A Guide to Monte Carlo Simulations in Statistical Physics

Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics.

This fifth edition contains extensive new material describing numerous powerful algorithms not covered in previous editions, in some cases representing new developments that have only recently appeared. Older methodologies whose impact was previously unclear or unappreciated are also introduced, in addition to many small revisions that bring the text and cited literature up to date. This edition also introduces the use of petascale computing facilities in the Monte Carlo arena.

Throughout the book there are many applications, examples, recipes, case studies, and exercises to help the reader understand the material. It is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.

DAVID P. LANDAU is the Distinguished Research Professor of Physics and founding Director of the Center for Simulational Physics at the University of Georgia, USA.

KURT BINDER is Professor Emeritus of Theoretical Physics and Gutenberg Fellow at the Institut für Physik, Johannes-Gutenberg-Universität, Mainz, Germany.

CAMBRIDGE

A Guide to Monte Carlo Simulations in Statistical Physics

David P. Landau Center for Simulational Physics, University of Georgia, USA

Kurt Binder Institut für Physik, Johannes-Gutenberg-Universität, Germany

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108490146 DOI: 10.1017/9781108780346

© D. P. Landau and K. Binder

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000 Second edition published 2005 Third edition published 2009 Fourth edition published 2015 Fifth edition published 2021

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Landau, David P., author. | Binder, K. (Kurt), 1944– author. Title: A guide to Monte Carlo simulations in statistical physics / David P. Landau, Center for

Simulational Physics, University of Georgia, USA, Kurt Binder, Institut für Physik, Johannes-Gutenberg-Universität, Germany.

Other titles: Monte Carlo simulations in statistical physics

Description: Fifth edition. | Cambridge, United Kingdom; New York, NY : Cambridge University Press, 2020. | Includes bibliographical references and index.

Identifiers: LCCN 2020021931 (print) | LCCN 2020021932 (ebook) | ISBN 9781108490146 (hardback) | ISBN 9781108780346 (epub)

Subjects: LCSH: Monte Carlo method. | Statistical physics.

Classification: LCC QC174.85.M64 L36 2020 (print) | LCC QC174.85.M64 (ebook) | DDC 530.15/8282–dc23

LC record available at https://lccn.loc.gov/2020021931

LC ebook record available at https://lccn.loc.gov/2020021932

ISBN 978-1-108-49014-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

				page
P	refa	ce		XV
1	Inti	oduc	tion	1
	1.1	What	is a Monte Carlo simulation?	1
	1.2	A cor	nment on the history of Monte Carlo simulations	2
	1.3	What	problems can we solve with it?	3
	1.4	What	difficulties will we encounter?	4
		1.4.1	Limited computer time and memory	4
		1.4.2	Statistical and other errors	4
		1.4.3	Knowledge that every practitioner should have	5
	1.5	What	strategy should we follow in approaching a problem?	5
	1.6	How	do simulations relate to theory and experiment?	6
	1.7	Persp	ective	7
	Ref	erence	s	8
2	Son	ne ne	cessary background	9
	2.1	Ther	modynamics and statistical mechanics: a quick reminder	9
		2.1.1	Basic notions	9
		2.1.2	Phase transitions	17
		2.1.3	Ergodicity and broken symmetry	29
		2.1.4	Fluctuations and the Ginzburg criterion	30
		2.1.5	A standard exercise: the ferromagnetic Ising model	31
	2.2	Proba	bility theory	32
		2.2.1	Basic notions	32
		2.2.2	Special probability distributions and the central	
			limit theorem	34
		2.2.3	Statistical errors	35
		2.2.4	Markov chains and master equations	36
	2.3	The '	art' of random number generation	38
		2.3.1	Background	38
		2.3.2	Congruential method	39
		2.3.3	Mixed congruential methods	40
		2.3.4	Shift register algorithm	40
		2.3.5	Lagged Fibonacci methods	41
		2.3.6	Tests for quality	41
		2.3.7	Non-uniform distributions	44

vi Contents

	2.4	Non-equilibrium and dynamics: some introductory comments	44
		2.4.1 Physical applications of master equations	44
		2.4.2 Conservation laws and their consequences	46
		2.4.3 Critical slowing down at phase transitions	49
		2.4.4 Transport coefficients	51
		2.4.5 Concluding comments: why bother about dynamics	
		when doing Monte Carlo for statics?	51
	Ref	erences	52
3	Sin	pple sampling Monte Carlo methods	54
	3.1	Introduction	54
	3.2	Comparisons of methods for numerical integration of	
		given functions	54
		3.2.1 Simple methods	54
		3.2.2 Intelligent methods	56
	3.3	Boundary value problems	57
	3.4	Simulation of radioactive decay	59
	3.5	Simulation of transport properties	60
		3.5.1 Neutron transport	60
		3.5.2 Fluid flow	61
	3.6	The percolation problem	62
		3.6.1 Site percolation	62
		3.6.2 Cluster counting: the Hoshen–Kopelman algorithm	67
		3.6.3 Other percolation models	68
		3.6.4 The Lorentz gas and cherry pit models and the	
		localization transition	69
		3.6.5 Explosive percolation	70
	3.7	Finding the groundstate of a Hamiltonian	72
	3.8	Generation of 'random' walks	73
		3.8.1 Introduction	73
		3.8.2 Random walks	74
		3.8.3 Self-avoiding walks	75
		3.8.4 Growing walks and other models	77
	3.9	Final remarks	78
	Ref	erences	78
4	Im	portance sampling Monte Carlo methods	80
	4.1	Introduction	80
	4.2	The simplest case: single spin-flip sampling for the simple	
		Ising model	81
		4.2.1 Algorithm	82
		4.2.2 Boundary conditions	85
		4.2.3 Finite size effects	91
		4.2.4 Finite sampling time effects	105
		4.2.5 Critical relaxation	115
	4.3	Other discrete variable models	123
		4.3.1 Ising models with competing interactions	123

			Contents	vii
		4.3.2	<i>q</i> -state Potts models	127
		4.3.3	Baxter and Baxter–Wu models	128
		4.3.4	Clock models	129
		4.3.5	Ising spin glass models	130
		4.3.6	Complex fluid models	131
	4.4	Spin-	exchange sampling	132
		4.4.1	Constant magnetization simulations	132
		4.4.2	Phase separation	133
		4.4.3	Diffusion	135
		4.4.4	Hydrodynamic slowing down	138
		4.4.5	Interface between coexisting phases	139
	4.5	Micro	ocanonical methods	140
		4.5.1	Demon algorithm	140
		4.5.2	Dynamic ensemble	140
		4.5.3	Q2R	141
	4.6	Gene	ral remarks, choice of ensemble	141
	4.7	Static	s and dynamics of polymer models on lattices	143
		4.7.1	Background	143
		4.7.2	Fixed bond length methods	143
		4.7.3	Bond fluctuation method	145
		4.7.4	Enhanced sampling using a fourth dimension	145
		4.7.5	The 'wormhole algorithm' – another method to	–
			equilibrate dense polymeric systems	147
		4.7.6	Polymers in solutions of variable quality: θ -point,	–
			collapse transition, unmixing	147
		4.7.7	Equilibrium polymers: a case study	150
		4.7.8	The pruned enriched Rosenbluth method (PERM):	
			a biased sampling approach to simulate very long	150
		4 7 0	isolated chains	153
	4.0	4.7.9	Perspective	150
	4.ð	Some	advice	150
	Kei	erence	S	157
5	Mo	re on	importance sampling Monte Carlo methods for	
	lat	tice sy	stems	161
	5.1	Clust	er flipping methods	161
		5.1.1	Fortuin–Kasteleyn theorem	161
		5.1.2	Swendsen–Wang method	162
		5.1.3	Wolff method	165
		5.1.4	'Improved estimators'	166
		5.1.5	Invaded cluster algorithm	167
	г э	5.1.6	Probability changing cluster algorithm	167
	5.2	Speci	alized computational techniques	168
		5.2.1	Expanded ensemble methods	168
		5.2.2	Wuitispin coding	168
		5.2.3	<i>N</i> -told way and extensions	169

viii

Contents

Cambridge University Press 978-1-108-49014-6 — A Guide to Monte Carlo Simulations in Statistical Physics David Landau , Kurt Binder Frontmatter More Information

5.2.4 Hybrid algorithms 172 5.2.5 Multigrid algorithms 172 5.2.6 Monte Carlo on vector computers 173 5.2.7 Monte Carlo on parallel computers 174 5.3 Classical spin models 175 5.3.1 Introduction 175 5.3.2 Simple spin-tilt method 176 5.3.3 Heatbath method 178 5.3.4 Low temperature techniques 179 5.3.5 Over-relaxation methods 179 5.3.6 Wolff embedding trick and cluster flipping 180 5.3.7 Hybrid methods 181 5.3.8 Monte Carlo dynamics vs. equation of motion dynamics 182 5.3.9 Topological excitations and solitons 182 5.3.10 Finite size scaling for systems with vector 186 order parameters 5.4 Systems with quenched randomness 190 5.4.1 General comments: averaging in random systems 190 5.4.2 Parallel tempering: a general method to better equilibrate systems with complex energy landscapes 194 5.4.3 Random fields and random bonds 195 5.4.4 Spin glasses and optimization by simulated 198 annealing 5.4.5 Aging in spin glasses and related systems 203 5.4.6 Vector spin glasses: developments and surprises 204 5.4.7 The ground state of the Ising spin glass on the square lattice: a case study 204 5.5 Models with mixed degrees of freedom: Si/Ge alloys, a 207 case study 5.6 Methods for systems with long range interactions 209 5.7 Parallel tempering, simulated tempering, and related methods: accuracy considerations 211 214 5.8 Sampling the free energy and entropy 5.8.1 Thermodynamic integration 214 5.8.2 Groundstate free energy determination 216 Estimation of intensive variables: the 5.8.3 chemical potential 216 5.8.4 Lee-Kosterlitz method 217 5.8.5 Free energy from finite size dependence at T_{c} 218 5.9 Miscellaneous topics 218 5.9.1 218 Inhomogeneous systems: surfaces, interfaces, etc. 5.9.2 Anisotropic critical phenomena: simulation boxes with arbitrary aspect ratio 225 5.9.3 Other Monte Carlo schemes 227 5.9.4 Inverse and reverse Monte Carlo methods 229

			Contents	ix
	5.9.5	Finite size effects: review and summary		231
	5.9.6	More about error estimation		231
	5.9.7	Random number generators revisited		233
5.10) Summ	nary and perspective		237
Ref	erences			237
6 Off	-lattice	models		243
6.1	Fluids	5		243
	6.1.1	NVT ensemble and the virial theorem		243
	6.1.2	<i>NpT</i> ensemble		247
	6.1.3	'Real' microcanonical ensemble		251
	6.1.4	Grand canonical ensemble		252
	6.1.5	Near critical coexistence: a case study		256
	6.1.6	Subsystems: a case study		258
	6.1.7	Gibbs ensemble		264
	6.1.8	Widom particle insertion method and varia	nts	266
	6.1.9	Monte Carlo phase switch		269
	6.1.10	Cluster algorithm for fluids		273
	6.1.11	Event chain algorithms		274
	6.1.12	An extension of the 'N-fold way'-algorithm	ı to	
		off-lattice systems		277
6.2	'Short	range' interactions		278
	6.2.1	Cutoffs		278
	6.2.2	Verlet tables and cell structure		278
	6.2.3	Minimum image convention		279
	6.2.4	Mixed degrees of freedom reconsidered		279
6.3	Treati	nent of long range forces		280
	6.3.1	Reaction field method		280
	6.3.2	Ewald method		280
	6.3.3	Fast multipole method		281
	6.3.4	Particle–particle particle–mesh (P ³ M) meth	nod	282
6.4	Adsor	bed monolayers		283
	6.4.1	Smooth substrates		283
	6.4.2	Periodic substrate potentials		283
6.5	Comp	lex fluids		285
	6.5.1	A case study: application of the Liu-Luijte	n	
		algorithm to a binary fluid mixture		288
6.6	Polym	ers: an introduction		289
	6.6.1	Length scales and models		289
	6.6.2	Asymmetric polymer mixtures: a case study	У	296
	6.6.3	Applications: dynamics of polymer melts; t	hin	
		adsorbed polymeric films		298
	6.6.4	Polymer melts: speeding up bond fluctuation	on	
		model simulations		303
6.7	Liquio	l crystals; an introduction		305
6.8	Config	gurational bias and 'smart Monte Carlo'		309

Contents
Constant and a

	6.9	Estimation of excess free energies due to walls for fluids			
		and so	olids	313	
	6.10	A syn	nmetric, Lennard–Jones mixture: a case study	316	
	6.11	Finite	e size effects on interfacial properties: a case study	317	
	6.12	Outlo	ok	321	
	Refe	rences		321	
7	Rew	eighti	ng methods	326	
	7.1	Backg	round	326	
		7.1.1	Distribution functions	326	
		7.1.2	Umbrella sampling	326	
	7.2	Single	e histogram method	329	
		7.2.1	The Ising model as a case study	330	
		7.2.2	The surface-bulk multicritical point: another		
			case study	338	
	7.3	Multi	histogram method	341	
	7.4	Broad	histogram method	341	
	7.5	Trans	sition matrix Monte Carlo	342	
	7.6	Multi	canonical sampling	342	
		7.6.1	The multicanonical approach and its relationship to		
			canonical sampling	342	
		7.6.2	Near first order transitions	344	
		7.6.3	Groundstates in complicated energy landscapes	346	
		7.6.4	Interface free energy estimation	347	
	7.7	A case	e study: the Casimir effect in critical systems	348	
	7.8	Wang	–Landau sampling	348	
		7.8.1	Basic algorithm	348	
		7.8.2	Applications to models with continuous variables	353	
		7.8.3	Two-dimensional Wang-Landau sampling: a		
			case study	354	
		7.8.4	Microcanonical entropy inflection points	354	
		7.8.5	Back to numerical integration	356	
		7.8.6	Replica exchange Wang–Landau sampling	357	
	7.9	A case	e study: evaporation/condensation transition		
		of dro	oplets	359	
	Refe	rences		362	
8	Qua	ntum	Monte Carlo methods	365	
	8.1	Intro	luction	365	
	8.2	Feyn	nan path integral formulation	367	
		8.2.1	Off-lattice problems: low temperature properties		
			of crystals	367	
		8.2.2	Bose statistics and superfluidity	373	
		8.2.3	Path integral formulation for rotational degrees		
			of freedom	375	
	8.3	Lattic	e problems	377	
		8.3.1	The Ising model in a transverse field	377	

			Contents	xi
		8.3.2	Anisotropic Heisenberg chain: an early case study	378
		8.3.3	Fermions on a lattice	382
		8.3.4	An intermezzo: the minus sign problem	385
		8.3.5	Spinless fermions revisited	387
		8.3.6	Cluster methods for quantum lattice models	389
		8.3.7	Continuous time simulations	391
		8.3.8	Decoupled cell method	392
		8.3.9	Handscomb's method and the stochastic series	
			expansion (SSE) approach	393
		8.3.10	Wang–Landau sampling for quantum models	394
		8.3.11	Fermion determinants	396
	8.4	Monte	e Carlo methods for the study of	
		groun	dstate properties	398
		8.4.1	Variational Monte Carlo (VMC)	398
		8.4.2	Green's function Monte Carlo methods (GFMC)	400
	8.5	Quant	tum Monte Carlo in nuclear physics	402
	8.6	Towa	rds constructing the nodal surface of off-lattice,	
		many-	-Fermion systems: the 'survival of the	
		fittest	algorithm'	404
	8.7	Bypas	sing the minus sign problem: phase transitions in	
		antife	rromagnetic metals	408
	8.8	Concl	uding remarks	411
	Ref	erences	8	412
9	Mo	nte Ca	arlo renormalization group methods	416
	9.1	Introd	luction to renormalization group theory	416
	9.2	Real s	pace renormalization group	420
	9.3	Mont	e Carlo renormalization group	421
		9.3.1	Large cell renormalization	421
		9.3.2	Ma's method: finding critical exponents and the fixed	
			point Hamiltonian	423
		9.3.3	Swendsen's method	424
		9.3.4	Location of phase boundaries	426
		9.3.5	Dynamic problems: matching time-dependent	
			correlation functions	428
		9.3.6	Inverse Monte Carlo renormalization	
			group transformations	428
	Ref	erences	5	429
10	No	n-equi	librium and irreversible processes	430
	10.	1 Intro	oduction and perspective	430
	10.	2 Driv	ven diffusive systems (driven lattice gases)	431
	10.	3 Crys	stal growth	434
	10.4	4 Don	nain growth	437
		10.4	1 Phase separation in mixtures	437
		10.4	2 A case study: growth of domains and aging	
			phenomena in spin glasses	440

xii	Contents
X11	Contents

	10.5	Polymer growth	443
		10.5.1 Linear polymers	443
		10.5.2 Kinetic gelation: a case study	443
	10.6	Growth of structures and patterns	445
		10.6.1 Eden model of cluster growth	445
		10.6.2 Diffusion limited aggregation	445
		10.6.3 Cluster-cluster aggregation	448
		10.6.4 Cellular automata	448
	10.7	Models for film growth	449
		10.7.1 Background	449
		10.7.2 Ballistic deposition	450
		10.7.3 Sedimentation	451
		10.7.4 Kinetic Monte Carlo and MBE growth	452
	10.8	Transition path sampling	454
		10.8.1 What is transition path sampling?	454
		10.8.2 A case study: the disk to slab transition in the	
		two-dimensional Ising model	455
	10.9	Forced polymer pore translocation: a case study	457
	10.10	The Jarzynski non-equilibrium work theorem and its	
		application to obtain free energy differences	
		from trajectories	460
	10.11	Outlook: variations on a theme	462
	Refer	ences	462
11	Lattie	ce gauge models: a brief introduction	465
11	Lattie	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory	465 465
11	Lattie 11.1 11.2	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters	465 465 467
11	Lattie 11.1 11.2 11.3	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models	465 465 467 467
11	Lattie 11.1 11.2 11.3 11.4	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory	465 465 467 467 468
11	Lattie 11.1 11.2 11.3 11.4 11.5	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory	465 465 467 467 468 469
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase	465 465 467 467 468 469
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter	465 465 467 467 468 469 470
11	Lattie 11.1 11.2 11.3 11.4 11.5 11.6 11.7	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD	465 465 467 467 468 469 470 473
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study	465 465 467 467 468 469 470 473 475
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions	465 465 467 467 468 469 470 473 475 478
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories	465 467 467 467 468 469 470 473 475 478 481
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective	465 467 467 468 469 470 473 475 478 481 481
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Refere	the gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences	465 467 467 468 469 470 473 475 478 481 481 482
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences	465 465 467 467 468 469 470 473 475 478 481 481 482 484
11	Lattie 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference A brie 12.1	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences	465 465 467 467 468 469 470 473 475 478 481 481 482 484 484
11	Lattie 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference A brie 12.1 12.2	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for Z(N) lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences ef review of other methods of computer simulation Introduction Molecular dynamics	465 465 467 467 468 469 470 473 475 478 481 481 481 482 484 484
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference 12.1 12.2	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for $Z(N)$ lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences ef review of other methods of computer simulation Introduction Molecular dynamics 12.2.1 Integration methods (microcanonical ensemble)	465 467 467 468 469 470 473 475 478 481 481 481 482 484 484 484
11	Lattic 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference 12.1 12.2	cc gauge models: a brief introductionIntroduction: gauge invariance and lattice gauge theorySome technical mattersResults for Z(N) lattice gauge modelsCompact U(1) gauge theorySU(2) lattice gauge theoryIntroduction: quantum chromodynamics (QCD) and phasetransitions of nuclear matterThe deconfinement transition of QCDFinite size scaling based on Polyakov loops: a case studyTowards quantitative predictionsDensity of states in gauge theoriesPerspectiveencesef review of other methods of computer simulationIntroductionMolecular dynamics12.2.1Integration methods (microcanonical ensemble)12.2.2Other ensembles (constant temperature, constant	465 467 467 468 469 470 473 475 478 481 481 482 484 484 484 484
11	Lattie 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference 12.1 12.2	cc gauge models: a brief introductionIntroduction: gauge invariance and lattice gauge theorySome technical mattersResults for Z(N) lattice gauge modelsCompact U(1) gauge theorySU(2) lattice gauge theoryIntroduction: quantum chromodynamics (QCD) and phasetransitions of nuclear matterThe deconfinement transition of QCDFinite size scaling based on Polyakov loops: a case studyTowards quantitative predictionsDensity of states in gauge theoriesPerspectiveencesef review of other methods of computer simulationIntroductionMolecular dynamics12.2.1Integration methods (microcanonical ensemble)12.2.2Other ensembles (constant temperature, constant pressure, etc.)	465 465 467 467 468 469 470 473 475 478 481 481 482 484 484 484 484 484 484
11	Lattie 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference 12.1 12.2	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for Z(N) lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences ef review of other methods of computer simulation Introduction Molecular dynamics 12.2.1 Integration methods (microcanonical ensemble) 12.2.2 Other ensembles (constant temperature, constant pressure, etc.)	465 465 467 467 468 469 470 473 475 478 481 481 481 482 484 484 484 484 484 484 484 484
11	Lattie 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 Reference 12.1 12.2	ce gauge models: a brief introduction Introduction: gauge invariance and lattice gauge theory Some technical matters Results for Z(N) lattice gauge models Compact U(1) gauge theory SU(2) lattice gauge theory Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter The deconfinement transition of QCD Finite size scaling based on Polyakov loops: a case study Towards quantitative predictions Density of states in gauge theories Perspective ences ef review of other methods of computer simulation Introduction Molecular dynamics 12.2.1 Integration methods (microcanonical ensemble) 12.2.3 Non-equilibrium molecular dynamics 12.2.4 Hybrid methods (MD + MC)	465 465 467 467 468 469 470 473 475 478 481 481 481 482 484 484 484 484 484 484 484 484 481 481

	Contents	xiii
	12.2.5 <i>Ab initio</i> molecular dynamics	492
	12.2.6 Hyperdynamics and metadynamics	493
	12.2.7 Molecular dynamics for systems with	170
	open boundaries	494
12.3	Ouasi-classical spin dynamics	495
	12.3.1 Combined molecular dynamics-spin dynamics	
	(MD–SD) simulations	499
12.4	Langevin equations and variations (cell dynamics)	500
12.5	Micromagnetics	501
12.6	Dissipative particle dynamics (DPD)	502
12.7	Lattice gas cellular automata	503
12.8	Lattice Boltzmann equation	504
12.9	Multiscale simulation	505
12.10	Multiparticle collision dynamics	507
12.11	Active matter	509
12.12	Machine learning	512
Refe	rences	515
13 Mon	to Carlo simulations at the periphery of physics	
and l	beyond	510
13.1	Commentary	510
13.1	Astrophysics	510
13.2	Materials science	520
13.5	Chemistry	520
13.1	'Biologically inspired' physics	524
15.5	13.5.1 Commentary and perspective	524
	13.5.2 Lattice proteins	524
	13.5.3. Cell sorting	527
13.6	Biology	527
13.0	Mathematics/statistics/computer science	527
13.7	Socionhysics	530
13.0	Fcononhysics	530
13.10	Conspirysies ('Traffic' simulations	531
13.10	Medicine	533
13.11	Networks: what connections really matter?	534
13.12	Finance	535
Refe	rences	536
14.35		540
14 Mon	te Carlo studies of biological molecules	540
14.1	Introduction	540
14.2	Protein folding	541
	14.2.2 II introduction	541
	14.2.2 How to best simulate proteins: Monte Carlo or	F 4 0
	molecular dynamics	542
	14.2.3 Generalized ensemble methods	543
	14.2.4 Globular proteins: a case study	545
	14.2.5 Simulations of membrane proteins	545

xiv Contents

	14.3 Monte Carlo simulations of RNA structures	548
	14.4 Monte Carlo simulations of carbohydrates	549
	14.5 Determining macromolecular structures	551
	14.6 Outlook	551
	References	552
15	Emerging trends	554
	Index	556

Preface

Historically physics was first known as 'natural philosophy' and research was carried out by purely theoretical (or philosophical) investigation. True progress was obviously limited by the lack of real knowledge of whether or not a given theory really applied to nature. Eventually experimental investigation became an accepted form of research although it was always limited by the physicist's ability to prepare a sample for study or to devise techniques to probe for the desired properties. With the advent of computers it became possible to carry out simulations of models which were intractable using 'classical' theoretical techniques. In many cases computers have, for the first time in history, enabled physicists not only to invent new models for various aspects of nature but also to solve those same models without substantial simplification. For a number of years computer power has increased quite dramatically, with access to computers becoming both easier and more common (e.g. with personal computers and workstations), and computer simulation methods have also been steadily refined. As a result computer simulations have become another way of doing physics research. They provide another perspective; in some cases simulations provide a theoretical basis for understanding experimental results, and in other instances simulations provide 'experimental' data with which theory may be compared. There are numerous situations in which direct comparison between analytical theory and experiment is inconclusive. For example, the theory of phase transitions in condensed matter must begin with the choice of a Hamiltonian, and it is seldom clear to what extent a particular model actually represents real materials on which experiments are done. Since analytical treatments also usually require mathematical approximations whose accuracy is difficult to assess or control, one does not know whether discrepancies between theory and experiment should be attributed to shortcomings of the model, the approximations, or both. The goal of this text is to provide a basic understanding of the methods and philosophy of computer simulations research with an emphasis on problems in statistical thermodynamics as applied to condensed matter physics or materials science. There exist many other simulational problems in physics (e.g. simulating the spectral intensity reaching a detector in a scattering experiment) which are more straightforward and which will only

CAMBRIDGE

Cambridge University Press 978-1-108-49014-6 — A Guide to Monte Carlo Simulations in Statistical Physics David Landau , Kurt Binder Frontmatter <u>More Information</u>

xvi Preface

occasionally be mentioned. We shall use many specific examples and, in some cases, give explicit computer algorithms, but we wish to emphasize that these methods are applicable to a wide variety of systems including those which are not treated here at all. As computer architecture changes, the methods presented here will in some cases require relatively minor reprogramming and in other instances will require new algorithm development in order to be truly efficient. We hope that this material will prepare the reader for studying new and different problems using both existing as well as new computers.

At this juncture we wish to emphasize that it is important that the simulation algorithm and conditions be chosen with the physics problem at hand in mind. The *interpretation* of the resultant output is critical to the success of any simulational project, and we thus include substantial information about various aspects of thermodynamics and statistical physics to help strengthen this connection. We also wish to draw the reader's attention to the rapid development of scientific visualization and the important role that it can play in producing *understanding* of the results of some simulations.

This book is intended to serve as an introduction to Monte Carlo methods for graduate students, and advanced undergraduates, as well as more senior researchers who are not vet experienced in computer simulations. The book is divided up in such a way that it will be useful for courses which only wish to deal with a restricted number of topics. Some of the later chapters may simply be skipped without affecting the understanding of the chapters which follow. Because of the immensity of the subject, as well as the existence of a number of very good monographs and articles on advanced topics which have become quite technical, we will limit our discussion in certain areas, e.g. polymers, to an introductory level. Many existing Monte Carlo programs and related subprograms are in FORTRAN and will be available to the student from libraries, journals, etc. (FORTRAN has also evolved dramatically over its more than 60 years of existence, and the newest versions are efficient and well suited for operations involving arrays and for parallel algorithms. Object oriented languages, like C++, while useful for writing complex programs, can be far more difficult to learn. Programs written in popular, non-compiler languages, like Java or MATLAB, can be more difficult to debug and run relatively slowly. Nevertheless, all the methods described in this book can be implemented using the reader's 'language of choice'.) A number of sample problems are suggested in the various chapters; these may be assigned by course instructors or worked out by students on their own. Our experience in assigning problems to students taking a graduate course in simulations at the University of Georgia over a more than 35-year period suggests that for maximum pedagogical benefit, students should be required to prepare cogent reports after completing each assigned simulational problem. Students were required to complete seven 'projects' in the course of the semester for which they needed to write and debug programs, take and analyze data, and prepare a report. Each report should briefly describe the algorithm used, provide sample data and data analysis, draw conclusions, and add comments. (A sample program/output should be included.) In this way, the students

CAMBRIDGE

Cambridge University Press 978-1-108-49014-6 — A Guide to Monte Carlo Simulations in Statistical Physics David Landau , Kurt Binder Frontmatter <u>More Information</u>

Preface xvii

obtain practice in the summary and presentation of simulational results, a skill which will prove to be valuable later in their careers. For convenience, many of the case studies that are described have been simply taken from the research of the authors of this book – the reader should be aware that this is by no means meant as a negative statement on the quality of the research of numerous other groups in the field. Similarly, selected references are given to aid the reader in finding more detailed information, but because of length restrictions it is simply not possible to provide a complete list of relevant literature. Many coworkers have been involved in the work which is mentioned here, and it is a pleasure to thank them for their fruitful collaboration. We have also benefited from the stimulating comments of many of our colleagues and we wish to express our thanks to them as well.

The pace of developments in computer simulations continues at breakneck speed. This fifth edition of our 'guide' to Monte Carlo simulations updates some of the references and includes numerous additions reflecting new algorithms that have appeared since work on the fourth edition was completed. The emphasis on the use of Monte Carlo simulations in biologically related problems in the fourth edition proved to foretell the future, as the use of Monte Carlo methods for the study of biological molecules has continued to expand. Similarly, the use of Monte Carlo methods in 'non-traditional' areas of research has continued to grow. (Monte Carlo methods are now widely used in industry for applications as diverse as risk management, optimization of manufacturing tool selection, and modeling turbomolecular pumps. Since our present focus is on the use of Monte Carlo methods in statistical physics, we direct the interested reader elsewhere for information on these topics.) There have been exciting new developments in computer hardware; in particular, the use of GPUs in scientific computing has dramatically altered the price/performance ratio for many algorithmic implementations. In particular, almost all of the most powerful supercomputers are now hybrid combinations of many multi-core CPUs and GPUs. Because of advances in computer technology and algorithms, new results often have much higher statistical precision than some of the older examples in the text. Nonetheless, the older work often provides valuable pedagogical information for the student and may also be more readable than more recent, and more compact, papers. An additional advantage is that the reader can easily reproduce some of the older results with only a modest investment of modern computer resources. Of course, newer, higher resolution studies that are cited often permit yet additional information to be extracted from simulational data, so striving for higher precision should not be viewed as 'busy work'. While earlier editions of this text included an Appendix with sample codes written in Fortran77, students are now often introduced to programming with Python and many research level codes are now written in Fortran 90/95 or C++. In the future it is likely that other languages will also enter the fray although the algorithms themselves will remain unchanged. For this reason we decided to eliminate the sample programs from this Edition but have made program listings available on the website of the Center for Simulational Physics

xviii Preface

www.csp.uga.edu/MCbook for the interested reader. We hope that this guide will help impart to the reader not only an understanding of the methodology of Monte Carlo simulations but also an appreciation for the new science that can be uncovered with the Monte Carlo method.