

Vibration Monitoring of Induction Motors

Master the art of vibration monitoring of induction motors with this unique guide to on-line condition assessment and fault diagnosis, building on the author's 50 years of investigative expertise.

It includes:

- Robust techniques for diagnosis of a wide range of common faults, including shaft
 misalignment and/or soft foot, rolling element bearing faults, sleeve bearing faults,
 magnetic and vibrational issues, resonance in vertical motor drives and vibration
 and acoustic noise from inverters.
- Detailed technical coverage of 30 real-world industrial case studies, from initial vibration spectrum analysis through to fault diagnosis and final strip-down.
- An introduction to real-world vibration spectrum analysis for fault diagnosis, and practical guidelines to reduce bearing failure through effective grease management.

This definitive book is essential reading for industrial end users, engineers and technicians working in motor design, manufacturing and condition monitoring. It will also be of interest to researchers and graduate students working on condition monitoring.

William T. Thomson is the Director of EM Diagnostics Ltd, and a former Professor of Electrical Machines at Robert Gordon University. He has over 50 years of experience in condition monitoring of induction motor drives, and is a Senior Member of the IEEE, a Chartered Engineer and a Fellow of the IET.

Vibration Monitoring of Induction Motors

Practical Diagnosis of Faults via Industrial Case Studies

WILLIAM T. THOMSON

EM Diagnostics Ltd, Scotland

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108489973

DOI: 10.1017/9781108784887

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Thomson, William T., 1946- author.

Title: Vibration monitoring of induction motors: practical diagnosis of faults via industrial case studies / William T. Thomson, EM Diagnostics Ltd, Scotland.

Description: First edition. | Cambridge ; New York, NY : Cambridge University Press, 2020. | Includes index.

Identifiers: LCCN 2020007147 (print) | LCCN 2020007148 (ebook) | ISBN 9781108489973 (hardback) | ISBN 9781108784887 (epub)

Subjects: LCSH: Electric motors, Induction–Vibration. | Electric machinery–Monitoring. Classification: LCC TK2785 .T463 2020 (print) | LCC TK2785 (ebook) | DDC 621.46–dc23 LC record available at https://lccn.loc.gov/2020007147

LC ebook record available at https://lccn.loc.gov/2020007148

ISBN 978-1-108-48997-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface p. About the Author				
	Ackr	iowledg	rements	xix	
	Biog	raphies	s of Personnel in the Acknowledgements	XX	
	Nom	enclatu	re	xxii	
	Acre	nyms a	nd Abbreviations	xxiv	
	Rele	vant Un	nits of Equivalence Useful for this Book	xxvi	
1	Vibra	ation Mo	onitoring of Induction Motors and Case Histories on Shaft		
	Misalignment and Soft Foot				
	1.1	Introd	uction	1	
		1.1.1	Overview of Causes of Vibration Problems in Induction		
			Motors	2	
		1.1.2	Overview of Shaft Misalignment	7	
		1.1.3	Vibration due to Shaft Misalignment and/or Soft Foot	10	
		1.1.4	Introductory Industrial Case History – Normal Shaft Misalignment		
			and no Soft Foot in a 230 kW/308 H.P. SCIM Pump Drive	12	
		1.1.5	Conclusions	19	
	1.2 Industrial Case History – Diagnosis of Misalignment in a 554 kW/743H.P. SCIM Driving a Gas Recirculating Fan				
		1.2.1	Introduction	19	
		1.2.2	Overall Vibration Measurements	21	
		1.2.3	Vibration Spectrum Analysis Detected Abnormal		
			Misalignment	23	
		1.2.4	Main Conclusions	23	
	1.3	Indust	rial Case History - Diagnosis of Misalignment on a 7.5 kW/10 H.P.		
		SCIM	- Pump Drive used to Lubricate Sleeve Bearings in a 35 MVA		
		Genera	ator on an Offshore Oil Production Platform	27	
		1.3.1	Introduction	27	
		1.3.2	Overall Vibration Results	27	
		1.3.3	Vibration Spectrum Analysis	29	
		1.3.4	Conclusions	31	

vi **Contents**

2

1.4	, and the second se			
	Misalignment in a 110 kW/147 H.P. SCIM Pump Drive	31		
	1.4.1 Introduction	31		
	1.4.2 Vibration Analysis on Repaired Motor in Repair Shop	32		
	1.4.3 On-Site Vibration Analysis during a Coupled Run of			
	Repaired Motor	32		
	1.4.4 On-Site Vibration Analysis during an On-Site Uncoupled Run of			
	Repaired Motor	36		
	1.4.5 On-Site Vibration Analysis during a Coupled Run after Re-			
	alignment of the Drive Train	36		
	1.4.6 Conclusions	37		
1.5	Industrial Case History – Vibration Spectrum Analysis (VSA) Diagnosed			
	Soft Foot and Abnormal Shaft Misalignment in a 180 kW/240 H.P. SCIM			
	Pump Drive	37		
	1.5.1 Summary	37		
	1.5.2 Overall Vibration Measurements and Vibration Spectrum Analysis			
	(VSA) – Motor Run Uncoupled and Coupled	37		
	1.5.3 Overall R.M.S. Velocities on the Motor as a Function of			
	Slackening and Tightening the Motor's Fixing Bolts During an			
	Uncoupled Run – Soft Foot was Diagnosed	39		
	1.5.4 Overall Vibration Measurements and VSA – Comparison between			
	before and after Removal of Misalignment and Soft Foot	41		
	1.5.5 Conclusions	42		
Refe	erences and Further Reading	42		
Rolli	ing Element Bearings for Induction Motors	47		
2.1	71 0			
	Motors	47		
	2.1.1 Basic Construction of a Deep Groove Ball Bearing	47		
2.2	, e	53		
	2.2.1 Main Operational Features of a Cylindrical Roller Element			
	Bearing	54		
2.3	Angular Contact and 4-Point Contact Ball Bearings	55		
	2.3.1 Angular Contact Ball Bearings	55		
	2.3.2 Main Operational Features of an Angular Contact Ball			
	Bearing	57		
	2.3.3 4-Point Angular Contact Ball Bearings – The QJ Series	57		
2.4	Miscellaneous Rolling Element Bearings	58		
	2.4.1 Tapered Roller Bearings	58		
	2.4.2 Spherical Roller Bearings	59		
2.5	Bearing Arrangements	61		
Refe	erences	61		

			Contents	Vii		
3	Туре	es of De	fects in Rolling Element Bearings	63		
	3.1	Bearin	ng Life and Fatigue	63		
		3.1.1	Prediction of the L_{10} Life of a Rolling Element Bearing	63		
		3.1.2	Fatigue Failure	65		
		3.1.3	Excessive Loads	66		
		3.1.4	False Brinelling	66		
		3.1.5	True Brinelling	67		
		3.1.6	Skidding or Slipping Tracks	67		
		3.1.7	Contamination – Corrosion – Fretting	68		
		3.1.8	Shaft Currents	68		
	Refe	erences		73		
4	Intro	duction	to Vibration Spectrum Analysis to Diagnose Faults in Rolling			
	Elen	nent Bea	arings in Induction Motors	75		
	4.1	Summ	nary	75		
		4.1.1	Liquid Natural Gas (LNG) Processing Plant	75		
	4.2	Vibrat	tion Analysis to Diagnose Bearing Faults	78		
		4.2.1	Idealized Stages of Bearing Degradation and Vibration Analysis			
			Techniques	78		
		4.2.2	Vibration Spectrum Analysis (VSA) as Applied in the Industrial			
			Case Histories	79		
	4.3	Flow	Chart for Vibration Measurements and VSA to Diagnose Bearing			
		Defect Frequencies from Faulty Rolling Element Bearings				
		in SC	IMS	81		
	4.4	Introd	uctory Industrial Case History (1988) – Illustration of a VSA			
		Procee	dure to Diagnose Bearing Defect Frequencies in SCIMs	83		
		4.4.1	Stage One – Drive Train and Nameplate Data	83		
		4.4.2	•			
			Accelerometers	83		
		4.4.3	Stage Three – Select an Accelerometer	83		
		4.4.4	Stage Four – Predict the Bearing Defect Frequencies at the Full-			
			Load Rated Speed	83		
		4.4.5	Overall R.M.S. Velocities and VSA to Detect the 1X Frequency			
			Component and the Bearing Frequencies using Velocity versus			
			Frequency Spectra	84		
	4.5	Concl		87		
	Refe	erences		88		
5	Indu	strial C	ase Histories on VSA to Diagnose Cage Faults in Rolling Element			
		rings of		90		
	5.1	Introd		90		
		5.1.1	Motor Data and Positions for Vibration Measurements	90		
		5.1.2	Overall Velocity Levels and VSA	92		
		5.1.3	Inspection of the NDE Bearing	95		
		5.1.4	-	95		

viii Contents

			A – Photos of the Faulty Bearing Parts	96
	5.2		rial Case History – VSA Detected a Broken Cage in a Polyamide	
		•	lrical Roller Bearing in a 75 kW/100 H.P. SCIM	98
		5.2.1	Introduction	98
		5.2.2		99
			VSA Predicted a Broken Cage in the DE Bearing	100
		5.2.4		101
		5.2.5	Conclusions	101
	Refe	erence		102
3	Indu	strial Ca	ase Histories – VSA Detected Inner and Outer Race Faults in Rolling	
	Elen	nent Bea	arings in SCIMS	103
	6.1	Introdu	uction	103
		6.1.1	Overall Vibration Measurements	103
		6.1.2	Vibration Spectrum Analysis	106
			Visual On-Site Inspection of the NDE of Motor B	107
		6.1.4	Interpretation of Logarithmic Spectrum and Predictions	107
		6.1.5		108
	6.2	Industr	rial Case History – VSA Diagnosed Outer Race and Ball Defects in	
			B Single-Row Angular Contact Ball Bearing in the NDE of a	
			al 1193 kW/1600 H.P. SCIM Driving a Thruster Propeller	109
			Introduction	109
		6.2.2	Vibration Measurements and Overall Velocity Levels	110
			Vibration Spectrum Analysis	113
			Inspection – Photos – Conclusions	114
	App		A Prediction of Bearing Defect Frequencies	115
	6.3		rial Case History – VSA Diagnosed Outer Race Defects in a Rolling	
			nt Bearing via Vibration Measurements on the Drive End Frame of	
			kW/215 H.P. SCIM Driving a Boiler Forced Draft Fan	115
		6.3.1	_	115
		6.3.2	On-Site Vibration Measurements and Spectrum Analysis before	
			New Bearings were Fitted	117
		6.3.3	Inspection of DE Bearing	119
			Conclusions	120
	6.4		rial Case History – VSA of Vibration Measured on the Outer Frame	120
	0		ted an Outer Race Bearing Defect in a Vertically Mounted	
			7/100 H.P. SCIM	120
		6.4.1	Summary	120
		6.4.2	Overall Vibration Velocity Measurements	121
		6.4.3	Vibration Spectrum Analysis – Diagnosis of <i>BPFO</i>	123
		6.4.4	Conclusion and Recommendations	124
			Vibration Analysis Predicted Misalignment in Drive Train B	124

			Contents	ix
7			ase Histories – VSA Diagnosed False Brinelling and Problems	
	_		ll Roller Bearings in SCIMs	127
	7.1			127
		7.1.1	Motor Data and Overall Vibration Velocity Measurements	127
		7.1.2	Diagnosis of Bearing Defect Frequencies	129
		7.1.3	Conclusions	131
	7.2		rial Case History - VSA Diagnosed Skidding from an Extra	
		_	ity Cylindrical Roller Bearing (N234E M C3) in a 225 kW/300	
		H.P. S		133
			Historical Perspective and Summary	133
		7.2.2	Vibration Measurements before and after New Bearings were	
			Fitted	133
	7.3		asions	138
	Refe	rences		139
8	Indu	strial Ca	ase Histories on VSA to Diagnose Miscellaneous Faults in Rolling	
	Elem	ent Bea	rings in SCIMS	140
	8.1	VSA I	Detected Corroded Deep Groove Ball Bearing in Vertically Mounted	
		1.5 kW	V/2 H.P. SCIMs	140
		8.1.1	Motor Data and Description of Installation Layout	141
		8.1.2	Vibration Measurements	141
		8.1.3	Inspection of the Motor and DE Bearing	147
		8.1.4	Proposed New Motor Design	148
		8.1.5	Conclusions	150
	8.2	Industr	rial Case History - Envelope Analysis used by a Vibration Sub-	
		Contra	ctor Produced a False Diagnosis of a Cage Fault in a Cylindrical	
		Roller	Element Bearing in a 225 kW/300 H.P. SCIM	152
		8.2.1	Introduction	152
		8.2.2	Nameplate Data and Construction of the Motor	153
		8.2.3	Vibration Measurements and VSA Applied to the SCIM before	
			Strip-Down and Inspection of the DE Bearing	156
		8.2.4	Conclusions	159
	8.3	Bearin	g Failures in 800 kW/1072 H.P. SCIMs Driving Sulphate Removal	
		Pumps	(SRP) and a FAT on Repaired Motor	159
		8.3.1	Catastrophic Bearing Failure and Broken Shaft	159
		8.3.2	RCFA of a Faulty 6316 C3 Bearing and FAT of the Repaired	
			Motor (B) with New Bearings	162
		8.3.3	Conclusions	164
	8.4	Industr	rial Case History – False Brinelling and FAT of an 800 kW/1072	
		H.P. S	CIM and Attenuation of Vibration between the Bearing Housing	
		and the	e Outer Periphery of the End Frame	166
		8.4.1	Summary	166
		8.4.2	Vibration Factory Acceptance Test (FAT) of	
			Repaired Motor	169

x Contents

		8.4.3	Attenuation of Bearing Defect Frequencies	171
		8.4.4	Conclusions and Final Outcome	173
	Refe	rences		174
9	Indus	strial Ca	ase Histories on Vibration Measurements and Analysis Applied	
			luction Motors with Sleeve Bearings	175
	9.1	-	uction and Basic Operation of a Sleeve Bearing	175
		9.1.1		
			Sleeve Bearing	177
		9.1.2	Brief Overview of Operational Problems with Sleeve	
			Bearings	180
	9.2	Introd	uctory Case History – Vibration Factory Acceptance Test of a New	
			kW/9115 H.P. SCIM	182
			Measurement of Shaft Displacement	183
			Motor Nameplate Data and Vibration Test Specification	185
		9.2.3	•	
			Bearing Housing	186
		9.2.4	No-Load FAT Results from Shaft Displacement Probe	
			Measurements	189
		9.2.5	Full-Load Shaft Displacement Results	190
	9.3		rial Case History – Analysis of Shaft Displacement and Subsequent	
			Down Inspections Diagnosed Faults in a Journal Bearing of a 6250	
			380 H.P. Slip Ring Induction Motor	192
			Background	192
			On-Site Operation and Motor Nameplate Data	193
			Deliverables and Vibration Test Results	194
		9.3.4		
			Shaft Displacement	198
		9.3.5	Shaft Displacement with the IP Rope Seals Removed from the DE	
			and NDE	200
		9.3.6		
			NDE – Full-Load Heat Run	200
		9.3.7		200
	9.4	Indust	rial Case History – Excessive Shaft Displacement during First	
			linutes of a Five-Hour Heat Run of a Re-Furbished 2-Pole	
			kW/9115 H.P. SCIM – Function of Temperature Change and	
			Design	202
		9.4.1	Summary	202
		9.4.2	Shaft Displacements at the NDE during the Full-Load	
			Heat Run	202
		9.4.3	Conclusions	206
	Refe	rences		206

Contents xi

10	Industrial Case Histories on Magnetic Forces and Vibration from Induction Motors	208
	10.1 Electromagnetic Forces and Vibration in Induction Motors	208
	10.1.1 Twice Supply Frequency Vibration	208
	10.1.2 Vibration Components Caused by Rotor Slotting	210
	10.2 Industrial Case History – Magnetic Forces and Vibration on the Stator	
	Core and Outer Frame of a New 4000 kW/5362 H.P. SCIM	211
	10.2.1 Vibration Measurement and VSA during Factory	
	Acceptance Tests	212
	10.2.2 Time Domain and VSA of Vibration on the Stator	
	Core Back	213
	10.2.3 Bearing Housing Vibration – Comparison with Stator Core	
	Vibration	216
	10.2.4 Outer Frame Vibration and Analysis at Full Load	218
	10.3 Industrial Case History – False Positive of Cage Winding Breaks by a	
	Vibration Condition Monitoring (CM) Sub-Contractor – Identified the	
	True Cause as Normal and Inherent Stator Core Vibration at a Rotor Slot	
	Passing Frequency	221
	10.3.1 History and Summary	221
	10.3.2 Overall Vibration Measurements	222
	10.3.3 Vibration Spectrum Analysis	223
	10.3.4 Conclusions	226
	10.4 Case Study - Measurement of the Stator Core Vibration Proved that	
	Broken Rotor Bars in a SCIM Modulate the Vibration Rotor Slot Passing	
	Frequencies at Twice the Slip Frequency	226
	10.4.1 Background	226
	10.4.2 Measurement of Vibration Rotor Slot Passing Frequencies on the	227
	Stator Frame	227
	10.4.3 VSA of the Stator Frame Vibration with Broken Rotor Bars	230
	10.4.4 Conclusions on Motor Current Signature Analysis (MCSA) versus	
	Vibration Analysis to Diagnose Broken Rotor Bars in SCIMs	231
	10.5 Case Study – Vibration Monitoring to Identify Changes in the Stator	231
	Frame Vibration of a SCIM due to Supply Voltage Unbalance	232
	10.5.1 Introduction	232
	10.5.2 Measurement of the Velocity and Acceleration of the Twice	232
	Supply Frequency Component on the Stator Frame as a Function	
	of Position during No-Load and Full-Load Operation	233
	10.5.3 Measurement of the Velocity and Acceleration of the Twice	233
	Supply Frequency Component on the Stator Frame at Full Load as	
	a Function of Unbalanced Voltage Supplies	235
	10.5.4 Conclusions	236
	Appendix 10A Derivation of Twice Supply Frequency Vibration	237
	References	238

xii Contents

11	Miscellaneous Industrial Case Histories on Vibration Analysis Applied to Induction Motor Drives	241			
	11.1 Industrial Case History – Structural Resonance in a Vertically Mounted				
	265 kW/355 H.P. SCIM Driving a Fire-Water Pump	241			
	11.1.1 Background	241			
	11.1.2 Phase One – Vibration Measurements During On-Site				
	Coupled Run	244			
	11.1.3 Phase Two – Vibration Measurements – On-Site				
	Uncoupled Run	245			
	11.1.4 Phase Three – Motor FAT Vibration Measurements – Rotor				
	Re-balanced to ISO G0.4 Grade – New Bearings Fitted	247			
	11.1.5 Phase Four – On-Site Vibration Measurements on the Refurbished				
	Motor during a Coupled Run – Operating Current of 300				
	Amperes	248			
	11.1.6 Phase Five – On-Site Vibration Measurements on the Refurbished				
	Motor during a Coupled Run – Operating Current of 400				
	Amperes	249			
	11.1.7 Conclusions	250			
	Appendix 11A Rotor Balance Certificate	252			
	11.2 Industrial Case History – Investigation into the Cause of Loud Acoustic				
	Noise from an Inverter-Fed 3.3 kV, 4500 kW/6032 H.P. Vertically				
	Mounted SCIM Driving a Multi-Phase Pump	252			
	11.2.1 Background	252			
	11.2.2 On-Site Vibration Measurements and Analysis	253			
	11.2.3 Current Spectrum – Magnetic Flux and Electromagnetic				
	Forces	256			
	11.2.4 Vibration Spectrum Analysis	258			
	Appendix 11B Human Perception of Acoustic Noise	260			
	11.3 Industrial Case History – VSA of a Repaired 1000 kW/1340 H.P. SRIM				
	Diagnosed a High Twice Supply Frequency Vibration and Cracks in the				
	Concrete Mounting Plinth	260			
	11.3.1 Background and Objectives	260			
	11.3.2 Vibration Measurements and Analysis – Uncoupled Run at				
	Repair Shop	262			
	11.3.3 Vibration Measurements and Analysis – Uncoupled and Coupled				
	Runs at the Cement Factory	265			
	References	269			
12	Overview of Key Features of Vibration Monitoring of SCIMS	270			
	12.1 Appraisal on VSA to Diagnose Faults in Rolling Element Bearings Used				
	in SCIMS	270			
	12.2 Predictions and Prognosis of Remaining Run Life	271			
	12.2.1 Variables that Affect the Remaining Run Life of Faulty Rolling				
	Element Bearings in SCIMS	272			

	Contents	xiii
12.3 D	Difficulties of Access to Measure Vibration Directly on the Bearing	
Н	Iousings of Rolling Element Bearings in Induction Motors	272
12.4 G	Guidelines for Successful Grease Management of Rolling Element	
В	searings in Induction Motors	277
12.5 Ir	ncorrect Bearings Fitted by Motor Repair Shop	278
Referei		278
Index		280

Preface

Vibration condition monitoring has been used for many years to diagnose mechanical faults in bearings, gearboxes, compressors and pumps. Numerous text books cover these topics but none focus on vibration monitoring to diagnose faults in induction motors.

This book is unique because it is solely dedicated to vibration monitoring and analysis to diagnose faults in induction motors.

There are 30 industrial case histories which include both theoretical and practical knowledge for on-line condition assessment of induction motors. A key feature of these case histories is closure of the loop between the diagnosis of faults using vibration spectrum analysis and subsequent strip-down of the motors and accompanying photographic evidence of, for example, faulty bearings. The industrial case histories include:

Five on the diagnosis of shaft misalignment and/or soft foot.

Fifteen on the diagnosis of rolling element bearing faults.

Three on vibration problems in sleeve bearings.

Four on problems due to magnetic forces and vibration.

Three on miscellaneous problems including resonance in a vertical induction motor drive, vibration and acoustic noise from induction motors supplied from inverters.

The case histories are presented in detail because a broad-brush, superficial presentation that lacks clarity and evidence as to how the fault was diagnosed is meaningless to the reader. Each case history is stand-alone and does not require the reader to scroll backwards or forwards within the book to understand the vibration measurements, spectrum analysis and predictions.

Chapter 1 provides an overview of publications on sources of vibration in electrical machines. Problems in rolling element bearings account for the largest number of failures of induction motors, therefore a review is presented on the use of vibration measurements and spectrum analysis to diagnose faults in rolling element bearings. The practical difficulty of accessing the housings of rolling element bearings is strongly emphasised, because if bearing housings cannot be accessed then it is more difficult to diagnose bearing faults.

xvi Preface

A brief overview of shaft misalignment and soft foot in induction motor drives is included and five industrial case histories are presented on vibration analysis to detect shaft misalignment and/or soft foot.

Chapter 2 is a preparatory chapter for Chapters 3 and 4 and presents the main types and basic features of rolling element bearings that are used in induction motors.

Chapter 3 presents an overview of the types and causes of defects that occur in rolling element bearings to support the case histories in Chapters 4 to 8.

Chapter 4 presents an introduction to vibration spectrum analysis to diagnose faults in rolling element bearings in induction motors. This chapter is a precursor to the presentation of industrial case histories in Chapters 5 to 8 using conventional vibration spectrum analysis to diagnose the onset of faults in rolling element bearings before actual bearing failures occur.

It is emphasised that previously published books and papers that cover the theory and application of vibration monitoring to diagnose faults in rolling element bearings assume that vibration transducers such as accelerometers can always be mounted on the bearing housings. In many cases access to bearing housings is not practically possible on induction motors and this is a key fact that is demonstrated in this book.

Chapter 5 presents industrial case histories using VSA to diagnose cage faults in bearings of SCIMs.

Chapter 6 presents industrial case histories using VSA to diagnose inner and outer race faults in bearings of SCIMs.

Chapter 7 presents industrial case histories using VSA to diagnose false brinelling and skidding problems in cylindrical roller bearings in SCIMs.

Chapter 8 presents industrial case histories using VSA to diagnose miscellaneous faults in rolling element bearings in SCIMs.

Chapter 9 presents fundamental knowledge on the construction and operation of sleeve bearings. The practical measurement of shaft displacement is also described, to support the case histories in this chapter on vibration monitoring to diagnose problems in sleeve bearings.

Chapter 10 presents the fundamental causes of electromagnetic forces and consequential vibration in induction motors, including the twice supply frequency component and its harmonics, and the classical rotor slot passing frequency components.

Chapter 11 presents industrial case histories on miscellaneous problems such as mechanical resonance in a vertical induction motor drive and vibration and acoustic noise from induction motors supplied by inverters.

Chapter 12 presents an appraisal on VSA to diagnose faults in rolling element bearings. A discussion is provided on the key outcome that end users hope to achieve from vibration monitoring, which is the prognosis of remaining operational life of a SCIM after a fault is diagnosed.

It is also reiterated, via more photographic evidence, that access to mount temporary accelerometers directly on the bearing housings of rolling element bearings used in induction motors can be difficult.

Guidelines are given for grease management of rolling element bearings because of the predominance of failures being caused by incorrect greasing practice.

Preface

xvii

Industrial end users, motor manufacturers, condition monitoring companies and repairers of induction motors are the target market for this book. It is not a classical academic text for undergraduate university or college courses. However, it may well be of interest to post-graduate research students and academic staff with a specific interest in condition monitoring of induction motor drives because the case histories demonstrate what the real challenges are in industry.

This book is not suited to having questions at the end of each chapter and readers can contact the author directly if they have questions on its content.

William T. Thomson (Bill) Telephone: +44 19755 62446 e-mail: bill@emdiagnostics.com

About the Author

Bill was born in Scotland in 1946 and started his career in 1961 as a maintenance electrician. He has worked with induction motors at all levels from craft apprentice through to appointment as a professor in electrical machines in 1990. For the past 20 years he has been, and still is, the managing director of his own company providing consulting services in condition monitoring of electrical machines and drives.

Evening class study provided the vocational qualifications to enter the University of Strathclyde (Glasgow, Scotland) in 1970. In 1973 he graduated with an Honours degree in Electrical & Electronic Engineering specialising in electrical machines. From 1973 to 1977 he was a noise and vibration engineer with Hoover Ltd. In 1977 he was awarded a master's degree from the University of Strathclyde for a research thesis entitled 'Reduction of Acoustic Noise and Vibration from Small-Power Electric Motors'. From 1977 to 1979, Bill was a lecturer in electrical power at the Hong Kong Polytechnic and from 1979 until 2001 he was a lecturer (1979–83), senior lecturer (1983–90) and professor (1990–2001) at Robert Gordon University in Aberdeen, Scotland. In 1980, Bill initiated his research on condition monitoring of induction motors and received research funding from power utilities and major oil companies. The focus of the research was on the industrial application of vibration analysis and Motor Current Signature Analysis (MCSA) to diagnose faults in induction motors and drives before failures occur. Bill successfully supervised ten PhD and eight MPhil students.

He left academia in 2001 to start his own company and is the Director and principal consultant of EM Diagnostics Ltd providing consultancy services on the operation and condition monitoring of induction motors to power stations, petrochemical refineries, natural gas refineries and offshore oil and gas production platforms. He has published 72 papers on condition monitoring of induction motors in engineering journals such as *IEEE Transactions* (USA), *IEE Proceedings* (UK), and at International IEEE and IEE (IET, UK) conferences.

He is the co-author of an IEEE Press Wiley publication in 2017: William T. Thomson and Ian Culbert, *Current Signature Analysis for Condition Monitoring of Cage Induction Motors: Industrial Application and Case Histories*. Bill is a SMIEEE, FIEE (IET) in the UK and a chartered professional engineer registered in the UK. He was awarded the Queen's award for technological achievement in 1992 for knowledge input to 'Motor monitor' marketed by Entek, USA. In 1999, Bill provided access to his knowledge on Motor Current Signature Analysis, via a licence from Robert Gordon University, Scotland, to Iris Power, Canada, for the development of an MCSA instrument.

xviii

Acknowledgements

Sincere thanks are expressed to Mr Archie Low and Mr Donald Sutherland, formerly of Robert Gordon University (RGU), Scotland, for their indispensable contributions to the design and construction of fault producing, 3-phase induction motor test rigs.

The author greatly acknowledges Mr Ellis Hood (see biography), former senior lecturer at RGU for his invaluable input on checking the manuscript and for the many technical suggestions he made to improve its content and style of presentation.

Very sincere thanks are expressed to Dr Muni Gunawardene (see biography), consultant, EM Diagnostics Ltd, for his excellent drawings and presentation of vibration spectra and for his technical contributions.

Mr Alistair Carr is acknowledged for his excellent advice and contributions that he provided to the author to produce Sections 9.1.1 through to 9.1.2.4, which cover an introduction to sleeve bearings in large HV induction motors. Alistair is a senior electrical machines consultant with EM Diagnostics Ltd (author is the Director) and was appointed in November 2014. He was formerly Head of Test with Parsons Peebles, Scotland, and was employed by this company for 42 years.

Mr Bill Lockley, Life Fellow of IEEE, Calgary, Canada, is duly acknowledged for his invaluable and private review of the manuscript, which was by personal invitation from the author.

Bill dedicates this book to his wife, Mary Thomson, for her irreplaceable support, patience and encouragement throughout his career which made the writing of this book become a reality; without Mary, it would not have been possible.

William T. Thomson

Biographies of Personnel in the Acknowledgements

Ellis Hood BSc (Eng) Hons 2.1 MIEE CEng FTC (coms) CGLI

1953-55: Telecommunications Engineering training.

1955–57: National Service in RAF, wireless training, second line maintenance on V Bomber gear.

1957-60: UK Post Office Technical Officer in Training - POED.

1960–66: Post Office Technical Officer, Line Transmission. Passed Post Office Executive Engineers Board (1970).

1970–73: Lecturer in Telecomms and Electrical Engineering, Aberdeen Technical College.

1973–77: Napier University, Edinburgh, Lecturer in Electrical Engineering.

1977-79: Secondary School Teacher of Mathematics - Hilton Academy Aberdeen.

1979–90: Robert Gordon University, Aberdeen. Lecturer (1979–84), Senior Lecturer (1984–90) in Telecomms and Electrical Engineering, Course leader on HND course in Electrical Engineering, 1979–88 and course leader on combined BSc/HND course – the first of its kind in Scotland, 1988–90.

Education

1953: Scottish Higher Leaving Certificate.

1953-55/64-66: Full Technological Certificate in Telecommunications CGLI.

1966–70: BSc Electrical Engineering (Hons 2.1), University of Aberdeen, Scotland.

1971–72: Further Education Teaching Certificate in Engineering and Mathematics 1971–72.

1977: PGSCE Secondary Mathematics Teaching Certificate.

1984: MIERE CEng, MIEE 1987.

Dr G. W. D. M. Gunawardene BSc, MSc, PhD

1973–74: Gresham Lion Electronics, Twickenham, Middlesex, Test Technician.

1974–75: INSPEC, IEE, Hitchin, Hertfordshire, Technical Publications Inspector.

1976–79: Sheffield City Polytechnic, now Sheffield Hallam University, Research Assistant.

1979–2010: Robert Gordon University, Lecturer.

Biographies of Personnel in the Acknowledgements

XXİ

Education

1955–67: Moratu Maha Vidyalaya, Moratuwa, Sri Lanka, Primary and Secondary Education.

1967-69: Katubedda Technical College, Sri Lanka, Technician Course.

1969–73: Kingston Polytechnic, Middlesex, BSc Electrical Engineering.

1975–76: University of Bradford, MSc Control Engineering.

1976-79: Sheffield City Polytechnic, now Sheffield Hallam University, PhD.

Publications

- (1) G. W. D. M. Gunawardene and M. J. Grimble, Development of a Static Model for a Sendzimir Cold Rolling Mill, *IMACS Symposium on Control Systems*, Technical University, Vienna, Sept. 1978.
- (2) G. W. D. M. Gunawardene, M. J. Grimble and A. Thomson, Static Model for Sendzimir Cold Rolling Mill, *Metals Technology*, July 1981.
- (3) Static Model of a Sendzimir Mill for Use in Shape Control, PhD thesis, 1982.
- (4) G. W. D. M. Gunawardene and E. Forest, Controllability of Linear Control Systems using Gilbert and Kalman Criteria, *International Journal of Mathematical Education*, Sept. 1996.

Achievements

A programme to calculate the conditions of Sendzimir Cold Rolling Mill when loaded was developed during the research period which was bought by two steel companies in USA and Sweden.

Nomenclature

Quantity	Quantity symbol	Unit	Unit symbol
Acceleration	а	Metres per second squared	m/s ²
Angular frequency	ω	Radians per second	rad/s
Ball diameter in rolling element	BD	Millimetres	mm
bearing			
Bearing dynamic capacity	C	Newtons	N
Bearing rating life	L_{IO}	Hours	hr
Centrifugal force	C.F.	Newtons	N
Coil distribution factor	k_d	Number	_
Coil span factor	k_s	Number	_
Contact angle of bearing surface	β	Degrees	e.g. 40°
to outer race			
Current (r.m.s.)	I	Ampere	A
Decibel	_	_	dB
Displacement	d	Metres or millimetres	m or mm
Electromagnetic force	F_{em}	Newtons	N
Equivalent bearing load	P	Newtons	N
Frequency of mains supply	f_1	Hertz	Hz
Frequency of rotational speed of	f_r	Hertz	Hz
rotor	•		
Fundamental rotational	IX	Hertz	Hz
frequency of vibration			
Flux density	B	Tesla	T
Full-load current	$I_{f.l.}$	Amperes	A
Induced voltage in stator	E.	Volts	V
winding per phase			
Line current	$I_{I_{-}}$	Amperes	Α
Line voltage	V_L	Voltage	V
Lubricating viscosity	v_c	Centistokes	cSt
Magnetic flux	Φ	Weber	Wb
Mass	m	Kilograms	kg
Number of turns	N_T	Integer	_
Number of rolling elements	n_e	Integer	_
Pole pairs	p	Integer	_
Power output	P P	Kilowatts or horsepower	kW or
10 Surput	-	Time watto of horsepower	H.P.
Power input to the induction	P_{in}	Kilowatts	kW
motor	- <i>in</i>	Tito natu	11.11

xxii

Nomenclature

xxiii

(cont.)

Quantity	Quantity symbol	Unit	Unit symbol
Power factor	p.f.	Number	_
Pitch diameter of rolling element bearing	PD	Millimetres	mm
Rotor slotting vibration frequency component	f_{rv}	Hertz	Hz
Rotor speed	N_r	Revolutions per minute	r/min
Relative permeability of free space	μ_0	Henry per metre	H/m
Rotor bars or slots	R	Integer	_
Synchronous speed	N_s	Revolutions per minute	r/min
Slip	S	_	Number or %
Slip at full-load speed	$S_{f.l.}$	-	Number or %
Speed	n	Revolutions per minute	r/min
Time	t	Seconds	S
Torque	T	Newton metre	N⋅m
Torque – full-load	$T_{f.l.}$	Newton metre	N⋅m
Torque – starting	T_s	Newton metre	N⋅m
Turns per phase	N_{ph}	Integer	_
Voltage	\vec{V}	Volts or kilovolts	V or kV
Volt-amps	VA	Volt-amperes	VA
Velocity	v	Metres per second or millimetres per second	m/s or mm/s

Acronyms and Abbreviations

API American Petroleum Institute, USA ASWLP Auxiliary Sea Water Lift Pump

BD Ball Diameter

BPFI Ball Pass Frequency Inner Race
BPFO Ball Pass Frequency Outer Race

BS British Standard
BSF Ball Spin Frequency

CCGT Combined Cycle Gas Turbine

C.F. Centrifugal Force
CM Condition Monitoring

DE Drive End DEA Drive End Axial

DEH Drive End Horizontal
DEV Drive End Vertical
FAT Factory Acceptance Test
FFT Fast Fourier Transform
FLC Full Load Current
FLT Full Load Torque

FPSO Floating Production and Oil Off-loading ship

FTF Fundamental Train Frequency

GRF Gas Recirculating Fan

HV High Voltage H.P. Horse Power

ISO International Standards Organization

LNG Liquid Natural Gas
LV Low Voltage

MCSA Motor Current Signature Analysis

NDE Non Drive End
NDEA Non Drive End Axial
NDEH Non Drive End Horizontal
NDEV Non Drive End Vertical

NEMA National Electrical Machines Association, USA

OEM Original Equipment Manufacturer
OIM Offshore Installation Manager

xxiv

Acronyms and Abbreviations

XXV

PD Pitch Diameter
PM Planned Maintenance
QA Quality Assurance
QC Quality Control
r.m.s. (or R.M.S.) Root Mean Square

R&D Research and Development

RCFA Root Cause Failure Analysis

RTD Resistance Temperature Detector

SCIM Squirrel Cage Induction Motor

SPM Shock Pulse Measurement or Method

SRIM Slip Ring Induction Motor
SRP Sulphate Removal Pump
SWIP Sea Water Injection Pump
TEFC Totally Enclosed Fan Cooled
VSA Vibration Spectrum Analysis

Relevant Units of Equivalence Useful for this Book

Metric/SI units	Imperial
1.0 m	39.4 inches
25.4 mm	1.0 inch
1.0 mm	0.0394 inches/39.4 mils (≅40 thou/mils)
50 μm	2.0 thou/mils
25 mm/s	1.0 inch/s
1.0 mm/s	≅0.04 inches/s
1.0 kg	2.2046 lbs (≅2.2 lbs)
1.0 N	$0.2248 \text{ lbsf} (\cong 0.225 \text{ lbsf})$
1.0 Nm	0.73756 lbsf-ft (≅0.738 lbsf-ft)
1.0 kg-m^2	0.042 lbs-ft^2
1.0 N/m^2	145×10^{-6} lbsf/inch ²
745.7 W (≅746 W)	1.0 H.P.