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1.1 Global distribution of tight oil and gas reserves (US EIA 2014) (A black and
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version, refer to the plate section.) page 11

2.1 Map of United States shale plays in the lower 48 states (US EIA 2016)

(A black and white version of this figure will appear in some formats.

For the colour version, refer to the plate section.) 22
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of the well bore showing specifics such as top hole, kick off point,

and bottom hole with depths and lengths 26
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leading to the river – arrow), (C) “Sand king” proppant truck,

(D) sand (proppant) truck, (E) pressure pump truck, (F) chemical mixing truck,

(G) kettle truck for mixing cement, and (H) brine (residual waste) truck.

A, C, D, G, and H courtesy of Robert Donnan; E and F courtesy of Bill Hughes;

B the author (JFS) 27

2.4 Stages in the development of a well pad. (A) Impoundment for fresh water

(note the white pipeline that goes to the adjacent well pad, middle center

of the image), (B) Pad preparation with liners in place and cellars for eight wells (w).

(C) Drilling has commenced with a “triple” rig. The pad is surrounded by a sound

dampening barrier, the drilling rig is in the center, and an impoundment (arrow)

for drilling fluids and waste is to the left of the rig. (D) The completed well site with

remaining infrastructure; (w) well heads cordoned off by jersey barriers,

(s) separators, and (c) condensate tanks. (E) Close up of a well head

(note how the cellar can fill with water). B, C, and D, courtesy of Robert Donnan;

A and E, the author (JFS) 28

2.5 The well pad during the hydraulic fracturing of the well. (A) well pad

in Ohio with some permanent infrastructure already in place, (s) separators,
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(B) Fort Beeler, West Virginia, (C) Mobley, West Virginia, and
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of Robert Donnan 37
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5.3 The extent of the study area (within 2 km of a sampled point) is shown

as shaded. In the left panel, areas within 2 km of a conventional or

unconventional well are shown in blue or yellow, respectively.

Areas within 2 km of both types of wells are shown in green.

Areas within 2 km of any well are classified as “near-well.”

In the right panel, average traffic density increases as the color gets darker.

In general, more heavily traveled roads occur near Pittsburgh

(in the center of Allegheny County) and on interstate highways.

AADT = Annual Average Daily Traffic reported by Pennsylvania Spatial Data

Access (www.pasda.psu.edu/, 2015) (A black and white version of this figure will

appear in some formats. For the colour version, refer to the plate section.).
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the top and the bottom of the box represent 75th and 25th percentile, respectively.

The background measurements of each basin are shown as green crosses
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6.2 Stylized comparison of the global temperature response over time from
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period. Note that the integrated area for carbon dioxide in both panels also
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of the curves. Adapted from IPCC (2013) and based on the absolute

global temperature change potential. Reprinted from Howarth (2020) 143
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Preface

The combination of directional (e.g., horizontal) drilling and hydraulic fracturing

(“fracking”) has revolutionized oil and gas exploration, especially in the last two decades.

They have been applied to conventional reserves, allowing for greater recovery, and for the

development of “tight” deposits, primarily shales, releasing previously untapped reserves.

The Energy Information Administration (EIA) has estimated that globally, shale gas

reserves may contain 7,577 Tcf (trillion cubic feet) and shale oil reserves may contain

419 billion bbl (barrels). Unconventional shale extraction has reached commercial-level

production in the United States and Canada, while increasing development is happening in

China and Argentina. Australia has been developing its coal bed methane deposits,

especially in Queensland, and there has been exploratory drilling in England (Bowland

Basin), Germany (Niedersachsen), and Poland. At the same time Scotland, France, and

parts of Australia have a moratorium or outright ban on the process. While many celebrate

the potential economic benefits, concerns about environmental impacts that include water

contamination, air quality degradation, habitat fragmentation, and the continued contribu-

tion to climate change have been raised. The “slick water” stimulation and “fracking” rely

on a complicated mix of chemicals and “proppant” (fine grained silica sand), while the

shales themselves contain salt brines (e.g., sodium, chloride, bromide), distinct trace

element content (e.g., barium, strontium), and heavy metals including naturally occurring

radioactive materials (NORMs). The extraction and distribution operations depend on

complex infrastructure such as compressor stations, cryogenic processing plants, and an

extensive network of pipelines for water and gas (e.g., gathering lines, transmission lines).

Solid and liquid waste disposal has also presented challenges, with some solutions resulting

in unexpected adverse consequences such as the generation of trihalomethanes in munici-

pal water and radium (226Ra) contamination as a result of road brining. Climate change has

also put the focus on the global impacts of continued extraction and use of fossil fuels, with

many nations signing the Paris Climate Agreement of 2016, promising significant carbon

dioxide emissions reductions.

Despite the global expansion of unconventional oil and gas exploration, the literature

has been scrambling to keep pace. There are numerous popular books providing some of

the history behind it, personal stories, and even fiction. There are also a number of industry-

published books that delve into the technical aspects such as proppant and fluid
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characterization. We realized there was a need and interest in a volume that addressed the

environmental impacts. The impetus for this book initially came out of a two-day confer-

ence held at Duquesne University in November 2013 (“Facing the Challenges: research on

shale gas extraction symposium”). There were twenty-two scholarly presentations covering

a broad range of topics, the majority of which dealt with the environmental impacts. While

a few of these presentations were published as a special issue of the journal Environmental

Science and Health, Part A (2015, volume 50, issue 5), the symposium provided a

framework for a comprehensive compendium and a potential list of contributors. We also

reached out to other colleagues working in the field, especially several outside the United

States to include contributions from Europe, Canada, and Australia. The Marcellus and

Utica Shales of the Appalachian Basin have been, in many respects, the testing grounds for

unconventional shale development in other parts of the country and the world. The authors

we have solicited chapters from are known for their pioneering work. In the end we

compiled 16 contributions. The book is divided into three sections: Overview,

Environmental Analysis, and Case Studies. The Overview comprises four chapters.

Chapter 1 provides an overview of the global unconventional oil and gas reserves and

the status of their development at the time of this publication. Chapter 2 is an introduction

to the development of unconventional oil and gas reserves based primarily on experience

with the Appalachian Basin. Chapter 3 covers developments in Australia, where both gas

shales and coal bed methane deposits are being tapped. Chapter 4 looks at the trends and

challenges in governance, addressing issues related to mineral rights ownership, royalties,

and regulations. The Environmental Analysis section, the bulk of the book, comprises nine

chapters. Chapter 5 covers air quality issues. Chapter 6 tackles fugitive methane and its

impact on climate change and lifecycle assessment. Chapter 7 provides a comprehensive

look at water usage and management. Induced seismicity, as a result of hydraulic stimula-

tion and waste injection facilities, is addressed in Chapter 8. Both drill cuttings and

produced water from shales are known to contain naturally occurring radioactive materials

(NORMs), a subject covered in Chapter 9. The next two chapters focus on the use of

isotopes as tracers to identify sources, namely metal isotopes (Chapter 10) and methane

isotopes (Chapter 11). The last chapter in this section discusses the microbiology

(Chapter 12). The last section, Case Studies, provides assessments from a more holistic

approach. The first chapter in this section evaluates water chemistry using mass ratio

analyses to identify potential sources of contamination (Chapter 13). The second is a

baseline study of a paired stream system in southwestern Pennsylvania, which was

completed early on in the development of the Marcellus shale (Chapter 14). The next

chapter (Chapter 15) addresses the effects of shale gas development on forest landscapes

and ecosystems. The final chapter reports on the activities of the Three Rivers Quest

Project, a consortium of several regional universities that have been monitoring the water

quality of the three rivers of the Ohio River Basin (Allegheny, Monongahela, Ohio) for the

last decade (Chapter 16).

In putting together this volume our goal was to present a broad picture of the develop-

ment of unconventional oil and gas shales. Without this background it will be difficult to

address the challenges, especially considering the legacy of environmental impacts from
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conventional oil and gas extraction. It is our hope that this book will be accessible to a wide

audience of readers, from industry to academics, as well as laypersons interested in the

subject matter. The authors would like to thank all the contributors, as well as the Colcom

Foundation and Heinz Endowments for support over the years. A special thanks to Robert

Donnan for his amazing photographs, and to Dr. David Kahler whose assistance with the

formatting of the equation-heavy chapters was greatly appreciated.
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