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Euclidean Space

The main purpose of this chapter is to discuss groups generated by reflexions,
concentrating here on the finite and discrete ones in euclidean spaces. There are
several reasons for this. One rather important one is that this topic does not
depend on anything that follows; indeed, to the contrary, we shall constantly
appeal to reflexion groups for examples to illustrate the subsequent theory. In
fact, until Part IV all but a single family of the regular polytopes described
in this monograph have symmetry groups which are closely related to reflexion
groups (if they are not reflexion groups themselves, then they are subgroups
of them, or are obtained by twisting them with automorphisms). Moreover, it
turns out that, except for one family, all finite or discrete affine reflexion groups
are the symmetry groups of some regular polytopes or apeirotopes, even those
which do not have linear diagrams.

The chapter contains ten sections. There are four preliminary ones, mainly to
establish notation and conventions. Section 1A surveys the algebraic properties
of euclidean spaces, while Sections 1C and 1D look at their metrical properties;
in between, Section 1B covers the main features of convex sets that we shall need
to appeal to. In the core Section 1E we classify the finite and discrete infinite
reflexion groups in euclidean spaces; the initial part of our treatment is novel.
In the next Section 1F we briefly comment on subgroup relationships among
these groups. We also need to know the orders of the finite Coxeter groups; we
find these by purely elementary geometric methods in Section 1H using angle-
sum relations established in the previous Section 1G. The lower-dimensional
spaces are somewhat special. For the following section, we need to know what
the finite rotation groups in E3 are; this problem is solved in Section 1J. In
4-dimensional space E4, quaternions provide an alternative approach to finite
orthogonal groups, and are actually needed to describe certain regular polyhedra
in that space; what we want is covered in Section 1K.

We should emphasize that, by and large, we will only prove assertions made
in this chapter if we need to employ them subsequently. Thus we shall include
certain peripheral material as background, but not go into it in any great detail.
And, of course, we shall try not to insult the reader by proving too many
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4 Euclidean Space

standard results in algebra and analysis.

1A Algebraic Properties

In this section, we are mainly interested in Ed as a linear (vector) or affine space;
the extra properties induced by the inner product and norm will be discussed
in Section 1C. As we said in the preamble to the chapter, a main purpose of
this and the next section is to establish notation and conventions.

Linear Spaces

For the moment, therefore, we just consider finite dimensional real linear
(or vector) spaces. Indeed, in this section, only the fact that the real numbers
R form a field is material; at this stage, it is not important that R is ordered.
Thus, X, Y, and so on, will be finite dimensional linear spaces over R.

We assume that the reader is familiar with the fundamental algebraic ideas
of groups, rings, fields and linear spaces. In particular, in the latter context,
the notions of linear combination, linear dependence and independence, linear
subspace and (linear) basis will be taken for granted. The only point we wish
to make here is notational: the linear hull linX of X ⊆ X is

• the set of linear combinations of vectors in X,

• the intersection of the linear subspaces of X which contain X.

By definition, the zero vector (or origin) o ∈ linX always.
The basic operations of a linear space extend to subsets. Thus, for X,Y ⊆ X

and λ ∈ R, we define the sum X + Y and scalar multiple λX by

X + Y := {x+ y | x ∈ X, y ∈ Y },1A1

λX := {λx | x ∈ X}.1A2

In particular, we write X + t := X + {t} for the translate of X by t ∈ X; then t

is called the corresponding translation vector .

Affine Properties

In some contexts, though, it is inconvenient to have the zero vector o playing
a special rôle, and so it is preferable to regard X as an affine space. The line xy

through x, y ∈ X is

1A3 xy := {(1− λ)x+ λy | λ ∈ R} ⊆ A;

an affine subspace A in X is determined by the fact that, if x, y ∈ A then xy ⊆ A

(see the notes at the end of the section). Actually, the definition allows the
empty set ∅ and point-sets to be affine subspaces as well (note that xx = {x});
contrast the former with the fact that linear subspaces always contain o, and
so are non-empty. An easy exercise shows the following. Define the affine hull
affX of a subset X ⊆ X by

1A4 affX :=
⋂

{A ⊆ X | A an affine subspace, and X ⊆ A}.
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1A Algebraic Properties 5

Then affX consists of all affine combinations

1A5 λ0x0 + · · ·+ λkxk, λ0 + · · ·+ λk = 1,

of points x0, . . . , xk ∈ X. We also say that A spans aff A affinely . Moreover,
we have

1A6 Proposition A non-empty affine subspace A is a translate A = L+ t of
a (unique) linear subspace L.

Proof. Indeed, if t ∈ A is any point, then it is straightforward to show that
L := A− t is a linear subspace. Observe that, if t′ ∈ A also, then t′ − t ∈ L, so
that

A− t′ = (A− t)− (t′ − t) = L− (t′ − t) = L;

the uniqueness of L is a consequence.

We say that two affine subspaces A1, A2 are parallel if A2 is a translate of
A1; hence, parallel affine subspaces are translates of the same linear subspace.

The concepts of affine dependence, independence and basis are the natural
extensions of the linear notions. Thus an affinely independent set B is such
that no one of its points is an affine combination of the others. Equivalently,
B = {b0, . . . , bk} is affinely independent if ξ0b0+ · · ·+ξkbk = o for ξ0, . . . , ξk ∈ R

such that ξ0 + · · ·+ ξk = 0 implies that ξ0 = · · · = ξk = 0. An affine basis of X
is an affinely independent set B ⊆ X which spans X affinely.

1A7 Proposition An affine basis of a d-dimensional space X consists of d+1
points.

Proof. It is easily shown that {b0, . . . , bd} is affinely independent if and only if
{b1 − b0, . . . , bd − b0} is linearly independent; the claim then follows.

The obvious definition of the dimension dim A of an affine subspace A is
dimA := dimL, if A = L+ t for some linear subspace L. Thus an affine basis of
A has dimA+1 points; compare Proposition 1A7. For the empty set, the natural
definition is thus dim ∅ := −1. Often also useful is the notion of codimension
codim A := dimX − dimA. In particular, an affine subspace of codimension 1
is called a hyperplane.

1A8 Remark In some contexts, like those of realizations (see, for example,
Section 3L) we find it useful to work in linear spaces over ordered fields other
than R. Of particular interest are the rational numbers Q and (real) algebraic
numbers A.

Mappings

We next look at mappings. Again, we assume that the reader is familiar with
linear mappings; however, we wish to recall some terminology and introduce
some notation.
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6 Euclidean Space

If Φ: X → Y is a linear mapping, then we denote by imΦ its image space
and by kerΦ its kernel ; their dimensions are the rank rankΦ and nullity null Φ,
respectively. Recall that the latter are related by

rankΦ + null Φ = dimX.

For fixed X and Y, the family of linear mappings Φ: X → Y forms, in a natural
way, a linear space Hom(X,Y) of dimension dimX dimY.

A linear mapping u : X → R is called a linear functional ; in this special
case, we have the dual space X∗ := Hom(X,R). There is a natural pairing 〈·, ·〉
on X × X∗, so that we write the image of x ∈ X under u ∈ X∗ as 〈x, u〉 =
〈u, x〉, thus emphasizing the underlying symmetry. Corresponding to a basis
E = (e1, . . . , ed) of X is a dual basis E∗ = (e∗1, . . . , e

∗

d) of X∗, which satisfies

〈ej , e
∗

k 〉 = δjk :=

⎧

⎨

⎩

1, if j = k,

0, if j �= k,

the Kronecker delta.
If x ∈ X, then writing x =

∑d

j=1
ξjej and applying e∗k shows that ξk =

〈x, e∗k 〉. In other words, if x ∈ X, then

1A9 x =

d
∑

j=1

〈x, e∗j 〉ej .

Another familiar fact is

1A10 Proposition A hyperplane H in X can be represented as H(u, β) :=
{x ∈ X | 〈x, u〉 = β}, for some non-zero u ∈ X∗ and β ∈ R.

Proof. By Proposition 1A6, H is a translate H = H0 + t of a linear hyperplane
H0 of X. If dimX = d, choose any (linear) basis {a1, . . . , ad−1} of H0, and
extend to a basis {a1, . . . , ad} of X. If {a∗1, . . . , a

∗

d} is the dual basis of X∗, then
we define u := a∗d, so that H0 = {x ∈ X | 〈x, u〉 = 0}. It follows at once that
H = H(u, β), with β := 〈t, u〉, which is as asserted.

For now, we only need the idea of an affine mapping Φ: X → Y, with X,Y

finite dimensional real linear spaces: this is such that

1A11 ((1− λ)x+ λy)Φ = (1− λ)xΦ+ λyΦ

for all x, y ∈ X and λ ∈ R. A straightforward inductive argument shows that
affine mappings preserve arbitrary affine combinations. Moreover, we actually
have

1A12 Proposition If Φ: X → Y is an affine mapping, then there is a t ∈ Y

and a linear mapping Ψ: X → Y such that xΦ = xΨ+ t for all x ∈ X.

Proof. Define t := oΦ and Ψ by xΨ := xΦ− t. We leave to the reader the easy
exercise of completing the proof (that is, showing that Ψ is linear).
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1A Algebraic Properties 7

An invertible affine mapping Φ: X → X is also called an affinity ; clearly Φ
is invertible just when the associated linear mapping Ψ of Proposition 1A12 is
invertible. As a particular affinity, we have the translation x 	→ x+t, with t ∈ X

as before the corresponding translation vector.

Matrices

As is well known, a linear mapping Φ: X → Y can be represented by a matrix
with respect to a choice of bases of X and Y; this matrix will be invertible just
when Φ is invertible.

We shall often associate an ordered set of vectors (a1, . . . , ak) in Rm with
the k × m matrix A whose rows are the ai. If B is an m × n matrix, then it
is sometimes useful to think of the entries of the product AB as 〈ai, bj 〉, where
b1, . . . , bm are now the columns of B, regarded as vectors in the dual space
(Rm)∗.

Recall that the trace trA of an m× n matrix A = (αij) is

1A13 trA :=
∑

j

αjj ,

the range of summation being 1 � j � min{m,n}. Thus trA = trAT, with
AT = (βij) the transpose of A, so that βij = αji for each i, j. Moreover, if B is
an n×m matrix, then we have

1A14 tr(AB) = tr(BA),

as is easy to see.
If the linear mapping Φ: X → Y is represented by the matrix A with respect

to given bases of X and Y, then the dual mapping Φ∗ : Y∗ → X∗ is represented
by the transpose matrix AT with respect to the dual bases of Y∗ and X∗.

Groups

A finite group G of affinities on X with order |G| := cardG has a fixed
point, namely, the centroid

c :=
1

|G|

∑

Φ∈G

xΦ

of the images of an arbitrary point x ∈ X under G (there may be more than
one such point c). Conjugating G by a translation which takes c to the origin
shows that we lose no generality in assuming that G is a subgroup of the general
linear group GL(X) := Hom(X,X) of invertible linear mappings on X.

We say that L � X is an invariant subspace of G if xΦ ∈ L for all x ∈ L

and Φ ∈ G. We call G irreducible if its only invariant subspaces are {o} and X

itself.
We call two subgroups G,H � GL(X) of linear mappings linearly equivalent

if they are conjugate under some Θ ∈ GL(X), so that H = Θ−1
GΘ. Observe

that, if G is irreducible, then so is H.
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8 Euclidean Space

Direct Sums

Linear spaces X and Y can be combined in two ways (for our purposes).
First, we have the ordinary direct sum or cartesian product X ⊕ Y. The usual
way of expressing a vector z ∈ X ⊕ Y is as z = (x, y); this is particularly
appropriate when x and y are coordinate vectors (with respect to chosen bases
of the two spaces). We thus have dim(X⊕ Y) = dimX+ dimY.

1A15 Remark It is frequently the case that we express a given linear space
as an internal direct sum of subspaces L1,L2, . . ., and so write

X = L1 ⊕ L2 ⊕ · · · .

Rings and Algebras

When we come to realizations in Chapter 3, we shall want to phrase things
in terms of direct sums of rings or, rather, of algebras. An algebra K over R

(this is all we need) is a real vector space for addition and scalar multiplication;
further, it has an associative multiplication which distributes over addition and
scalar multiplication, and so satisfies

a(b+ c) = ab+ ac,

(a+ b)c = ac+ bc,

(λa)b = a(λb) = λ(ab),

for all a, b, c ∈ K and λ ∈ R. The direct sum K1⊕K2 of two algebras K1 and K2

then just satisfies the algebra properties in each coordinate separately, so that
the basic operations are

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

λ(a1, a2) = (λa1, λa2),

(a1, a2)(b1, b2) = (a1b1, a2b2).

For further properties of direct sums of rings, see for example [4, Chapter 13]
or [64, Chapter 1].

Tensor Products

The other combination is the tensor product X ⊗ Y, an element of which is
called a tensor . Formally, this is the universal linear space W for mappings Φ
on X× Y that are bilinear , in that

1A16 (λx+ µz, y)Φ = λ(x, y)Φ + µ(z, y)Φ,

with symmetric expressions for the second term, and which is such that any
bilinear mapping Φ on X × Y induces a linear mapping on W. We need to
know two things about the tensor product. First, dim(X⊗Y) = dimX dimY: if
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1A Algebraic Properties 9

{f1, . . . , fd} is a (linear) basis of X and {g1, . . . , gc} is one of Y, then eij := fi⊗gj
gives a basis of X ⊗ Y. Second, linear mappings Φ on X and Ψ on Y induce a
linear mapping Φ⊗Ψ on X⊗ Y by

1A17 (x⊗ y)(Φ⊗Ψ) := (xΦ)⊗ (yΨ).

In our treatment, we never have to deal with other than a simple tensor x⊗ y,
with x ∈ X and y ∈ Y.

1A18 Remark There is a natural isomorphism Hom(X,Y) ∼= X∗⊗Y. Observe
that, up to isomorphism, the tensor product is associative and commutative.

An element ϕ of the dual space X∗⊗Y∗ of X⊗Y is also called a bilinear form.
If X = Y and ϕ(x, y) = ϕ(y, x) for all x, y ∈ X, then we call the form symmetric.
The case x = y gives a quadratic form. We say that ϕ is positive semi-definite
if ϕ(x, x) � 0 for all x ∈ Ed, and positive definite if ϕ(x, x) > 0 whenever
x �= o. If dimX = d, then we can write a quadratic form as ϕ(x, x) = xAxT,
with now x regarded as a coordinate vector with respect to a chosen basis of
X and A = (αjk) a d × d symmetric matrix, meaning that αjk = αkj for all
j, k = 1, . . . , d.

When X = Y, we have refinements of the tensor product. In the space of
r-fold tensors x1⊗· · ·⊗xr, we can make two kinds of identification. First, taking
xj ⊗ xj+1 = xj+1 ⊗ xj (for j = 1, . . . , r − 1) gives a symmetric tensor. In this
case, we can write xj ⊗ xj+1 =: xjxj+1 as an ordinary product. Second, setting
xj ⊗xj+1 +xj+1 ⊗xj = o gives an alternating tensor; here, it is important that
we impose identifications on adjacent terms in an alternating tensor product
x1∧· · ·∧xk, so that xj+1∧xj = −(xj ∧xj+1). Both notions occur in the theory
of realizations, but we shall see that alternating tensors only occasionally play
a useful rôle.

A linear mapping Φ on X induces a linear mapping ∧rΦ on ∧rX. If dimX =
d, then ∧dX ∼= R, so that, if Φ: X → X, then ∧dΦ: R → R is just multiplication
by a scalar, which is denoted detΦ and called the determinant of Φ.

In a similar way, a d×d matrix A induces a linear mapping on X with respect
to a chosen basis (e1, . . . , ed), say. Then detA is independent of the basis, and
is naturally called the determinant of A. We can identify aj = ejA with the
jth row of A. The determinant shows that there is a natural identification of
(d− 1)-fold alternating tensors with linear functionals on X, namely,

〈x, a2 ∧ · · · ∧ ad〉 = det(x, a2, . . . , ad).

With the single exception d = 3, this is of little general interest here; the
exception involves the definition of quaternions in Section 1K.

Notes to Section 1A

1. Our convention, in which we follow Coxeter [27], is to write mappings after their
arguments. We rarely have compositions of mappings except in the context of
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10 Euclidean Space

groups; here, it seems to us more natural to compose mappings in the order in
which they are applied. Moreover – and this is useful in another way – we can
then think of vectors as rows rather than columns, which obviates the need for any
special conventions in text.

2. Affine subspaces are also known as flats. We do not use the term in this context,
because later on we encounter a quite different concept of flatness.

3. A hint to Proposition 1A12 is to note that λx + µy = λx + µy + (1 − λ − µ)o, as
an affine combination.

4. Observe that, for dual spaces, we have (X⊗ Y)∗ = X∗ ⊗ Y∗.
5. Similarly, a linear mapping Φ: X → Y induces a dual linear mapping Φ∗ : Y∗ → X∗,

defined by 〈x, vΦ∗〉 := 〈xΦ, v〉 for all x ∈ X and v ∈ Y∗. But we make no future
use of this or the previous concept.

1B Convexity

From now on, we use the fact that R is an ordered field, and so it should not
be surprising that concepts such as positivity come into play. We shall make
extensive use of this and the closely related concept of convexity in various
places in the book.

Positive Combinations

For the analogue of ‘linear’, we call C ⊆ X a (convex ) cone if λx + µy ∈ C

whenever x, y ∈ C and λ, µ � 0. Thus the positive hull of X ⊆ X is

1B1 posX :=
⋂

{C ⊆ X | C a cone, and X ⊆ C}.

Then posX consists of all positive combinations

1B2 λ1x1 + · · ·+ λkxk, λ1, . . . , λk � 0,

of points x1, . . . , xk ∈ X; we also say that posX spans X positively .
As a special case, if X is linearly independent, then we call K := posX a

simple cone. If C is a cone of dimension dimC := dim linC = d, then we refer
to C as a d-cone.

In a couple of places we shall need an important result from convexity. We
state the theorem first as it applies to cones. A ray [oa (or half-line) is a set of
the form

1B3 [oa := {λa | λ � 0},

for some a ∈ Ed. If C is a closed convex cone, then a ray E ⊆ C is called
extreme if, whenever a ∈ E and x, y ∈ E satisfy a = x + y, then x and y are
scalar multiples of a.

We then have Carathéodory’s Theorem (see the notes at the end of the
section); we refer to (for example) [132, Proposition 1.15] for more details.

1B4 Theorem If C is a closed convex cone of dimension d, then each point
of C is a sum of at most d points on extreme rays of C.
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