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1

Axioms of Probability Theory

Probability theory is the branch of mathematics that models and studies

random phenomena. Although randomness has been the object of much

interest over many centuries, the theory only reached maturity with

Kolmogorov’s axioms1 in the 1930s [195].

As a mathematical theory founded on Kolmogorov’s axioms, Probability

Theory is essentially uncontroversial at this point. However, the notion of

probability (i.e., chance) remains somewhat controversial. We will adopt

here the frequentist notion of probability [193], which defines the chance

that a particular experiment results in a given outcome as the limiting

frequency of this event as the experiment is repeated an increasing number

of times. The problem of giving probability a proper definition as it concerns

real phenomena is discussed in [67] (with a good dose of humor).

1.1 Elements of Set Theory

Kolmogorov’s formalization of probability relies on some basic notions of

Set Theory.

A set is simply an abstract collection of ‘objects’, sometimes called

elements or items. Let Ω denote such a set. A subset of Ω is a set made of

elements that belong to Ω. In what follows, a set will be a subset of Ω.

We write ω ∈ A when the element ω belongs to the set A. And we write

A ⊂ B when set A is a subset of set B. This means that ω ∈ A ⇒ ω ∈ B. A

set with only one element ω is denoted {ω} and is called a singleton. Note

that ω ∈ A ⇔ {ω} ⊂ A. The empty set is defined as a set with no elements

and is denoted ∅. By convention, it is included in any other set.

Problem 1.1 Prove that ⊂ is transitive, meaning that if A ⊂ B and B ⊂ C,

then A ⊂ C.

1 Named after Andrey Kolmogorov (1903–1987).
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4 Axioms of Probability Theory

The following are some basic set operations.

• Intersection and disjointness The intersection of two sets A and B is

the set with all the elements belonging to both A and B, and is denoted

A∩B. A and B are said to be disjoint if A∩B = ∅.

• Union The union of two setsA andB is the set with elements belonging

to A or B, and is denoted A∪B.

• Set difference and complement The set difference of B minus A is the

set with elements those in B that are not in A, and is denoted B ∖A. It is

sometimes called the complement of A in B. The complement of A in

the whole set Ω is often denoted Ac.

• Symmetric set difference The symmetric set difference of A and B is

defined as the set with elements either in A or in B, but not in both, and

is denoted A△B.

Sets and set operations can be visualized using a Venn diagram. See

Figure 1.1 for an example.

Figure 1.1 A Venn diagram helping visualize the sets A = {1, 2, 4, 5, 6, 7, 8, 9},

B = {2, 3, 4, 5, 7, 9}, and C = {3, 4, 5, 9}. The numbers shown in the figure represent

the size of each subset. For example, the intersection of these three sets contains 3

elements, sinceA∩B ∩ C = {4, 5, 9}.

Problem 1.2 Prove that A ∩∅ = ∅, A ∪∅ = A, and A ∖∅ = A. What is

A△∅?

Problem 1.3 Prove that the complement is an involution, i.e., (Ac)c = A.
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1.2 Outcomes and Events 5

Problem 1.4 Show that the set difference operation is not symmetric in the

sense that B ∖A ≠ A ∖ B in general. In fact, prove that B ∖A = A ∖ B if

and only if A = B = ∅.

Proposition 1.5. The following are true:

(i) The intersection operation is commutative, meaning A∩B = B ∩A,

and associative, meaning (A ∩ B) ∩ C = A ∩ (B ∩ C). The same is

true for the union operation.

(ii) The intersection operation is distributive over the union operation,

meaning (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).
(iii) It holds that (A ∩ B)c = Ac ∪ Bc. More generally, C ∖ (A ∩ B) =

(C ∖A) ∪ (C ∖ B).

We thus may write A∩B ∩C and A∪B ∪C, that is, without parentheses,

as there is no ambiguity. More generally, for a collection of sets {Ai ∶ i ∈ I},
where I is some index set, we can therefore refer to their intersection and

union, denoted

(intersection) ⋂
i∈I

Ai, (union) ⋃
i∈I

Ai .

Remark 1.6 For the reader seeing these operations for the first time, it

can be useful to think of ∩ and ∪ in analogy with the product × and sum +
operations on the integers. In that analogy, ∅ plays the role of 0.

Problem 1.7 Prove Proposition 1.5. In fact, prove the following identities:

(⋃
i∈I

Ai) ∩ B = ⋃
i∈I

(Ai ∩ B),

and

(⋃
i∈I

Ai)c = ⋂
i∈I

Ac

i , as well as (⋂
i∈I

Ai)c = ⋃
i∈I

Ac

i ,

for any collection of sets {Ai ∶ i ∈ I} and any set B.

1.2 Outcomes and Events

Having introduced some elements of Set Theory, we use some of these

concepts to define a probability experiment and its possible outcomes.
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6 Axioms of Probability Theory

1.2.1 Outcomes and the Sample Space

In the context of an experiment, all the possible outcomes are gathered in

a sample space, denoted Ω henceforth. In mathematical terms, the sample

space is a set and the outcomes are elements of that set.

Example 1.8 (Flipping a coin) Suppose that we flip a coin three times in

sequence. Assuming the coin can only land heads (h) or tails (t), the sample

space Ω consists of all possible ordered sequences of length 3, which in

lexicographic order can be written as

Ω = {hhh,hht,hth,htt, thh, tht, tth, ttt}.

Example 1.9 (Drawing from an urn) Suppose that we draw two balls from

an urn in sequence. Assume the urn contains red (r), green (g), and (b) blue

balls. If the urn contains at least two balls of each color, or if at each trial

the ball is returned to the urn, the sample space Ω consists of all possible

ordered sequences of length 2, which in the RGB order can be written as

Ω = {rr, rg,rb, gr, gg, gb, br, bg, bb}. (1.1)

If the urn (only) contains one red ball, one green ball, and two or more blue

balls, and a ball drawn from the urn is not returned to the urn, the number

of possible outcomes is reduced and the resulting sample space is now

Ω = {rg, rb, gr, gb, br, bg, bb}.
Problem 1.10 What is the sample space when we flip a coin five times?

More generally, can you describe the sample space, in words and/or

mathematical language, corresponding to an experiment where the coin

is flipped n times? What is the size of that sample space?

Problem 1.11 Consider an experiment that consists in drawing two balls

from an urn that contains red, green, blue, and yellow balls. However, yellow

balls are ignored, in the sense that if such a ball is drawn then it is discarded.

How does that change the sample space compared to Example 1.9?

While in the previous examples the sample space is finite, the following

is an example where it is (countably) infinite.

Example 1.12 (Flipping a coin until the first heads) Consider an experiment

where we flip a coin repeatedly until it lands heads. The sample space in

this case is

Ω = {h, th, tth, ttth, . . .}.
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1.2 Outcomes and Events 7

Problem 1.13 Describe the sample space when the experiment consists in

drawing repeatedly without replacement from an urn with red, green, and

blue balls, three of each color, until a blue ball is drawn.

Remark 1.14 A sample space is in fact only required to contain all possible

outcomes. For instance, in Example 1.9 we may always take the sample

space to be (1.1) even though in the second situation that space contains

outcomes that will never arise.

1.2.2 Events

Events are subsets of Ω that are of particular interest. We say that an event

happens when the experiment results in an outcome that belongs to the

event.

Example 1.15 In the context of Example 1.8, consider the event that the

second toss results in heads. As a subset of the sample space, this event is

defined as

E = {hhh,hht, thh, tht}.
Example 1.16 In the context of Example 1.9, consider the event that the

two balls drawn from the urn are of the same color. This event corresponds

to the set

E = {rr, gg, bb}.
Example 1.17 In the context of Example 1.12, the event that the number of

total tosses is even corresponds to the set

E = {th, ttth, ttttth, . . .}.
Problem 1.18 In the context of Example 1.8, consider the event that at least

two tosses result in heads. Describe this event as a set of outcomes.

1.2.3 Collection of Events

Recall that we are interested in particular subsets of the sample space Ω and

that we call these ‘events’. Let Σ denote the collection of events. We assume

throughout that Σ satisfies the following conditions:

• The entire sample space is an event, meaning

Ω ∈ Σ. (1.2)
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8 Axioms of Probability Theory

• The complement of an event is an event, meaning

A ∈ Σ ⇒ Ac ∈ Σ. (1.3)

• A countable union of events is an event, meaning

A1,A2, ⋅ ⋅ ⋅ ∈ Σ ⇒ ⋃
i≥1

Ai ∈ Σ. (1.4)

A collection of subsets that satisfies these conditions is called a σ-algebra.2

Problem 1.19 Suppose that Σ is a σ-algebra. Show that ∅ ∈ Σ and that a

countable intersection of subsets of Σ is also in Σ.

From now on, Σwill denote aσ-algebra overΩ unless otherwise specified.

(Note that such a σ-algebra always exists: an example is {∅,Ω}.) The pair

(Ω,Σ) is then called a measurable space.

Remark 1.20 (The power set) The power set of Ω, often denoted 2Ω, is the

collection of all its subsets. (Problem 1.49 provides a motivation for this

name and notation.) The power set is trivially a σ-algebra. In the context

of an experiment with a discrete sample space, it is customary to work

with the power set as σ-algebra, because this can always be done without

loss of generality (Chapter 2). When the sample space is not discrete, the

situation is more complex and the σ-algebra needs to be chosen with more

care (Section 3.2).

1.3 Probability Axioms

Before observing the result of an experiment, we speak of the probability

that an event will happen. The Kolmogorov axioms formalize this assign-

ment of probabilities to events. This has to be done carefully so that the

resulting theory is both coherent and useful for modeling randomness.

A probability distribution (aka probability measure) on (Ω,Σ) is any

real-valued function P defined on Σ satisfying the following properties or

axioms:3

• Non-negativity

P(A) ≥ 0, ∀A ∈ Σ.
• Unit measure

P(Ω) = 1.

2 This refers to the algebra of sets presented in Section 1.1.
3 Throughout, we will often use ‘distribution’ or ‘measure’ as shorthand for ‘probability

distribution’.
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1.3 Probability Axioms 9

• Additivity on disjoint events For any discrete collection of disjoint

events {Ai ∶ i ∈ I},
P(⋃

i∈I

Ai) = ∑
i∈I

P(Ai). (1.5)

A triplet (Ω,Σ,P) with Ω a sample space (a set), Σ a σ-algebra over Ω,

and P a distribution on Σ, is called a probability space. We consider such a

triplet in what follows.

Problem 1.21 Show that P(∅) = 0 and that

0 ≤ P(A) ≤ 1, A ∈ Σ.
Thus, although nominally a probability distribution takes values in R+, in

fact it takes values in [0,1].

Proposition 1.22 (Law of Total Probability). For any two events A and B,

P(A) = P(A ∩ B) + P(A ∩ Bc). (1.6)

Problem 1.23 Prove Proposition 1.22 using the 3rd axiom.

The 3rd axiom applies to events that are disjoint. The following is a

corollary that applies more generally. (In turn, this result implies the 3rd

axiom.)

Proposition 1.24 (Law of Addition). For any two events A and B, not

necessarily disjoint,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.7)

In particular,

P(Ac) = 1 − P(A), (1.8)

and,

A ⊂ B ⇒ P(B ∖A) = P(B) − P(A). (1.9)

Proof We first observe that we can get (1.9) from the fact that B is the

disjoint union of A and B ∖A and an application of the 3rd axiom.

We now use this to prove (1.7). We start from the disjoint union

A∪B = (A ∖ B) ∪ (B ∖A) ∪ (A ∩ B).
Applying the 3rd axiom yields

P(A ∪ B) = P(A ∖ B) + P(B ∖A) + P(A ∩ B).
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10 Axioms of Probability Theory

Then A∖B = A ∖ (A ∩ B), and applying (1.9), we get

P(A ∖ B) = P(A) − P(A ∩ B),
and exchanging the roles of A and B,

P(B ∖A) = P(B) − P(A ∩ B).
After some cancellations, we obtain (1.7), which then immediately implies

(1.8). �

Problem 1.25 (Uniform distribution) Suppose that Ω is finite. For A ⊂ Ω,

define U(A) = ∣A∣/∣Ω∣, where ∣A∣ denotes the number of elements in A.

Show that U is a probability distribution on Ω (equipped with its power set,

as usual).

1.4 Inclusion-Exclusion Formula

The inclusion-exclusion formula is an expression for the probability of a

discrete union of events. We start with some basic inequalities that are

directly related to the inclusion-exclusion formula and useful on their own.

Boole’s Inequality

Also know as the union bound, this inequality4 is arguably one of the

simplest, yet also one of the most useful, inequalities of Probability Theory.

Problem 1.26 (Boole’s inequality) Prove that for any countable collection

of events {Ai ∶ i ∈ I},

P(⋃
i∈I

Ai) ≤ ∑
i∈I

P(Ai). (1.10)

Note that the right-hand side can be larger than 1 or even infinite. [One

possibility is to use a recursion on the number of events, together with

Proposition 1.24, to prove the result for any finite number of events. Then

pass to the limit to obtain the result as stated.]

Bonferroni’s Inequalities

These inequalities5 comprise Boole’s inequality. For two events, we saw

the Law of Addition (Proposition 1.24), which is an exact expression for

the probability of their union. Consider now three events A,B,C. Boole’s

4 Named after George Boole (1815–1864).
5 Named after Carlo Emilio Bonferroni (1892–1960).
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