GLACIALLY-TRIGGERED FAULTING

Glacially triggered faulting describes movement of pre-existing faults caused by a combination of tectonic and glacially induced isostatic stresses. The most impressive fault scarps are found in Northern Europe, assumed to have been reactivated at the end of deglaciation. However, this view has been challenged as new faults have been discovered globally with advanced techniques such as LiDAR, and fault activity dating has shown several phases of reactivation thousands of years after deglaciation ended. This book summarizes the current state-of-the-art research in glacially triggered faulting, discussing the theoretical aspects that explain the presence of glacially induced structures and reviews the geological, geophysical, geodetic and geomorphological investigation methods. Written by a team of international experts, it provides the first global overview of confirmed and proposed glacially induced faults and provides an outline for modelling these stresses and features. It is a go-to reference for geoscientists and engineers interested in ice sheet–solid earth interaction.

HOLGER STEFFEN is a geophysicist by training who joined the Geodetic Infrastructure Department at Lantmäteriet, the Swedish Mapping, Cadastral and Land Registration Authority, in 2012 after working for several years as a postdoctoral researcher at universities in Germany, Canada and Sweden. His work deals with glacial isostatic adjustment modelling and corresponding acquisition and/or analysis of geodetic, geophysical and geologic observations. He chairs the Working Group of Geodynamics and Earth Observation of the Nordic Geodetic Commission.

ODLEIV OLESEN is a senior researcher at the Geological Survey of Norway with 40 years of professional experience, including management roles, extensive research and mapping activities. He has taught as Adjunct Professor in Applied Geophysics at the Norwegian University of Science and Technology.

RAIMO SUTINEN is a geo-consultant with 40 years’ experience in geoscience. He was previously a senior researcher at the Geological Survey of Finland, where he managed the project ‘Postglacial Faults’. He has more than 60 impact and 100 proceedings papers in remote sensing, soil physics and biogeochemistry. His recent research has focused on faults and earthquake-induced landforms.
GLACIALLY-TRIGGERED FAULTING

Edited by

HOLGER STEFFEN
Lantmäteriet

ODLEIV OLESEN
Geological Survey of Norway

RAIMO SUTINEN
Geological Survey of Finland
Contents

List of Figures page ix
List of Tables xv
List of Contributors xvi
Preface xxii

Part I Introduction 1

1 Glacially Triggered Faulting: A Historical Overview and Recent Developments 3
 (H. Steffen, O. Olesen, R. Sutinen)

2 Geomechanics of Glacially Triggered Faulting 20
 (R. Steffen, P. Wu, B. Lund)

Part II Methods and Techniques for Fault Identification and Dating 41

3 Earthquake-Induced Landforms in the Context of Ice-Sheet Loading and Unloading 43
 (P. B. E. Sanderson, R. Sutinen)

4 The Challenge to Distinguish Soft-Sediment Deformation Structures (SSDS) Formed by Glaciotectonic, Periglacial and Seismic Processes in a Formerly Glaciated Area: A Review and Synthesis 67
 (K. Müller, J. Winsemann, M. Pisarska-Jamroz, T. Lege, T. Spies, C. Brandes)
vi Contents

5 Glacially Induced Fault Identification with LiDAR, Based on Examples from Finland 89
 (J.-P. PALMU, A. OJALA, J. MATTILA, M. MARKOVAARA-KOIVISTO,
 T. RUSKEENIEMI, R. SUTINEN, T. BAUER, M. KEIDING)

6 Fault Identification from Seismology 100
 (N. GESTERMANN, T. PLENEFISCH)

7 Imaging and Characterization of Glacially Induced Faults Using Applied Geophysics 118
 (R. BECKEL, C. JUHLIN, A. MALEHMI, O. AHMADI)

8 Dating of Postglacial Faults in Fennoscandia 133
 (C. A. SMITH, A. OJALA, S. GRIGULL, H. MIKKO)

9 Proposed Drilling into Postglacial Faults: The Pärwie Fault System 151
 (M. ASK, I. KUKKONEN, O. OLESEN, B. LUND, Å. FAGERENG,
 J. RUTQVIST, J.-E. ROSBERG, H. LORENZ)

Part III Glacially Triggered Faulting in the Fennoscandian Shield 175

10 Seismicity and Sources of Stress in Fennoscandia 177
 (S. GREGERSEN, C. LINDHOLM, A. KORJA, B. LUND, M. USKI,
 K. OINONEN, P. H. VOSS, M. KEIDING)

11 Postglacial Faulting in Norway: Large Magnitude Earthquakes of the Late Holocene Age 198
 (O. OLESEN, L. OLESEN, S. GIBBONS, B. O. RUUD, F. HØGAAS,
 T. A. JOHANSEN, T. KVÆRNA)

12 Glacially Induced Faults in Sweden: The Rise and Reassessment of the Single-Rupture Hypothesis 218
 (C. A. SMITH, H. MIKKO, S. GRIGULL)

13 Glacially Induced Faults in Finland 231
 (R. SUTINEN, E. HYVÖNEN, M. MARKOVAARA-KOIVISTO,
 M. MIDDLETON, A. OJALA, J.-P. PALMU, T. RUSKEENIEMI,
 J. MATTILA)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Lateglacial and Postglacial Faulting in the Russian Part of the</td>
<td>246</td>
</tr>
<tr>
<td>Fennoscandian Shield</td>
<td></td>
</tr>
<tr>
<td>(S. Nikolaeva, A. Nikonov, S. Shvarev)</td>
<td></td>
</tr>
<tr>
<td>Part IV Glacially Triggered Faulting at the Edge and in the</td>
<td>261</td>
</tr>
<tr>
<td>Periphery of the Fennoscandian Shield</td>
<td></td>
</tr>
<tr>
<td>15 Lateglacial and Postglacial Faulting in Denmark</td>
<td>263</td>
</tr>
<tr>
<td>(P. B. E. Sandersen, S. Gregersen, P. Voss)</td>
<td></td>
</tr>
<tr>
<td>16 Glacially Induced Faults in Germany</td>
<td>283</td>
</tr>
<tr>
<td>(K. Müller, J. Winsemann, T. Tanner, T. Lege, T. Spies, C. Brandes)</td>
<td></td>
</tr>
<tr>
<td>17 Glacially Induced Faulting in Poland</td>
<td>304</td>
</tr>
<tr>
<td>(M. Pisarska-Jamroży, P. P. Woźniak, T. Van Loon)</td>
<td></td>
</tr>
<tr>
<td>18 Soft-Sediment Deformation Structures in the Eastern Baltic Region:</td>
<td>320</td>
</tr>
<tr>
<td>Implication in Seismicity and Glacially Triggered Faulting</td>
<td></td>
</tr>
<tr>
<td>(A. Bitinas, J. Lazauskiene, M. Pisarska-Jamroży)</td>
<td></td>
</tr>
<tr>
<td>Part V Glacially Triggered Faulting Outside Europe</td>
<td>339</td>
</tr>
<tr>
<td>19 The Search for Glacially Induced Faults in Eastern Canada</td>
<td>341</td>
</tr>
<tr>
<td>(J. Adams, G. R. Brooks)</td>
<td></td>
</tr>
<tr>
<td>20 Glacially Induced Faulting in Alaska</td>
<td>353</td>
</tr>
<tr>
<td>(J. Sauber, C. Rollins, J. T. Freymueller, N. A. Ruppert)</td>
<td></td>
</tr>
<tr>
<td>21 Indications on Glacially Triggered Faulting in Polar Areas</td>
<td>366</td>
</tr>
<tr>
<td>(H. Steffen, R. Steffen)</td>
<td></td>
</tr>
<tr>
<td>Part VI Modelling of Glacially Induced Faults and Stress</td>
<td>381</td>
</tr>
<tr>
<td>22 Glacial Isostatic Adjustment Models for Earthquake Triggering</td>
<td>383</td>
</tr>
<tr>
<td>(P. Wu, R. Steffen, H. Steffen, B. Lund)</td>
<td></td>
</tr>
</tbody>
</table>
vi

Contents

23 Crustal-Scale Stress Modelling to Investigate Glacially Triggered Faulting 402
 (S. Gradmann, R. Steffen)

Part VII Outlook 417

24 Future Research on Glacially Triggered Faulting and Intraplate Seismicity 419
 (O. Olesen, H. Steffen, R. Sutinen)

Index 429

A International database of Glacially-Induced Faults
 (for download at Pangaea.de)
 (R. Munier et al., 2020)

Colour plates appear between 170 and 171.
Figures

1.1 Oblique aerial photograph of the fault scarp developed along the Máze Fault System constituting the central part of the Stuoragurra Fault Complex in Norway

1.2 Glacially induced faults and selected locations of suggested palaeoseismicity in Northern and Central Europe

2.1 Conceptual figure presenting the stresses acting on a fault

2.2 Horizontal stress (σ_{xx}) distribution during glacial loading

2.3 Schematic figure showing the effect of the background stress in combination with the glacially induced stress on the behaviour of stress-relief features

2.4 Schematic presentation of the stress settings during a glacial cycle in a thrust-faulting stress regime

2.5 Sketch of the change in Coulomb failure stress (ΔCFS)

2.6 Schematic presentation of the stress settings during a glacial cycle in a normal-faulting stress regime

2.7 Schematic presentation of the stress settings during a glacial cycle in a strike-slip-faulting stress regime

3.1 A hill-shaded LiDAR digital elevation model (DEM) of the Ruokojärvi–Pasmajärvi glacially induced fault

3.2 Selected area of the Tinglev outwash plain, Denmark

3.3 Tinglev outwash plain, Denmark

3.4 A N-S threshold on the Tinglev outwash plain between Vongshøj and Abild hill-islands

3.5 Hill-shaded LiDAR DEM of palaeolandslides from Levi Fell in Kittilä, Finland

3.6 a) LiDAR DEM images of the Pulju moraine field in Sevetti–Näätämöjoki area; b) mass flow deposits in central Finnish Lapland; c) aerial photo showing Maskevarri Ráhppát in Finnmark, Norway;
d) LiDAR images of esker collapse morphologies next to the Pasmajärvi GIF in western Finnish Lapland; e,f) squeeze-up ridges 20–40 km down-ice from the Vaalajärvi–Risttonmännikö GIF Complex in central Finnish Lapland

3.7 a) LiDAR DEM showing liquefaction craters on drumlins in Kuusamo, SE Finnish Lapland; b) liquefaction spreads deforming the ice-streamlined landforms in Kuusamo, SE Finnish Lapland; c) liquefaction bowls next to Naamivittikko GIF in Kolari, Finnish Lapland; d) LiDAR DEM showing a part of the Lainiobågen

4.1 SSDS induced by different trigger mechanisms
4.2 Style of truncation of lamination within the deformed sediment (convolute bedding)
4.3 Typical SSDS formed by glaciotectonics, periglacial processes and earthquakes
5.1 Coverage of LiDAR data for Finland, Norway and Sweden in 2019
5.2 Example for data type comparison from Riikonkumpu area
5.3 Methodology for extraction of continuous vertical offset profiles
5.4 Riikonkumpu Fault System
5.5 Landslide detection from LiDAR DEMs
6.1 Recording of an earthquake close to Constance, South Germany, on 29 July 2019
6.2 Theoretical travel time curves for P and S waves and corresponding seismogram sketches
6.3 Example of a frequency-magnitude distribution of seismic events within a defined region with a b-value of 1.2
6.4 Block diagram showing movement during an earthquake and depiction of strike, dip and rake
6.5 Basic types of fault geometries and styles of faulting together with the corresponding beach ball representation
6.6 Representation of the double couple (DC)
6.7 Fault and hypocentre together with the radiation of the double couple into the different quadrants of compressional and dilatational motion
6.8 Example of focal mechanism determination from observations of P polarities and P/S amplitude ratios
7.1 Distribution of glacially induced fault (GIF) scarps in Scandinavia and location of the case studies
7.2 Reflection seismic images of the Pärvie Fault
7.3 Refraction seismic imaging of GIFs
List of Figures

7.4 Ground-penetrating radar (GPR) profile across the Stuoragurra Fault 122
7.5 Geoelectric imaging of GIFs 123
7.6 2D resistivity section from electromagnetic measurements across the Bollnäs Fault 124
7.7 Aeromagnetic map over the Lansjärv area 125
7.8 Reflection seismic image of the Burträsk Fault 128
7.9 Merged reflection seismic image across the Suasselkä Fault 129
8.1 Map of northern Fennoscandia with known postglacial fault systems 134
8.2 A) The north-west facing fault scarp marked by the black arrows cross-cuts not only the esker, which formed subglacially, but also the palaeoshorelines of an ice-dammed lake, which formed subaerially during deglaciation. B) The less distinct west facing fault scarp marked by the black arrows does not cross-cut the esker 135
8.3 Fault scarps cross-cutting glacial landforms 137
8.4 The Lauhavuori GIF cross-cuts palaeoshorelines 138
8.5 The Lansjärv Fault scarp cross-cuts palaeoshorelines 139
8.6 The sediment stratigraphy and structures at the Riikonkumpu site 141
8.7 Faulted varves and a turbidite layer at Nurmijärvi, Finland 143
8.8 Lithological composite log from the Sotka landslide in Kittilä, Finland 145
8.9 Sampling sites where direct dating of the Pärwie Fault was attempted by the Geological Survey of Sweden 146
9.1 Map of northern Sweden with locations of postglacial fault scarps, palaeolandslides, the highest coastline and microseismicity 152
9.2 Bedrock geological map 155
9.3 Epicentral map and depth distribution of the 235 best located earthquakes on the Pärwie Fault System 2007–2010 156
9.4 The migrated section with earthquake locations from events located within 10 km perpendicular distance from the profile in north and south 158
9.5 Terrain slope map showing locations of the drill sites and their proximity to the Kiruna mine (KIR) 160
9.6 Reflection seismic profile with planned borehole trajectories 161
10.1 Major tectonic units, deformation zones and recent seismicity of Fennoscandia 178
10.2 Seismicity in Fennoscandia 180
10.3 Seismicity near the postglacial faults in northern Fennoscandia 183
10.4 Recent seismicity and postglacial uplift in Fennoscandia 186
10.5 Contemporary stress field in Fennoscandia 187
List of Figures

11.1 Postglacial faults, topography, bathymetry, earthquakes and present-day uplift in northern and central Fennoscandia 200
11.2 Simplified geological map of Finnmarksvidda 201
11.3 Dip-moveout corrected seismic stack across the Mierojávri-Sværholt shear zone and the postglacial Máze Fault System 203
11.4 Outline of the trench across the Máze Fault System in the southern part of the Juŋkorajeaggi swamp 206
11.5 Resistivity (ERT) profile located eastwards from the southern shore of lake Nilorjávri 207
11.6 Focal depths and magnitudes of the earthquakes in Figure 11.2 projected into a profile perpendicular to the postglacial Stuoragurra Fault Complex 210
12.1 Locations and names of glacially induced fault scarps in Sweden 219
12.2 LiDAR-derived shaded relief imagery (Lantmäteriet, 2020) of the northern segment of the Merasjärvi Fault scarp 223
12.3 LiDAR-derived shaded relief imagery (Lantmäteriet, 2020) of the Lainio Fault scarp 224
12.4 LiDAR-derived shaded relief imagery (Lantmäteriet, 2020) of a segment of the Pärvice Fault scarp 225
12.5 LiDAR-derived shaded relief imagery (Lantmäteriet, 2020) of two parallel segments of the Pärvice Fault 226
12.6 LiDAR-derived shaded relief imagery (Lantmäteriet, 2020) of the Lansjärvi Fault 228
13.1 Glacially induced fault segments, systems and complexes in Finland 232
13.2 Pasmajärvi GIF System with trenched Ruokojärvi Fault ramp 236
13.3 Venejärvi–Jauhojärvi GIF System with trenched Naamivittikko Fault ramp 237
13.4 Isovaara–Riiikonkumpu GIF System showing parallel scarps at Riiikonkumpu site 238
13.5 Suasselkä GIF System with the Suaspalo trenching site provides evidence of multiple slip events 240
13.6 Vaalajärvi–Ristonmäenikkiö GIF System at Ristonmäenikkiö trenching site 241
14.1 Location of seismic lineaments and Late- and postglacial faults in the eastern part of the Fennoscandian crystalline shield 248
14.2 A section showing displacements of the Late Pleistocene and Holocene loose deposits on the sea bottom of the Teriberskaya Bay 249
List of Figures

14.3 Features of structure and manifestations of the Kandalaksha seismic lineament 251
14.4 Northern segment of the Chuna Fault (view of the north) 252
14.5 a) Location of the studied lake and Lateglacial fault and b) stratigraphy of bottom sediments in the area west of Lake Babinskaya Imandra 253
14.6 Key plot of the Vuoksi Fault Zone (VFZ) neotectonic activity study with manifestations in bedrock and sediment cover 255
15.1 Earthquake map of Denmark 1929–2017 265
15.2 Depth of earthquakes in and around Denmark 266
15.3 'The Hvorslev ‘fracture valleys’ 268
15.4 Locations of selected examples of Late- and postglacial deformations 269
15.5 Nr. Lyngby topographic analysis 270
15.6 Tinglev outwash plain 272
15.7 Seismic section Langeland 273
15.8 Seismic section Copenhagen 275
16.1 Map of Germany 284
16.2 A) Tectonostratigraphic units of Germany. B) Overview of the sedimentary basins in the study area 286
16.3 Tectonic activity in northern Germany 296
17.1 Tectonic division of Poland 306
17.2 Seismotectonic risk in Poland 307
17.3 The Belchatów site in central Poland 308
17.4 The border zone between the provinces of Warmia and Mazury in north-east Poland 310
17.5 The Siekierki site in NW Poland 311
17.6 The Ujście site in W Poland and the Rzucewo site in N Poland with deformed sediments 312
18.1 The major faults, seismic activity and distribution of soft-sedimentary deformation structures of possibly seismic origin in the Eastern Baltic Region 322
18.2 Soft-sediment deformation structures induced by palaeoseismic events in Latvia, Lithuania and Estonia 328
18.3 Sedimentary succession near Zaslavl (western part of Belarus) with Eemian Interglacial and Early Weishselian sediments 331
19.1 Map of Eastern Canada showing the location of historical earthquake epicentres, major seismic zones and fault features 342
19.2 Oblique shaded relief digital elevation model (DEM) showing the Holy Grail scarp, north-central Manitoba 344
xiv List of Figures

19.3 Shaded relief map showing Round Lake, the approximate location of the fault features and the mapped location of Long Lake Fault and associated bedrock lineament 346

19.4 Cartoon of example showing how 5 m of reverse slip on a bedrock fault can cause either plastic bed thinning or low-angle normal faulting in an overlying sedimentary bed 347

20.1 Overview of study region and locations of major glaciers 354

20.2 Post-1770 ice loss, related stress changes and recent earthquakes in Southeast Alaska 355

20.3 St. Elias region: Schematic diagram of calculated seasonal surface displacements and changes in Coulomb stress 359

20.4 Total energy released by tectonic events per month over four different time periods 360

20.5 Best-fitting stress tensors for events in the Icy Bay area for all months (left), May–August only (middle) and November–February only (right) 361

21.1 Epicentres of earthquakes in the Boothia Peninsula area in Northern Canada 368

21.2 Epicentres of earthquakes in Greenland 370

21.3 Map of Iceland with the location of the Kerlingar Fault 372

21.4 Epicentres of earthquakes in Svalbard 373

21.5 Epicentres of earthquakes in Antarctica 374

22.1 Change in Coulomb failure stress for a circular ice sheet 390

22.2 Change in Coulomb failure stress for Northern Europe 392

22.3 Today’s change in Coulomb failure stress for Northern Europe in comparison to historic and recent seismicity and the location of glacially induced faults 393

22.4 Fault slip obtained from a numerical simulation 394

23.1 Schematic presentation of the stress field components 404

23.2 Global compilation of k-values from >300 m depth 405

23.3 Sources of primary and secondary tectonic stresses in the lithosphere 407

23.4 Glacially induced horizontal stresses 411
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Landforms related to glacially induced faulting</td>
<td>47</td>
</tr>
<tr>
<td>9.1</td>
<td>Planned on-site activities of the DAFNE project during years 1–3 (Y1–Y3)</td>
<td>162</td>
</tr>
<tr>
<td>11.1</td>
<td>Summary of properties of postglacial faults in Norway</td>
<td>209</td>
</tr>
<tr>
<td>12.1</td>
<td>Summary of major glacially induced fault scarps in Sweden</td>
<td>220</td>
</tr>
<tr>
<td>13.1</td>
<td>Glacially induced fault complexes, systems and segments in Finland</td>
<td>234</td>
</tr>
<tr>
<td>16.1</td>
<td>Potential GIFs in northern Germany</td>
<td>291</td>
</tr>
<tr>
<td>18.1</td>
<td>Soft-sediment deformation structures (SSDS) in the Eastern Baltic Region</td>
<td>325</td>
</tr>
<tr>
<td>19.1</td>
<td>Listing of candidate glacially induced faults ranked as ‘probable’</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>by Brooks & Adams (2020)</td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>Parameters of the simple 1D model in Figure 22.1</td>
<td>391</td>
</tr>
</tbody>
</table>
Contributors

John Adams
Canadian Hazards Information Service, Natural Resources Canada, Ottawa, Ontario, Canada

Omid Ahmadi
AFRY, Solna, Sweden

Maria Ask
Department of Civil, Environmental and Natural Resources Engineering, Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden

Tobias Bauer
Department of Civil, Environmental and Natural Resources Engineering, Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden

Ruth Beckel
Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Albertas Bitinas
Nature Research Centre, Vilnius, Lithuania

Christian Brandes
Institute of Geology, Leibniz University Hannover, Hannover, Germany

Gregory R. Brooks
Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada

Åke Fagereng
School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
List of Contributors

Jeffrey T. Freymueller
Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA

Nicolai Gestermann
Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Steven J. Gibbons
NORSAR, Kjeller, Norway
Norwegian Geotechnical Institute, Oslo, Norway

Sofie Gradmann
Geological Survey of Norway (NGU), Geophysics Section, Trondheim, Norway

Søren Gregersen
Geological Survey of Denmark and Greenland, København K, Denmark

Susanne Grigull
Swedish Nuclear Fuel and Waste Management Company (SKB) Solna, Sweden, Sweden
Geological Survey of Sweden, Uppsala, Sweden

Fredrik Høgaas
Geological Survey of Norway (NGU), Quaternary Geology Section, Trondheim, Norway

Eija Hyvönen
Geological Survey of Finland, Rovaniemi, Finland

Tor Arne Johansen
Department of Earth Science, University of Bergen, Bergen, Norway

Christopher Juhlin
Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Marie Keiding
Department of Geophysics, Geological Survey of Denmark and Greenland, København K, Denmark

Annakaisa Korja
Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, Helsinki, Finland

Ilmo Kukkonen
Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland

Tormod Kværna
NORSAR, Kjeller, Norway
List of Contributors

Jurga Lazauskienė
Department of Geology and Mineralogy, Institute of Geosciences, Vilnius University, Vilnius, Lithuania

Thomas Lege
Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Conrad Lindholm
SeismoConsult, Vittenbergvn, Fjellhamar, Norway

A. J. (Tom) van Loon
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China

Henning Lorenz
Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Björn Lund
Swedish National Seismic Network, Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Alireza Malehmir
Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Mira Markovaara-Koivisto
Geological Survey of Finland, Espoo, Finland

Jussi Mattila
Rock Mechanics Consulting Finland Oy, Vantaa, Finland

Maarit Middleton
Geological Survey of Finland, Rovaniemi, Finland

Henrik Mikko
Geological Survey of Sweden, Uppsala, Sweden

Katharina Müller
Institute of Geology, Leibniz University Hannover, Hannover, Germany

Raymond Munier
Terra Mobile Consultants AB, Stockholm, Sweden

Svetlana B. Nikolaeva
Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk region, Russia
List of Contributors

Andrey A. Nikonov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Kati Oinonen
Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, Helsinki, Finland

Antti E. K. Ojala
Geological Survey of Finland, Espoo, Finland
Department of Geography and Geology, University of Turku, Finland

Odleiv Olesen
Geological Survey of Norway (NGU), Geophysics Section, Trondheim, Norway

Lars Olsen
Geological Survey of Norway (NGU), Quaternary Geology Section, Trondheim, Norway

Jukka-Pekka Palmu
Geological Survey of Finland, Espoo, Finland

Małgorzata (Gosia) Pisarska-Jamroży
Institute of Geology, Adam Mickiewicz University, Poland

Thomas Plenefisch
Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Chris Rollins
School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Jan-Erik Rosberg
Engineering Geology LTH, Lund University, Lund, Sweden

Natalia A. Ruppert
Alaska Earthquake Information Center, Geophysical Institute, University of Alaska, Fairbanks, Alaska, USA

Timo Ruskeeniemi
Geological Survey of Finland, Espoo, Finland

Jonny Rutqvist
Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Bent Ole Ruud
Department of Earth Science, University of Bergen, Bergen, Norway
List of Contributors

Peter B. E. Sandersen
Geological Survey of Denmark and Greenland, Department of Groundwater and Quaternary Geology Mapping, Århus C, Denmark

Jeanne Sauber
Geodesy and Geophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Sergey V. Shvarev
Institute of Geography, Russian Academy of Sciences, Moscow, Russia
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Colby A. Smith
Geological Survey of Sweden, Uppsala, Sweden

Thomas Spies
Federal Institute for Geosciences and Natural Resources (BGR), Geozentrum Hannover, Hannover, Germany

Holger Steffen
Lantmäteriet, Geodetic Infrastructure, Gävle, Sweden

Rebekka Steffen
Lantmäteriet, Geodetic Infrastructure, Gävle, Sweden

Raimo Sutinen
Geological Survey of Finland, Rovaniemi, Finland

David C. Tanner
Leibniz Institute for Applied Geophysics (LIAG), Hannover, Germany

Marja Uski
Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, Helsinki, Finland

Peter H. Voss
Geological Survey of Denmark and Greenland, København K, Denmark

Jutta Winsemann
Institute of Geology, Leibniz University Hannover, Hannover, Germany

Piotr Pawe Woźniak
Department of Geomorphology and Quaternary Geology, University of Gdańsk, Gdańsk, Poland

Patrick Wu
Department of Geoscience, University of Calgary, Calgary, Canada
Preface

On cloudless summer days in Northern Europe one may spot a small plane crossing the sky like a farmer tilling a field. This plane may be collecting data for a digital elevation model using laser scanning. During analysis of novel digital elevation data in the early 2010s, a peculiar feature in the form of an almost north–south-oriented lineation was found near the town of Bollnäs in Sweden, approximately 250 km north of Stockholm. After additional investigation on the ground, a glacially induced fault was identified. This was surprising, since the location is more than 400 km south of the area with the prominent scarp of all the glacially induced faults known at that time.

As more faults were identified later in Sweden and Finland with this type of new data, a series of Postglacial Fault Symposia (2015 in Uppsala, Sweden; 2016 in Turku, Finland; 2018 in Kautokeino, Norway) were organized to provide a fruitful forum for the exchange of the newest research results.

In addition, the Postglacial Fault Drilling Project was initiated in 2010 through a workshop in Skokloster, Sweden, funded by the International Continental Scientific Drilling Program. It was recognized that a glacially induced fault represents a special kind of intraplate fault zone. The full drilling proposal, ‘Drilling Active Faults in Northern Europe’ (DAFNE), was approved in October 2019.

In 2016, in view of the many new results and the planned drilling, the participants of the Postglacial Fault Symposium decided to summarize the findings of the last 50 years up to the present day in a book to be entitled Glacially-Triggered Faulting. Two editors were proposed: Robert Lagerbäck and Odleiv Olesen.

Sadly, Robert Lagerbäck had to decline his editorship and passed away in August 2018. Robert Lagerbäck was employed at the Geological Survey of Sweden (SGU) and was the key researcher on the so-called postglacial faults in northern Fennoscandia for more than three decades. In the 1980s, Robert was one of the key persons to map these faults within the Nordkalott Project. With his death,
we lost a renowned geologist, whose expertise was often missed during this book’s preparation. We hope he would have liked the final product.

We would like to thank all authors and reviewers of the book and the chapters, and we thank the contributors to the *International Database of Glacially Induced Faults*, by Munier et al. (2020), which is available for download at the PANGAEA website, doi.org/10.1594/PANGAEA.922705.

This book could not have been edited without them. In addition, we are very grateful for the excellent assistance by Susan Francis and Sarah Lambert from Cambridge University Press during the preparation of this book.

We hope the reader will find this book the ideal reference in the field of glacially triggered faulting. It should also serve as the best comprehensive start for a new generation of scientists working on glacially induced faults.

And finally, during the writing of this book, the authors welcomed at least five new arrivals. Perhaps they will form the next generation of researchers investigating glacially induced faults. There is still much to do. Data collection and research will continue; there will be many more cloudless days in Northern Europe and elsewhere. The next time you see a small plane crossing the sky like a farmer tilling a field, imagine that it may be collecting the data that will help unravel another secret of glacially triggered faulting.

Robert Lagerbäck leading his 2012 fault excursion at the Lansjärv site, northern Sweden (Photo: Raimo Sutinen).