions of geometries.

For instance (as Mariño explains in Chapter 9), string theory addresses

different forms of deformation (stringy, quantum) of classical Riemannian

geometry resulting from the quantum description of dynamical extended

objects (strings and eventually p-branes). In turn, loop quantum gravity

studies certain geometric structures – the canonical spin-networks and the

covariant spinfoams – arising from a more or less direct quantization of general

relativity (see Han’s contribution in Chapter 8). Other approaches explore the

possibility of understanding the classical and continuum description of space-

time geometry – as well as geometric notions like dimension and locality –

as an emergent description arising from nongeometric or pregeometric (a

term introduced by Wheeler [34]) degrees of freedom. Examples of these

supposed pregeometric structures are the causal sets, that is, sets representing

spacetime events endowed with an order relation encoding the causal structure

[9, 30], or combinatorial structures like simplicial objects and graphs (e.g.,

quantum graphity [14]). However, the characterization of these structures

as non- or pregeometric is problematic (do they really “break loose at the

start from all mention of geometry and distance?” [34]), and it might seem

more appropriate to state that the different “pregeometric” scenarios proposed

thus far remove certain geometric features of the classical and continuum

description of spacetime conveyed by general relativity (e.g., continuity,

differential structure, distance, dimensionality, or locality).

Let us consider now in some detail the different chapters of this volume.
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1 Summaries of the Chapters

1.1 Part I Noncommutative and Supercommutative Geometries

1.1.1 Noncommutative Geometry, the Spectral Standpoint

(Alain Connes)

The construction of quotients of spaces has been an important source of

definitions of new notions of space. The space of leaves of a dense foliation

does not have enough open subsets to be described as a manifold or even as

a topological space. The spaces of orbits of group actions that are not free

have singularities that a topology or a differential structure cannot encode.

Several methods have been invented to work with these objects, some using

category theory (e.g., sheaves and stacks, topoi, diffeologies), others algebra.

The noncommutative geometry of A. Connes belongs to this latter class. The

basic idea is to replace the commutative ring of observable functions on the

quotient by the noncommutative convolution algebra of the foliation or the

group action. This construction is justified by the fact that, when the quotient

exists, the categories of modules over the function ring or over the convolution

algebra coincide.7 However, the latter construction is better behaved than the

former.

From a more conceptual standpoint, the basic principle of Connes’s non-

commutative geometry is to substitute the equivalence relation associated to

a quotient operation by the corresponding action groupoid of identifications.

The main difference between an equivalence relation and a groupoid is that

the latter keeps track of the fact that different points might be identified

in many different ways (which includes a fortiori the particular case of

possible nontrivial stabilizers). In this sense, an equivalence relation can be

understood as a truncated groupoid where the possibly multiple concrete

identifications between two elements are collapsed to the abstract fact that they

are equivalent. This transition from equivalence relations to groupoids leads to

the consideration of a particular noncommutative algebraic structure, namely,

the convolution algebra on the action groupoid (where the noncommutativity

is a direct consequence of the noncommutativity of compositions in the

groupoid). As it was stressed by Connes in [6, §1.1, pp. 40–45], this kind

of noncommutative algebra was implicitly discovered by Heisenberg in the

seminal 1925 article in which he proposed the matrix formulation of quantum

mechanics [12].8

7 Technically, they are Morita-equivalent algebras.
8 In Heisenberg’s matrix formulation, the relations between physical quantities are governed by

the noncommutative algebra of matrices that represent these quantities. Connes argued that the
Ritz–Rydberg combination principle that models the experimental results provided by atomic
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Noncommutative geometry consists in defining a certain number of geo-

metric notions (infinitesimal calculus, integration and measure theory, metric,

etc.) in terms of algebras that are not necessarily commutative. The central

notion is that of spectral triplets (A,H,D) encoding a “space” with a metric

and a measure theory.9 The commutative algebra of functions on a Riemannian

(spinc) manifold is reinterpreted by Connes as an algebra of operators acting

on a Hilbert space of spinors, and the inverse line element of the Riemannian

structure is encoded (in Connes’s distance formula) by the corresponding Dirac

operator. Now, the central insight is that this setting remains valid when we

substitute the commutative algebra functions by a noncommutative algebra of

operators acting on a Hilbert space.

It is also worth noting that Connes’s version of noncommutative geometry

is motivated by the problem of quantizing gravity and unifying the four

fundamental interactions. The inverse line element defined by the Dirac

operator D encodes not only the gravitational interaction (associated as usual

to the metric) but also the electromagnetic, and nuclear – weak and strong –

interactions (which are associated to the inner fluctuations of the metric). This

results in a successful derivation of the Lagrangian of the standard model from

a Lorentzian spacetime crossed with a specific finite noncommutative space.

Interestingly enough, the different physical forces are unified by means of the

metric structure of the noncommutative space, thereby giving rise to a sort of

generalized gravity theory.

1.1.2 The Logic of Quantum Mechanics (Revisited) (Klaas Landsman)

Landsman’s contribution can be inscribed among the attempts to generalize

the classical notions of space by using the framework provided by the

geometry–algebra duality. Starting with

• the (constructive versions of the) Gelfand–Naimark duality between commu-

tative unital C˚-algebras and compact Hausdorff topological spaces; and

• the Stone duality between the category of boolean lattices (with homomor-

phisms of orthocomplemented lattices as arrows) and totally disconnected

compact Hausdorff spaces (Stone spaces),

spectroscopy (which were incompatible with the classical predictions) can be encoded in a
groupoid of frequencies whose convolution algebra is nothing but the algebra of matrices
discovered by Heisenberg.

9 More precisely, a general spectral triplet (A,H,D) is given by a ˚-algebra A endowed with
a representation by bounded operators on a Hilbert space H and an unbounded self-adjoint
Dirac operator D acting on H and encoding a generalized notion of distance that extends the
Riemannian notion of distance to the noncommutative realm.
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Landsman moves forward to the intuitionistic/noncommutative realm by ad-

dressing

• the Priestley duality between bounded distributive lattices and Priestley

spaces; and

• the Esakia duality between Heyting algebras and Esakia spaces.

The ultimate goal of this progression is a conjectured duality between

arbitrary unital C˚-algebras and some Heyting algebras. The result of this

work in progress would be the construction of a model of an intuitionistic

quantum logic that has the opposite features from Birkhoff and von Neumann’s

quantum logic [4]. This means that such an intuitionistic quantum logic is

distributive (which paves the way to an interpretation of the logical operations

^ and _ as a disjunction and a conjunction, respectively) but does not keep the

law of the excluded middle (which, according to Landsman, matches quantum

features such as Schrödinger cat situations).

Interestingly enough, this construction of an intuitionistic quantum logic

can be related to topos theory. Briefly, we can associate to any unital

C˚-algebra A the topos of covariant functors C(A) Ñ Set on the posetal

category C(A) of all unital commutative subalgebras of A.

1.1.3 Supergeometry in Mathematics and Physics (Mikhail Kapranov)

Kapranov’s contribution addresses the quandaries of supergeometry in math-

ematics and supersymmetry in physics from an original homotopical per-

spective. According to Kapranov, the challenge posited by supergeometry

and supersymmetry is to understand the formal and conceptual structures

underlying the ˘ sign rules that govern the supercommutation structures in

both mathematics and physics. These structures involve vector spaces with

a Z{2Z-grading together with a monoidal structure involving Koszul’s sign

rule. Now, an important caveat is here necessary: the similarities between

formalisms discovered by physicists and mathematicians might sometimes be

misleading. According to Kapranov, an instance of this danger is provided

by these supercommutative structures. Indeed, a careful comparative study of

supercommutative structures in mathematics and physics leads Kapranov to

conclude that the formal similarity should not lead to an identification: the

Z{2Z of mathematicians is not the same as the Z{2Z of physicists.

From a mathematical standpoint, supergeometry is the study of geometric

objects whose rings of functions are commutative superalgebras A = A0 ‘

A1 composed of even and odd elements subjected to the corresponding

supercommutation rules. In this way, supergeometry can be added to the list of
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