Principles of Statistical Analysis

This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance – simulation and sampling, as well as experimental design and data collection – that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.

ERY ARIAS-CASTRO is a professor in the Department of Mathematics and in the Halicioğlu Data Science Institute at the University of California, San Diego, where he specializes in theoretical statistics and machine learning. His education includes a bachelor's degree in mathematics and a master's degree in artificial intelligence, both from École Normale Supérieure de Cachan (now École Normale Supérieure Paris-Saclay) in France, as well as a Ph.D. in statistics from Stanford University in the United States.

> "With the rapid development of data-driven decision making, statistical methods have become indispensable in countless domains of science, engineering, and management science, to name a few. Ery Arias-Castro's excellent text gives a self-contained and remarkably broad exposition of the current diversity of concepts and methods developed to tackle the challenges of data science. Simply put, everyone serious about understanding the theory behind data science should be exposed to the topics covered in this book."

> > —Philippe Rigollet, Professor Department of Mathematics, Massachusetts Institute of Technology

"A course on statistical modeling and inference has been a staple of many first-year graduate engineering programs. While there are many excellent textbooks on this subject, much of the material is inspired by models of physical systems, and as such these books deal extensively with parametric inference. The emerging data revolution, on the other hand, requires an engineering student to develop an understanding of statistical inference rooted in problems inspired by data-driven applications, and this book fills that need. Arias-Castro weaves together diverse concepts such as data collection, sampling, and inference in a unified manner. He lucidly presents the mathematical foundations of statistical data analysis, and covers advanced topics on data analysis. With over 700 problems and computer exercises, this book will serve the needs of beginner and advanced engineering students alike."

—Venkatesh Saligrama, Professor Data Science Faculty Fellow, Department of Electrical and Computer Engineering, Department of Computer Science (by courtesy), Boston University

"In this book, aimed at senior undergraduates or beginning graduate students with a reasonable mathematical background, the author proposes a self-contained and yet concise introduction to statistical analysis. By putting a strong emphasis on the randomization principle, he provides a coherent and elegant perspective on modern statistical practice. Some of the later chapters also form a good basis for a reading group. I will be recommending this excellent book to my collaborators."

> —Nicolas Verzelen, Associate Professor Mathematics, Computer Science, Physics, and Systems Department, University of Montpellier

"This text is highly recommended for undergraduate students wanting to grasp the key ideas of modern data analysis. Arias-Castro achieves something that is rare in the art of teaching statistical science – he uses mathematical language in an intelligible and highly helpful way, without surrendering key intuitions of statistics to formalism and proof. In this way, the reader can get through an impressive amount of material without, however, ever getting into muddy waters."

—Richard Nickl, Professor Statistical Laboratory, Cambridge University

INSTITUTE OF MATHEMATICAL STATISTICS TEXTBOOKS

Editorial Board Nancy Reid (University of Toronto) John Aston (University of Cambridge) Arnaud Doucet (University of Oxford) Ramon van Handel (Princeton University)

ISBA Editorial Representative Peter Müller (University of Texas at Austin)

IMS Textbooks give introductory accounts of topics of current concern suitable for advanced courses at master's level, for doctoral students and for individual study. They are typically shorter than a fully developed textbook, often arising from material created for a topical course. Lengths of 100–290 pages are envisaged. The books typically contain exercises.

In collaboration with the International Society for Bayesian Analysis (ISBA), selected volumes in the IMS Textbooks series carry the "with ISBA" designation at the recommendation of the ISBA editorial representative.

Other Books in the Series (*with ISBA)

- 1. Probability on Graphs, by Geoffrey Grimmett
- 2. Stochastic Networks, by Frank Kelly and Elena Yudovina
- 3. Bayesian Filtering and Smoothing, by Simo Särkkä
- 4. The Surprising Mathematics of Longest Increasing Subsequences, by Dan Romik
- 5. *Noise Sensitivity of Boolean Functions and Percolation*, by Christophe Garban and Jeffrey E. Steif
- 6. Core Statistics, by Simon N. Wood
- 7. Lectures on the Poisson Process, by Günter Last and Mathew Penrose
- 8. Probability on Graphs (Second Edition), by Geoffrey Grimmett
- 9. Introduction to Malliavin Calculus, by David Nualart and Eulàlia Nualart
- 10. Applied Stochastic Differential Equations, by Simo Särkkä and Arno Solin
- 11. **Computational Bayesian Statistics*, by M. Antónia Amaral Turkman, Carlos Daniel Paulino, and Peter Müller
- 12. Statistical Modelling by Exponential Families, by Rolf Sundberg
- Two-Dimensional Random Walk: From Path Counting to Random Interlacements, by Serguei Popov
- 14. Scheduling and Control of Queueing Networks, by Gideon Weiss

Principles of Statistical Analysis

Learning from Randomized Experiments

ERY ARIAS-CASTRO University of California, San Diego

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108489676 DOI: 10.1017/9781108779197

© Ery Arias-Castro 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48967-6 Hardback ISBN 978-1-108-74744-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

I would like to dedicate this book to some professors that have, along the way, inspired, supported, and mentored me in my studies and academic career, and to whom I am eternally grateful:

David L. Donoho my doctoral thesis advisor

Persi Diaconis my first co-author on a research article

Yves Meyer my master's thesis advisor

Robert Azencott my undergraduate thesis advisor

> In controlled experimentation it has been found not difficult to introduce explicit and objective randomization in such a way that the tests of significance are demonstrably correct. In other cases we must still act in the faith that Nature has done the randomization for us. [...] We now recognize randomization as a postulate necessary to the validity of our conclusions, and the modern experimenter is careful to make sure that this postulate is justified.

> > Ronald A. Fisher International Statistical Conferences, 1947

Contents

Preface	xiv
Acknowledgements	xvii

Part I Elements of Probability Theory

1	Axioms of Probability Theory	3
1.1	Elements of Set Theory	3
1.2	Outcomes and Events	5
1.3	Probability Axioms	8
1.4	Inclusion-Exclusion Formula	10
1.5	Conditional Probability and Independence	12
1.6	Additional Problems	17
2	Discrete Probability Spaces	19
2.1	Probability Mass Functions	19
2.2	Uniform Distributions	20
2.3	Bernoulli Trials	21
2.4	Urn Models	25
2.5	Further Topics	29
2.6	Additional Problems	31
3	Distributions on the Real Line	34
3.1	Random Variables	34
3.2	Borel σ -Algebra	34
3.3	Distributions on the Real Line	36
3.4	Distribution Function	36
3.5	Survival Function	38
3.6	Quantile Function	39

х	Contents	
4	Discrete Distributions	41
4.1	Binomial Distributions	41
4.2	Hypergeometric Distributions	42
4.3	Geometric Distributions	44
4.4	Other Discrete Distributions	46
4.5	Law of Small Numbers	48
4.6	Coupon Collector Problem	49
4.7	Additional Problems	51
5	Continuous Distributions	54
5.1	From the Discrete to the Continuous	54
5.2	Continuous Distributions	57
5.3	Absolutely Continuous Distributions	58
5.4	Continuous Random Variables	60
5.5	Location/Scale Families of Distributions	60
5.6	Uniform Distributions	61
5.7	Normal Distributions	62
5.8	Exponential Distributions	63
5.9	Other Continuous Distributions	64
5.10	Additional Problems	66
6	Multivariate Distributions	68
6.1	Random Vectors	68
6.2	Discrete Distributions	69
6.3	Continuous Distributions	72
6.4	Independence	74
6.5	Conditional Distribution	75
6.6	Additional Problems	76
7	Expectation and Concentration	78
7.1	Expectation	78
7.2	Moments	82
7.3	Variance and Standard Deviation	84
7.4	Covariance and Correlation	85
7.5	Conditional Expectation	87
7.6	Moment Generating Function	87
7.7	Probability Generating Function	88
7.8	Characteristic Function	89
7.9	Concentration Inequalities	90
7.10	Further Topics	93
7.11	Additional Problems	95

	Contents	xi
8	Convergence of Random Variables	100
8.1	Zero-One Laws	100
8.2	Convergence of Random Variables	101
8.3	Law of Large Numbers	103
8.4	Central Limit Theorems	105
8.5	Extreme Value Theory	107
8.6	Further Topics	109
8.7	Additional Problems	110
9	Stochastic Processes	113
9.1	Markov Chains	113
9.2	Simple Random Walks	119
9.3	Galton–Watson Processes	121
9.4	Additional Problems	124

Part II Practical Considerations

10	Sampling and Simulation	127
10.1	Monte Carlo Simulation	127
10.2	Monte Carlo Integration	128
10.3	Rejection Sampling	130
10.4	Markov Chain Monte Carlo (MCMC)	132
10.5	Metropolis–Hastings Algorithm	134
10.6	Pseudo-Random Numbers	137
11	Data Collection	138
11.1	Survey Sampling	139

11.2	Experimental Design	144
11.3	Observational Studies	153

Part III Elements of Statistical Inference

Models, Estimators, and Tests	163
Statistical Models	163
Statistics and Estimators	165
Confidence Intervals/Regions	168
Testing Statistical Hypotheses	170
Further Topics	179
Additional Problems	180
	Statistical Models Statistics and Estimators Confidence Intervals/Regions Testing Statistical Hypotheses Further Topics

xii	Contents	
13 13.1 13.2 13.3 13.4	Properties of Estimators and Tests Sufficiency Consistency Notions of Optimality for Estimators Notions of Optimality for Tests	181 181 182 184 187
14	One Proportion	192
14.1	Binomial Experiments	192
14.2	Hypergeometric Experiments	196
14.3	Negative Binomial/Hypergeometric Experiments	199
14.4	Sequential Experiments	199
14.5	Additional Problems	201
15	Multiple Proportions	203
15.1	One-Sample Goodness-of-Fit Testing	204
15.2	Multi-Sample Goodness-of-Fit Testing	208
15.3	Completely Randomized Experiments	211
15.4	Matched-Pairs Experiments	213
15.5	Fisher's Exact Test	216
15.6	Association in Observational Studies	217
15.7	Tests of Randomness	222
15.8	Further Topics	226
15.9	Additional Problems	226
16	One Numerical Sample	230
16.1	Order Statistics	230
16.2	Empirical Distribution	231
16.3	Inference about the Median	237
16.4	Possible Difficulties	240
16.5	Bootstrap World	241
16.6	Inference about the Mean	244
16.7	Inference about the Variance and other Parameters	249
16.8	Goodness-of-Fit Testing and Confidence Bands	250
16.9	Censored Observations	256
16.10	Further Topics	259
16.11	Additional Problems	267

	Contents	xiii
17	Multiple Numerical Samples	271
17.1	Inference about the Difference in Mean	as 272
17.2	Inference about a Parameter	274
17.3	Goodness-of-Fit Testing	276
17.4	Multiple Samples	280
17.5	Further Topics	284
17.6	Additional Problems	285
18	Multiple Paired Numerical Samples	289
18.1	Two Paired Variables	289
18.2	Multiple Paired Variables	295
18.3	Additional Problems	297
19	Correlation Analysis	299
19.1	Testing for Independence	299
19.2	Affine Association	301
19.3	Monotonic Association	302
19.4	Universal Tests for Independence	305
19.5	Further Topics	308
20	Multiple Testing	309
20.1	Testing Multiple Hypotheses	311
20.2	Global Null Hypothesis	312
20.3	Multiple Tests	314
20.4	Methods for FWER Control	317
20.5	Methods for FDR Control	319
20.6	Meta-Analysis	321
20.7	Further Topics	327
20.8	Additional Problems	327
21	Regression Analysis	329
21.1	Prediction	331
	Local Methods	333
	Empirical Risk Minimization	339
21.4	Selection	343
	Further Topics	346
21.6	Additional Problems	353
22	Foundational Issues	356
22.1	Conditional Inference	356
22.2	Causal Inference	367
Refer	ences	371
Index		384

Preface

This book is intended for the mathematically literate reader who wants to understand how to analyze data in a principled fashion. The language of mathematics allows for a more concise, and arguably clearer exposition that can go quite deep, quite quickly, and naturally accommodates an axiomatic and inductive approach to data analysis, which is the raison d'être of the book. To elaborate, the book starts with a preliminary foundation in probability theory, continues with an intermezzo of sampling and data collection, and finally moves to statistical inference – the core of the book which includes, in addition to standard topics, more advanced ones such as multiple testing, meta-analysis, and causal inference. The book thus provides a self-contained exposition of fundamental principles and methods of statistical analysis, covering topics which are typically displaced from introductory, general accounts. Emphasis is on inference, and more exploratory approaches to data analysis such as clustering and dimensionality reduction are not covered.

The compact treatment is grounded in mathematical theory and concepts, and is fairly rigorous, even though measure theoretic matters are kept in the background, and most proofs are left as problems. In fact, much of the learning is accomplished through embedded problems – around 700 of them! Some problems call for mathematical derivations, and assume a certain comfort with calculus, or even real analysis. Other problems require basic programming on a computer.

Structure

The book is divided into three parts. The introduction to probability, in Part I, stands as the mathematical foundation for statistical inference. Indeed, without a solid foundation in probability and, in particular, a good understanding of how experiments are modeled, there is no clear distinction between descriptive and inferential analyses. The exposition

Preface

there is quite standard. It starts by introducing Kolmogorov's axioms, which are instantiated in the context of discrete sample spaces. The narrative then transitions to a comprehensive discussion of distributions on the real line, both discrete and continuous, and also multivariate. This is followed by an introduction of the basic concentration inequalities and limit theorems. (A construction of the Lebesgue integral is not included, and measure-theoretic matters are mostly avoided.) Part I ends with a brief discussion of Markov chains and related stochastic processes.

Some utilitarian, but absolutely critical, aspects of probability and statistics are discussed in Part II. These include probability sampling and pseudo-random number generation – the practical side of randomness; as well as survey sampling and experimental design – the practical side of data collection.

Part III is the core of the book. It attempts to build a theory of statistical inference from first principles. The foundation is randomization, either controlled by design or assumed to be natural. In either case, randomization provides the essential randomness needed to justify probabilistic modeling. It naturally leads to conditional inference, and allows for causal inference. In this framework, permutation tests play a special, almost canonical role. Monte Carlo sampling, performed on a computer, is presented as an alternative to complex mathematical derivations, and the bootstrap is then introduced as an accommodation when the sampling distribution is not directly available and has to be estimated.

What is not here

I do not find normal models to be particularly compelling: unless there is a central limit theorem at play, there is no real reason to believe numerical data are normally distributed. Normal models are thus mentioned only in passing. More generally, parametric models are not emphasized – except for those that arise naturally in some experiments.

The usual emphasis on parametric inference is, I find, misplaced and misleading, as it can be (and often is) introduced independently of how the data were gathered, thus creating a chasm that separates the design of experiments and the analysis of the resulting data. Bayesian modeling is, consequently, not covered beyond basic definitions in the context of average risk optimality. Linear models and time series are not discussed in any detail. As is typically the case for an introductory book, especially of this length and at this level, there is only a hint of abstract decision theory, and multivariate analysis is omitted entirely.

xvi

Preface

How to use this Book

The idea for this book arose from a dissatisfaction with how statistical analysis is typically taught at the undergraduate and master's levels, coupled with an inspiration for weaving a narrative, which I find more compelling.

This narrative was formed over years of teaching statistics at the University of California, San Diego, in particular an undergraduate-level course on *computational statistics* focusing on resampling methods of inference. As it stands, however, the book is perhaps best used for independent study.

The reader is invited to progress through the book in the order in which the material is presented, working on the problems as they come, and saving those that seem harder for later. If an experienced instructor or tutor is available as an occasional guide, it is worthwhile to tackle even the harder problems when they are encountered.

Although the text emphasizes a conceptual understanding of data analysis, it is also grounded in practice. A large number of articles in the applied sciences are cited with the intention of providing the reader with a sense of how statistics is used in real life. In addition, a companion R notebook is provided to facilitate the transition from theory to practice. It is available from the author's webpage [https://math.ucsd.edu/~eariasca].

Intention

The book introduces, what I believe, are essential concepts that I would want a student graduating with a bachelor's or master's degree in statistics to have been exposed to, even if only in passing.

My main hope in writing this book is that it seduces mathematically minded people into learning more about statistical analysis, at least for their personal enrichment, particularly in this age of artificial intelligence, machine learning, and data science more broadly.

Acknowledgements

Ian Abramson, Emmanuel Candès, Persi Diaconis, David Donoho, Larry Goldstein, Gábor Lugosi, Dimitris Politis, Philippe Rigollet, Joseph Romano, Jason Schweinsberg, and Nicolas Verzelen, provided feedback or pointers on particular topics. Clément Berenfeld, Zexin Pan, and Yunhao Sun, as well as two anonymous referees and a copyeditor, Benjamin Johnson, retained by Cambridge, helped proofread the manuscript (all remaining errors are, of course, mine). Diana Gillooly, and later Becca Grainger, were my main contacts at Cambridge, offering expert guidance through the publishing process. I am grateful for all this generous support.

I looked at a number of textbooks in Probability and Statistics, and also lecture notes. The most important ones are cited in the text.

I used a number of freely available resources contributed by countless people all over the world. The manuscript was typeset in LTEX (using TeXShop, TeXstudio, TeXworks, BibDesk, and JabRef) and the figures were produced using R via RStudio. The companion R notebook was written using Bookdown. I made extensive use of Google Scholar, Wikipedia, and some online discussion lists such as StackExchange.