GLACIALLY-TRIGGERED FAULTING

Glacially triggered faulting describes movement of pre-existing faults caused by a combination of tectonic and glacially induced isostatic stresses. The most impressive fault scarps are found in Northern Europe, assumed to have been reactivated at the end of deglaciation. However, this view has been challenged as new faults have been discovered globally with advanced techniques such as LiDAR, and fault activity dating has shown several phases of reactivation thousands of years after deglaciation ended. This book summarizes the current state-of-the-art research in glacially triggered faulting, discussing the theoretical aspects that explain the presence of glacially induced structures and reviews the geological, geophysical, geodetic and geomorphological investigation methods. Written by a team of international experts, it provides the first global overview of confirmed and proposed glacially induced faults and provides an outline for modelling these stresses and features. It is a go-to reference for geoscientists and engineers interested in ice sheet–solid earth interaction.

HOLGER STEFFEN is a geophysicist by training who joined the Geodetic Infrastructure Department at Lantmäteriet, the Swedish Mapping, Cadastral and Land Registration Authority, in 2012 after working for several years as a postdoctoral researcher at universities in Germany, Canada and Sweden. His work deals with glacial isostatic adjustment modelling and corresponding acquisition and/or analysis of geodetic, geophysical and geologic observations. He chairs the Working Group of Geodynamics and Earth Observation of the Nordic Geodetic Commission.

ODLEIV OLESEN is a senior researcher at the Geological Survey of Norway with 40 years of professional experience, including management roles, extensive research and mapping activities. He has taught as Adjunct Professor in Applied Geophysics at the Norwegian University of Science and Technology.

RAIMO SUTINEN is a geo-consultant with 40 years' experience in geoscience. He was previously a senior researcher at the Geological Survey of Finland, where he managed the project 'Postglacial Faults'. He has more than 60 impact and 100 proceedings papers in remote sensing, soil physics and biogeochemistry. His recent research has focused on faults and earthquake-induced landforms.

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

GLACIALLY-TRIGGERED FAULTING

Edited by

HOLGER STEFFEN Lantmäteriet

ODLEIV OLESEN Geological Survey of Norway

RAIMO SUTINEN Geological Survey of Finland

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108490023 DOI: 10.1017/9781108779906

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49002-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List	of Figures	<i>page</i> ix
List	of Tables	XV
List	of Contributors	xvi
Pref	face	xxi
Par	Part I Introduction	
1	Glacially Triggered Faulting: A Historical Overview and Recent Developments (H. STEFFEN, O. OLESEN, R. SUTINEN)	3
2	Geomechanics of Glacially Triggered Faulting (R. STEFFEN, P. WU, B. LUND)	20
Part	t II Methods and Techniques for Fault Identification and Dating	41
3	Earthquake-Induced Landforms in the Context of Ice-Sheet Loading and Unloading (P. B. E. SANDERSEN, R. SUTINEN)	43
4	The Challenge to Distinguish Soft-Sediment Deformation Structures (SSDS) Formed by Glaciotectonic, Periglacial and Seismic Processes in a Formerly Glaciated Area: A Review and Synthesis (K. MÜLLER, J. WINSEMANN, M. PISARSKA-JAMROŻY, T. LEGE, T. SPIES, C. BRANDES)	67

vi	Contents	
5	Glacially Induced Fault Identification with LiDAR, Based on Examples from Finland (JP. PALMU, A. OJALA, J. MATTILA, M. MARKOVAARA-KOIVISTO,	89
	T. RUSKEENIEMI, R. SUTINEN, T. BAUER, M. KEIDING)	
6	Fault Identification from Seismology (N. GESTERMANN, T. PLENEFISCH)	100
7	Imaging and Characterization of Glacially Induced Faults Using Applied Geophysics	118
	(R. BECKEL, C. JUHLIN, A. MALEHMIR, O. AHMADI)	
8	Dating of Postglacial Faults in Fennoscandia (C. A. SMITH, A. OJALA, S. GRIGULL, H. MIKKO)	133
9	Proposed Drilling into Postglacial Faults: The Pärvie Fault System	151
	(M. ASK, I. KUKKONEN, O. OLESEN, B. LUND, Å. FAGERENG, J. RUTQVIST, JE. ROSBERG, H. LORENZ)	
Par	t III Glacially Triggered Faulting in the Fennoscandian Shield	175
10	Seismicity and Sources of Stress in Fennoscandia (s. gregersen, c. lindholm, a. korja, b. lund, m. uski, k. oinonen, p. h. voss, m. keiding)	177
11	Postglacial Faulting in Norway: Large Magnitude Earthquakes of the Late Holocene Age (O. OLESEN, L. OLSEN, S. GIBBONS, B. O. RUUD, F. HØGAAS, T. A. JOHANSEN, T. KVÆRNA)	198
12	Glacially Induced Faults in Sweden: The Rise and Reassessment of the Single-Rupture Hypothesis (C. A. SMITH, H. MIKKO, S. GRIGULL)	218
13	Glacially Induced Faults in Finland (r. sutinen, e. hyvönen, m. markovaara-koivisto, m. middleton, a. ojala, jp. palmu, t. ruskeeniemi, j. mattila)	231

	Contents	vii
14	Lateglacial and Postglacial Faulting in the Russian Part of the Fennoscandian Shield (s. NIKOLAEVA, A. NIKONOV, S. SHVAREV)	246
Par	t IV Glacially Triggered Faulting at the Edge and in the Periphery of the Fennoscandian Shield	261
15	Lateglacial and Postglacial Faulting in Denmark (P. B. E. SANDERSEN, S. GREGERSEN, P. VOSS)	263
16	Glacially Induced Faults in Germany (K. Müller, J. WINSEMANN, D. TANNER, T. LEGE, T. SPIES, C. BRANDES)	283
17	Glacially Induced Faulting in Poland (m. pisarska-jamroży, p. p. woźniak, t. van loon)	304
18	Soft-Sediment Deformation Structures in the Eastern Baltic Region: Implication in Seismicity and Glacially Triggered Faulting (A. BITINAS, J. LAZAUSKIENĖ, M. PISARSKA-JAMROŻY)	320
Par	t V Glacially Triggered Faulting Outside Europe	339
19	The Search for Glacially Induced Faults in Eastern Canada (J. ADAMS, G. R. BROOKS)	341
20	Glacially Induced Faulting in Alaska (J. SAUBER, C. ROLLINS, J. T. FREYMUELLER, N. A. RUPPERT)	353
21	Indications on Glacially Triggered Faulting in Polar Areas (H. STEFFEN, R. STEFFEN)	366
Par	t VI Modelling of Glacially Induced Faults and Stress	381
22	Glacial Isostatic Adjustment Models for Earthquake Triggering (P. WU, R. STEFFEN, H. STEFFEN, B. LUND)	383

viii	Contents	
23	Crustal-Scale Stress Modelling to Investigate Glacially Triggered Faulting (s. gradmann, r. steffen)	402
Part	t VII Outlook	417
24	Future Research on Glacially Triggered Faulting and Intraplate Seismicity (O. OLESEN, H. STEFFEN, R. SUTINEN)	419
Inde	x	429
А	International database of Glacially-Induced Faults (for download at Pangaea.de) (R. MUNIER ET AL., 2020)	

Colour plates appear between 170 and 171.

Figures

1.1	Oblique aerial photograph of the fault scarp developed along the	
	Máze Fault System constituting the central part of the Stuoragurra	
	Fault Complex in Norway	page 5
1.2	Glacially induced faults and selected locations of suggested	
	palaeoseismicity in Northern and Central Europe	8
2.1	Conceptual figure presenting the stresses acting on a fault	22
2.2	Horizontal stress (σ_{xx}) distribution during glacial loading	25
2.3	Schematic figure showing the effect of the background stress in	
	combination with the glacially induced stress on the behaviour of	
	stress-relief features	26
2.4	Schematic presentation of the stress settings during a glacial cycle	
	in a thrust-faulting stress regime	28
2.5	Sketch of the change in Coulomb failure stress (ΔCFS)	30
2.6	Schematic presentation of the stress settings during a glacial cycle	
	in a normal-faulting stress regime	31
2.7	Schematic presentation of the stress settings during a glacial cycle	
	in a strike-slip-faulting stress regime	34
3.1	A hill-shaded LiDAR digital elevation model (DEM) of the	
	Ruokojärvi–Pasmajärvi glacially induced fault	49
3.2	Selected area of the Tinglev outwash plain, Denmark	50
3.3	Tinglev outwash plain, Denmark	51
3.4	A N-S threshold on the Tinglev outwash plain between Vongshøj	
	and Abild hill-islands	52
3.5	Hill-shaded LiDAR DEM of palaeolandslides from Levi Fell in	
	Kittilä, Finland	54
3.6	a) LiDAR DEM images of the Pulju moraine field in Sevetti-	
	Näätämöjoki area; b) mass flow deposits in central Finnish Lapland;	
	c) aerial photo showing Maskevarri Ráhppát in Finnmark, Norway;	

ix

х

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

List of Figures

	d) LiDAR images of esker collapse morphologies next to the Pasmajärvi GIF in western Finnish Lapland; e,f) squeeze-up ridges 20–40 km down-ice from the Vaalajärvi–Risttonmännikkö GIF	
	Complex in central Finnish Lapland	55
37	a) LiDAR DEM showing liquefaction craters on drumlins in	55
5.7	Kuusamo SE Finnish Lapland: b) liquefaction spreads deforming	
	the ice-streamlined landforms in Kuusamo. SE Finnish Lapland:	
	c) liquefaction bowls next to Naamivittikko GIF in Kolari Finnish	
	Lapland: d) LiDAR DEM showing a part of the Lainiobågen	57
4.1	SSDS induced by different trigger mechanisms	69
4.2	Style of truncation of lamination within the deformed	07
	sediment (convolute bedding)	72
4.3	Typical SSDS formed by glaciotectonics, periglacial processes	
	and earthquakes	76
5.1	Coverage of LiDAR data for Finland, Norway and Sweden in 2019	91
5.2	Example for data type comparison from Riikonkumpu area	93
5.3	Methodology for extraction of continuous vertical offset profiles	94
5.4	Riikonkumpu Fault System	95
5.5	Landslide detection from LiDAR DEMs	97
6.1	Recording of an earthquake close to Constance, South Germany,	
	on 29 July 2019	102
6.2	Theoretical travel time curves for P and S waves and corresponding	
	seismogram sketches	103
6.3	Example of a frequency-magnitude distribution of seismic events	
	within a defined region with a <i>b</i> -value of 1.2	105
6.4	Block diagram showing movement during an earthquake and	
	depiction of strike, dip and rake	109
6.5	Basic types of fault geometries and styles of faulting together with	
	the corresponding beach ball representation	110
6.6	Representation of the double couple (DC)	112
6.7	Fault and hypocentre together with the radiation of the	
	double couple into the different quadrants of compressional and	
	dilatational motion	113
6.8	Example of focal mechanism determination from observations of	
	P polarities and P/S amplitude ratios	114
7.1	Distribution of glacially induced fault (GIF) scarps in Scandinavia	
	and location of the case studies	119
7.2	Reflection seismic images of the Pärvie Fault	121
7.3	Refraction seismic imaging of GIFs	122

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

> List of Figures xi 7.4 Ground-penetrating radar (GPR) profile across the Stuoragurra Fault 122 7.5 Geoelectric imaging of GIFs 123 2D resistivity section from electromagnetic measurements across the 7.6 Bollnäs Fault 124 7.7 Aeromagnetic map over the Lansjärv area 125 7.8 Reflection seismic image of the Burträsk Fault 128 7.9 Merged reflection seismic image across the Suasselkä Fault 129 Map of northern Fennoscandia with known postglacial fault systems 8.1 134 8.2 A) The north-west facing fault scarp marked by the black arrows cross-cuts not only the esker, which formed subglacially, but also the palaeoshorelines of an ice-dammed lake, which formed subaerially during deglaciation. B) The less distinct west facing fault scarp marked by the black arrows does not cross-cut the esker 135 Fault scarps cross-cutting glacial landforms 8.3 137 8.4 The Lauhavuori GIF cross-cuts palaeoshorelines 138 8.5 The Lansjärv Fault scarp cross-cuts palaeoshorelines 139 8.6 The sediment stratigraphy and structures at the Riikonkumpu site 141 8.7 Faulted varves and a turbidite layer at Nurmijärvi, Finland 143 8.8 Lithological composite log from the Sotka landslide in Kittilä, Finland 145 8.9 Sampling sites where direct dating of the Pärvie Fault was attempted by the Geological Survey of Sweden 146 9.1 Map of northern Sweden with locations of postglacial fault scarps, palaeolandslides, the highest coastline and microseismicity 152 9.2 155 Bedrock geological map 9.3 Epicentral map and depth distribution of the 235 best located earthquakes on the Pärvie Fault System 2007-2010 156 9.4 The migrated section with earthquake locations from events located within 10 km perpendicular distance from the profile in north and south 158 9.5 Terrain slope map showing locations of the drill sites and their proximity to the Kiruna mine (KIR) 160 9.6 Reflection seismic profile with planned borehole trajectories 161 10.1 Major tectonic units, deformation zones and recent seismicity of Fennoscandia 178 10.2 Seismicity in Fennoscandia 180 10.3 Seismicity near the postglacial faults in northern Fennoscandia 183 10.4 Recent seismicity and postglacial uplift in Fennoscandia 186

10.5 Contemporary stress field in Fennoscandia

187

xii

List of Figures

11.1	Postglacial faults, topography, bathymetry, earthquakes and	200
11.0	Simplified apploaicel man of Finnmarkavidde	200
11.2	Din mouoput corrected sciencia stock scross the Microiéuri Sumrholt	201
11.5	sheer zone and the postglogial Méza Fault System	202
11 /	Outline of the tranch across the Máza Fault System in the southern	205
11.4	part of the Junkorgioggi swamp	206
11 5	Pasistivity (EPT) profile located asstwards from the southern shore	200
11.3	of laka Nilloriówri	207
11.6	Eacal depths and magnitudes of the earthquakes in Figure 11.2	207
11.0	projected into a profile perpendicular to the postglacial Stuoragurra	
	Foult Complex	210
12.1	Locations and names of glasially induced fault seems	210
12.1	in Sweden	210
122	III Swedell LiDAR derived cheded relief imagery (Lentmöteriet 2020)	219
12.2	of the northern segment of the Merediërui Foult seern	222
122	LiDAR derived cheded relief imagery (Lentmöteriet 2020)	223
12.3	of the Leinie Fault com	224
12.4	LiDAD devived checked relief imagenty (Lentroitet 2020)	224
12.4	of a comment of the Därvie Foult coorn	225
12.5	LiDAR derived cheded relief imagery (Lentmöteriet 2020)	223
12.3	of two percellal accounts of the Diracio Foult	226
126	LiDAD devived cheded relief imagenty (Lentreëteriet 2020)	220
12.0	LIDAR-derived snaded rener imagery (Lantmateriet, 2020)	220
12.1	Of the Lansjary Fault	228
13.1	Bacharity induced fault segments, systems and complexes in Finland	232
13.2	Pasmajarvi GIF System with trenched Ruokojarvi Fault ramp	230
13.3	Venejarvi–Jaunojarvi GIF System with trenched Naamivittikko	227
12.4	Fault ramp	237
13.4	Isovaara–Riikonkumpu GIF System snowing parallel scarps at	220
125	Riikonkumpu šite	238
13.5	Suasseika GIF System with the Suaspaio trenching site provides	240
12 (Viole in the supervised of the second	240
13.6	Vaalajarvi–Ristonmannikko GIF System at Ristonmannikko	0.4.1
1 4 1	trenching site	241
14.1	Location of seismic lineaments and Late- and postglacial faults in	240
14.0	the eastern part of the Fennoscandian crystalline shield	248
14.2	A section showing displacements of the Late Pleistocene and	
	Holocene loose deposits on the sea bottom of the	0.40
	Teriberskaya Bay	249

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

	List of Figures	xiii
14.3	Features of structure and manifestations of the Kandalaksha	
	seismic lineament	251
14.4	Northern segment of the Chuna Fault (view of the north)	252
14.5	a) Location of the studied lake and Lateglacial fault and	
	b) stratigraphy of bottom sediments in the area west of Lake	
	Babinskaya Imandra	253
14.6	Key plot of the Vuoksi Fault Zone (VFZ) neotectonic activity study	
	with manifestations in bedrock and sediment cover	255
15.1	Earthquake map of Denmark 1929–2017	265
15.2	Depth of earthquakes in and around Denmark	266
15.3	The Hvorslev 'fracture valleys'	268
15.4	Locations of selected examples of Late- and postglacial deformations	269
15.5	Nr. Lyngby topographic analysis	270
15.6	Tinglev outwash plain	272
15.7	Seismic section Langeland	273
15.8	Seismic section Copenhagen	275
16.1	Map of Germany	284
16.2	A) Tectonostratigraphic units of Germany. B) Overview of the	
	sedimentary basins in the study area	286
16.3	Tectonic activity in northern Germany	296
17.1	Tectonic division of Poland	306
17.2	Seismotectonic risk in Poland	307
17.3	The Belchatów site in central Poland	308
17.4	The border zone between the provinces of Warmia and Mazury in	
	north-east Poland	310
17.5	The Siekierki site in NW Poland	311
17.6	The Ujście site in W Poland and the Rzucewo site in N Poland	
	with deformed sediments	312
18.1	The major faults, seismic activity and distribution of	
	soft-sedimentary deformation structures of possibly seismic	
	origin in the Eastern Baltic Region	322
18.2	Soft-sediment deformation structures induced by palaeoseismic	
	events in Latvia, Lithuania and Estonia	328
18.3	Sedimentary succession near Zaslavl (western part of Belarus) with	
	Eemian Interglacial and Early Weishselian sediments	331
19.1	Map of Eastern Canada showing the location of historical	
	earthquake epicentres, major seismic zones and fault features	342
19.2	Oblique shaded relief digital elevation model (DEM) showing the	
	Holy Grail scarp, north-central Manitoba	344

xiv

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

List of Figures

19.3	Shaded relief map showing Round Lake, the approximate location	
	of the fault features and the mapped location of Long Lake Fault	
	and associated bedrock lineament	346
19.4	Cartoon of example showing how 5 m of reverse slip on a bedrock	
	fault can cause either plastic bed thinning or low-angle normal	
	faulting in an overlying sedimentary bed	347
20.1	Overview of study region and locations of major glaciers	354
20.2	Post-1770 ice loss, related stress changes and recent earthquakes	
	in Southeast Alaska	355
20.3	St. Elias region: Schematic diagram of calculated seasonal surface	
	displacements and changes in Coulomb stress	359
20.4	Total energy released by tectonic events per month over four	
	different time periods	360
20.5	Best-fitting stress tensors for events in the Icy Bay area for all	
	months (left), May-August only (middle) and November-February	
	only (right)	361
21.1	Epicentres of earthquakes in the Boothia Peninsula area in	
	Northern Canada	368
21.2	Epicentres of earthquakes in Greenland	370
21.3	Map of Iceland with the location of the Kerlingar Fault	372
21.4	Epicentres of earthquakes in Svalbard	373
21.5	Epicentres of earthquakes in Antarctica	374
22.1	Change in Coulomb failure stress for a circular ice sheet	390
22.2	Change in Coulomb failure stress for Northern Europe	392
22.3	Today's change in Coulomb failure stress for Northern Europe	
	in comparison to historic and recent seismicity and the location	
	of glacially induced faults	393
22.4	Fault slip obtained from a numerical simulation	394
23.1	Schematic presentation of the stress field components	404
23.2	Global compilation of k-values from >300 m denth	405
23.3	Sources of primary and secondary tectonic stresses in the	100
_0.0	lithosphere	407
234	Glacially induced horizontal stresses	411
		I

Tables

3.1	Landforms related to glacially induced faulting	page 47
9.1	Planned on-site activities of the DAFNE project during	
	years 1-3 (Y1-Y3)	162
11.1	Summary of properties of postglacial faults in Norway	209
12.1	Summary of major glacially induced fault scarps in Sweden	220
13.1	Glacially induced fault complexes, systems and segments in Finland	1 234
16.1	Potential GIFs in northern Germany	291
18.1	Soft-sediment deformation structures (SSDS) in the Eastern Baltic	
	Region (possibly triggered by seismic events)	325
19.1	Listing of candidate glacially induced faults ranked as 'probable'	
	by Brooks & Adams (2020)	343
22.1	Parameters of the simple 1D model in Figure 22.1	391

Contributors

John Adams

Canadian Hazards Information Service, Natural Resources Canada, Ottawa, Ontario, Canada

Omid Ahmadi

AFRY, Solna, Sweden

Maria Ask

Department of Civil, Environmental and Natural Resources Engineering, Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden

Tobias Bauer

Department of Civil, Environmental and Natural Resources Engineering, Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden

Ruth Beckel Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Albertas Bitinas Nature Research Centre, Vilnius, Lithuania

Christian Brandes

Institute of Geology, Leibniz University Hannover, Hannover, Germany

Gregory R. Brooks

Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada

Åke Fagereng

School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom

xvi

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

List of Contributors

xvii

Jeffrey T. Freymueller

Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA

Nicolai Gestermann

Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Steven J. Gibbons

NORSAR, Kjeller, Norway Norwegian Geotechnical Institute, Oslo, Norway

Sofie Gradmann

Geological Survey of Norway (NGU), Geophysics Section, Trondheim, Norway

Søren Gregersen

Geological Survey of Denmark and Greenland, København K, Denmark

Susanne Grigull

Swedish Nuclear Fuel and Waste Management Company (SKB) Solna, Sweden, Sweden

Geological Survey of Sweden, Uppsala, Sweden

Fredrik Høgaas

Geological Survey of Norway (NGU), Quaternary Geology Section, Trondheim, Norway

Eija Hyvönen Geological Survey of Finland, Rovaniemi, Finland

Tor Arne Johansen Department of Earth Science, University of Bergen, Bergen, Norway

Christopher Juhlin Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Marie Keiding

Department of Geophysics, Geological Survey of Denmark and Greenland, København K, Denmark

Annakaisa Korja Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, Helsinki, Finland

Ilmo Kukkonen Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland

Tormod Kværna NORSAR, Kjeller, Norway

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

xviii

List of Contributors

Jurga Lazauskienė

Department of Geology and Mineralogy, Institute of Geosciences, Vilnius University, Vilnius, Lithuania

Thomas Lege

Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Conrad Lindholm

SeismoConsult, Vittenbergvn, Fjellhamar, Norway

A. J. (Tom) van Loon

College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China

Henning Lorenz

Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Björn Lund

Swedish National Seismic Network, Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Alireza Malehmir

Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Mira Markovaara-Koivisto

Geological Survey of Finland, Espoo, Finland

Jussi Mattila

Rock Mechanics Consulting Finland Oy, Vantaa, Finland

Maarit Middleton

Geological Survey of Finland, Rovaniemi, Finland

Henrik Mikko Geological Survey of Sweden, Uppsala, Sweden

Katharina Müller

Institute of Geology, Leibniz University Hannover, Hannover, Germany

Raymond Munier

Terra Mobile Consultants AB, Stockholm, Sweden

Svetlana B. Nikolaeva

Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk region, Russia

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

List of Contributors

xix

Andrey A. Nikonov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Kati Oinonen

Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, Helsinki, Finland

Antti E. K. Ojala

Geological Survey of Finland, Espoo, Finland Department of Geography and Geology, University of Turku, Finland

Odleiv Olesen

Geological Survey of Norway (NGU), Geophysics Section, Trondheim, Norway

Lars Olsen

Geological Survey of Norway (NGU), Quaternary Geology Section, Trondheim, Norway

Jukka-Pekka Palmu Geological Survey of Finland, Espoo, Finland

Małgorzata (Gosia) Pisarska-Jamroży

Institute of Geology, Adam Mickiewicz University, Poland

Thomas Plenefisch

Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Chris Rollins

School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Jan-Erik Rosberg Engineering Geology LTH, Lund University, Lund, Sweden

Engineering Geology LTH, Lund University, Lund, Swed

Natalia A. Ruppert

Alaska Earthquake Information Center, Geophysical Institute, University of Alaska, Fairbanks, Alaska, USA

Timo Ruskeeniemi Geological Survey of Finland, Espoo, Finland

Jonny Rutqvist Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Bent Ole Ruud

Department of Earth Science, University of Bergen, Bergen, Norway

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

xx

List of Contributors

Peter B. E. Sandersen

Geological Survey of Denmark and Greenland, Department of Groundwater and Quaternary Geology Mapping, Århus C, Denmark

Jeanne Sauber

Geodesy and Geophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Sergey V. Shvarev

Institute of Geography, Russian Academy of Sciences, Moscow, Russia Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Colby A. Smith Geological Survey of Sweden, Uppsala, Sweden

Thomas Spies

Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Holger Steffen

Lantmäteriet, Geodetic Infrastructure, Gävle, Sweden

Rebekka Steffen

Lantmäteriet, Geodetic Infrastructure, Gävle, Sweden

Raimo Sutinen

Geological Survey of Finland, Rovaniemi, Finland

David C. Tanner

Leibniz Institute for Applied Geophysics (LIAG), Hannover, Germany

Marja Uski

Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, Helsinki, Finland

Peter H. Voss

Geological Survey of Denmark and Greenland, København K, Denmark

Jutta Winsemann Institute of Geology, Leibniz University Hannover, Hannover, Germany

Piotr Paweł Woźniak Department of Geomorphology and Quaternary Geology, University of Gdańsk, Gdańsk, Poland

Patrick Wu Department of Geoscience, University of Calgary, Calgary, Canada

Preface

On cloudless summer days in Northern Europe one may spot a small plane crossing the sky like a farmer tilling a field. This plane may be collecting data for a digital elevation model using laser scanning.

During analysis of novel digital elevation data in the early 2010s, a peculiar feature in the form of an almost north–south-oriented lineation was found near the town of Bollnäs in Sweden, approximately 250 km north of Stockholm. After additional investigation on the ground, a glacially induced fault was identified. This was surprising, since the location is more than 400 km south of the area with the prominent scarps of all the glacially induced faults known at that time.

As more faults were identified later in Sweden and Finland with this type of new data, a series of Postglacial Fault Symposia (2015 in Uppsala, Sweden; 2016 in Turku, Finland; 2018 in Kautokeino, Norway) were organized to provide a fruitful forum for the exchange of the newest research results.

In addition, the Postglacial Fault Drilling Project was initiated in 2010 through a workshop in Skokloster, Sweden, funded by the International Continental Scientific Drilling Program. It was recognized that a glacially induced fault represents a special kind of intraplate fault zone. The full drilling proposal, 'Drilling Active Faults in Northern Europe' (DAFNE), was approved in October 2019.

In 2016, in view of the many new results and the planned drilling, the participants of the Postglacial Fault Symposium decided to summarize the findings of the last 50 years up to the present day in a book to be entitled *Glacially-Triggered Faulting*. Two editors were proposed: Robert Lagerbäck and Odleiv Olesen.

Sadly, Robert Lagerbäck had to decline his editorship and passed away in August 2018. Robert Lagerbäck was employed at the Geological Survey of Sweden (SGU) and was the key researcher on the so-called postglacial faults in northern Fennoscandia for more than three decades. In the 1980s, Robert was one of the key persons to map these faults within the Nordkalott Project. With his death,

Cambridge University Press 978-1-108-49002-3 — Glacially-Triggered Faulting Edited by Holger Steffen , Odleiv Olesen , Raimo Sutinen Frontmatter <u>More Information</u>

xxii

Preface

we lost a renowned geologist, whose expertise was often missed during this book's preparation. We hope he would have liked the final product.

We would like to thank all authors and reviewers of the book and the chapters, and we thank the contributors to the *International Database of Glacially Induced Faults*, by Munier et al. (2020), which is available for download at the *PANGAEA* website, doi.org/10.1594/PANGAEA.922705.

This book could not have been edited without them. In addition, we are very grateful for the excellent assistance by Susan Francis and Sarah Lambert from Cambridge University Press during the preparation of this book.

We hope the reader will find this book the ideal reference in the field of glacially triggered faulting. It should also serve as the best comprehensive start for a new generation of scientists working on glacially induced faults.

And finally, during the writing of this book, the authors welcomed at least five new arrivals. Perhaps they will form the next generation of researchers investigating glacially induced faults. There is still much to do. Data collection and research will continue; there will be many more cloudless days in Northern Europe and elsewhere. The next time you see a small plane crossing the sky like a farmer tilling a field, imagine that it may be collecting the data that will help unravel another secret of glacially triggered faulting.

Robert Lagerbäck leading his 2012 fault excursion at the Lansjärv site, northern Sweden (Photo: Raimo Sutinen).