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One-parameter Exponential Families

1.1 Definitions, Notation, and Terminology (pp. 2–5) Natural and canoni-

cal parameters; sufficient statistics; Poisson family

1.2 Moment Relationships (pp. 5–9) Expectations and variances; skew-

ness and kurtosis; a useful result; unbiased estimate of η

1.3 Repeated Sampling (pp. 9–10) Samples as one-parameter families

1.4 Maximum Likelihood Estimation in Exponential Families (pp. 10–15)

Fisher information; functions of µ̂; delta method; hypothesis testing

1.5 Some Important One-parameter Exponential Families (pp. 15–24)

Normal; binomial; gamma; negative binomial; inverse Gaussian; 2× 2

tables (log-odds ratio); ulcer data; structure of one-parameter families

1.6 Bayes Families (pp. 24–27) Posterior densities as one-parameter fam-

ilies; conjugate priors; Tweedie’s formula

1.7 Empirical Bayes Inference (pp. 27–32) Posterior estimates from Twee-

die’s formula; microarray example (prostate data); false discovery rates

1.8 Deviance and Hoeffding’s Formula (pp. 32–40) Repeated sampling;

relationship with Fisher information; deviance residuals; Bartlett cor-

rections; example of Poisson deviance analysis

1.9 The Saddlepoint Approximation (pp. 40–43) Hoeffding’s saddlepoint

formula; Lugananni–Rice formula; large deviations and exponential

tilting; Chernoff bound

1.10 Transformation Theory (pp. 44–47) Power transformations; Wedder-

burn, Anscombe, and Wilson–Hilferty

The basic unit of probability theory is a probability distribution. The basic

unit of statistical inference is a family of probability distributions. Dating

from the time of Laplace and Gauss, the one-dimensional normal family1

x ∼ N(µ, σ2), (1.1)

1 Equation (1.1) means that the real-valued random variable x has density

exp{−(x − µ)2/σ2} · (2πσ2)−1/2 on the real line.
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2 One-parameter Exponential Families

with µ ∈ (−∞,∞) and σ2 positive, has played a dominant role in both

theory and practice. A strong desire to go beyond normal models fueled

the development of exponential family theory. One-parameter exponential

families are useful in their own right, and crucial to understanding the mul-

tiparameter exponential families of Parts 2 through 5. Here we will present

the general one-parameter family theory, and show how it plays out in fa-

miliar contexts such as the Poisson, binomial, normal, and gamma distri-

butions.

1.1 Definitions, Notation, and Terminology

This section reviews the basic definitions for exponential families. An ex-

ponential family is a set of probability densitiesG, “density” here including

the possibility of discrete atoms (as in the family of binomial densities). A

one-parameter exponential family has densities gη(y) of the form

G =
{

gη(y) = eηy−ψ(η)g0(y)m(dy), η ∈ A, y ∈ Y
}

, (1.2)

where A and Y are subsets of the real line R1.

There is a more-or-less standard terminology for the elements of (1.2):

• η is the natural or canonical parameter; in familiar families like the Pois-

son and binomial, it often isn’t the parameter we are used to working

with.

• y is the sufficient or natural statistic, a name that will be more meaningful

when we discuss repeated sampling situations; in many cases (the more

interesting ones) y = y(x) is a function of an observed data set x (as in

the binomial example below); y takes values in its sample space Y.

• The densities in G are defined with respect to some carrying measure

m(dy), such as the uniform measure on [−∞,∞] for the normal family,

or the discrete measure putting weight 1 on the non-negative integers

(“counting measure”) for the Poisson family. Usually m(dy) won’t be

indicated in our notation. We will call g0(y) the carrying density.

• ψ(η) in (1.2) is the normalizing function or cumulant generating func-

tion; it scales the densities gη(y) to integrate to 1 over sample space Y,

∫

Y
gη(y)m(dy) =

∫

Y
eηyg0(y)m(dy)

/

eψ(η)
= 1. (1.3)

• The natural parameter space A consists of all η for which the integral
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1.1 Definitions, Notation, and Terminology 3

on the right is finite,

A =

{

η :

∫

Y
eηyg0(y)m(dy) < ∞

}

. (1.4)

Homework 1.1 Use convexity to prove that if η1 and η2 ∈ A then so

does any point in the interval [η1, η2] (implying that A is a possibly infinite

interval in R1).

Homework 1.2 We can reparameterize G in terms of η̃ = cη and ỹ = y/c.

Explicitly describe the reparameterized densities g̃η̃(ỹ).

Suppose g0(y) is any given positive function on a subset Y of the real

line. We can construct an exponential family G through g0(y) by “tilting” it

exponentially,

gη(y) ∝ eηyg0(y), (1.5)

and then renormalizing gη(y) to integrate to 1,

gη(y) = eηy−ψ(η)g0(y), where eψ(η)
=

∫

Y
eηyg0(y)m(dy). (1.6)

The space A is all values of η such that the integral is finite. It seems like

we might employ other tilting functions, say

gη(y) ∝ 1

1 + η|y|g0(y), (1.7)

but only exponential tilting gives convenient properties under independent

sampling.

If η0 is any point in A we can write

gη(y) =
gη(y)

gη0
(y)

gη0
(y) = e(η−η0)y−(ψ(η)−ψ(η0))gη0

(y). (1.8)

This is the same exponential family, now represented with

η −→ η − η0, ψ −→ ψ(η) − ψ(η0), and g0 −→ gη0
. (1.9)

Any member gη0
(y) of G can be chosen as the carrier density, with all the

other members as exponential tilts of gη0
. Important: the sample space Y

is the same for all members of G, and all put positive probability on ev-

ery point in Y. The members of G are absolutely continuous with respect

to each other, which greatly reduces the opportunities for pathologies in

exponential families.
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4 One-parameter Exponential Families

The Poisson Family

As an important first example we consider the Poisson family. A Pois-

son random variable Y having expectation µ > 0 takes values on the non-

negative integersZ+ = {0, 1, . . . },

Prµ{Y = y} = e−µµy/y!, for y ∈ Z+. (1.10)

The densities e−µµy/y!, taken with respect to counting measure onY = Z+,
can be written in exponential family form as

gη(y) = eηy−ψ(η)g0(y)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

η = log µ (µ = eη)

ψ(η) = eη (= µ)

g0(y) = 1/y!.

(1.11)

(Here g0(y) is not a member of G, and is not even a proper density.)

Homework 1.3 (a) Rewrite G so that g0(y) corresponds to the Poisson

distribution with µ = 1.

(b) Carry out the numerical calculations that tilt Poi(12), seen in Fig-

ure 1.1, into Poi(6).
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Figure 1.1 Poisson densities for µ = 3, 6, 9, 12, 15, 18; heavy
curve with dots for µ = 12.
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1.2 Moment Relationships 5

Even though the mathematics in (1.11) is straightforward, it is still a

little surprising to see that any Poisson density is a simple exponential tilt

of any other.

1.2 Moment Relationships

The name cumulant generating function for the normalizer ψ(η) reflects

an older methodology for finding expectations, variances, and higher-order

moments. The methodology is particularly useful and easy to apply within

exponential families.

Expectation and Variance

Differentiating exp{ψ(η)} =
∫

Y eηyg0(y)m(dy) with respect to η, and indicat-

ing differentiation by dots, gives

ψ̇(η)eψ(η)
=

∫

Y
yeηyg0(y)m(dy) (1.12)

and

(

ψ̈(η) + ψ̇(η)2
)

eψ(η)
=

∫

Y
y2eηyg0(y)m(dy). (1.13)

(The dominated convergence conditions for differentiating inside the inte-

gral are always satisfied inside exponential families; see Theorem 2.2 of

Brown, 1986.) Multiplying by exp{−ψ(η)} gives expressions for the expec-

tation µη and variance Vη of Y ,

ψ̇(η) = µη = Eη{Y}, (1.14)

ψ̈(η) = Vη = Varη{Y}, (1.15)

where Eη and Varη indicate expectation and variance under density gη. Vη
is greater than 0, implying that ψ(η) has a positive second derivative ev-

erywhere, in other words, that ψ(η) is convex. Except in trivial cases, the

variance Vη is positive for all η ∈ A.

Notice that

µ̇ =
dµ

dη
= Vη > 0.

The mapping from η to µ is 1:1 increasing and infinitely differentiable. We

can index the family G just as well with µ, the expectation parameter, as

with η. Functions like ψ(η), Eη, and Vη can just as well be thought of as
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6 One-parameter Exponential Families

functions of µ. We will sometimes write ψ, V , etc. when it’s not necessary

to specify the argument. Notations such as Vµ formally mean Vη(µ).

Note Suppose that ζ is a parameter that can be defined as a function of

either η or µ,

ζ = h(η) = H(µ).

Let ḣ = dh/dη and H′ = dH/dµ. Then

H′ = ḣ
dη

dµ
=

ḣ

V
. (1.16)

Skewness and Kurtosis

The first two moments of a random variable Y describe its expectation and

variance. The third and fourth moments give its skewness and kurtosis,

valuable for higher-order asymptotic approximations. For instance, a first-

order Edgeworth expansion says that

Pr {Y ≤ median (Y)} � 0.5 +
1

6
√

2π
SKEWNESS (Y),

while the second-order approximation also involves Y’s kurtosis.

A pre-computer technology, cumulants2 are certain linear combinations

of moments that are easy to deal with in repeated sampling situations (Sec-

tion 1.3). ψ(η) is the cumulant generating function for g0 and ψ(η) − ψ(η0)

is the CGF for gη0
(y), that is,

eψ(η)−ψ(η0)
=

∫

Y
e(η−η0)ygη0

(y)m(dy).

By definition, the Taylor series for ψ(η) − ψ(η0) has the cumulants k j of

gη0
(y) as its coefficients,

ψ(η) − ψ(η0) = k1(η − η0) +
k2

2
(η − η0)2

+
k3

6
(η − η0)3

+ · · · .

2 Cumulants add correctly under independent sampling: if X and Y are independent then

the jth cumulant of X + Y is the sum of their jth cumulants, this holding for all j. This

isn’t true for central jth moments E0{Y − µ0} j for j > 3. Cumulants are an algebraic

computational tool for simplifying higher-order moment relationships, but here we will

never go beyond j = 4. Older texts, such as Kendall and Stuart (1958), tabulate the

relations of cumulants and moments up to j = 10.
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1.2 Moment Relationships 7

Equivalently, letting dots indicate derivatives,

ψ̇(η0) = k1 (= µ0), ψ̈(η0) = k2 (= V0),
...
ψ (η0) = k3

(

= E0{Y − µ0}3
)

,
....
ψ (η0) = k4

(

= E0{Y − µ0}4 − 3V2
0

)

,

etc., where k1, k2, k3, k4, . . . are the cumulants of gη0
.

A real-valued random variable Y has skewness and kurtosis defined by

SKEWNESS(Y) =
E(Y − EY)3

(Var(Y))3/2
≡ “γ” =

k3

k
3/2

2

and

KURTOSIS(Y) =
E(Y − EY)4

(Var(Y))2
− 3 ≡ “δ” =

k4

k2
2

.

Putting this together, if Y ∼ gη(·) is an exponential family, then

Y ∼
[

ψ̇, ψ̈1/2,
...
ψ
/

ψ̈3/2,
....
ψ
/

ψ̈2
]

,

↑ ↑ ↑ ↑
expectation standard skewness kurtosis

deviation

(1.17)

where the derivatives are taken at η.

For the Poisson family

ψ = eη = µ,

so all the cumulants equal µ

ψ̇ = ψ̈ =
...
ψ =

....
ψ = µ,

giving

Y ∼
[

µ,
√
µ, 1

/√
µ, 1/µ

]

.

↑ ↑ ↑ ↑
exp st dev skew kurt

(1.18)

A Useful Result

Continuing to use dots for derivatives with respect to η and primes for

derivatives with µ, notice that

γ =

...
ψ

ψ̈3/2
=

V̇

V3/2
=

V ′

V1/2
(1.19)
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8 One-parameter Exponential Families

(using H′ = ḣ/V). Therefore

γ = 2
(√

V
)′
= 2

d

dµ
sdµ, (1.20)

where sdµ = V
1/2
µ is the standard deviation of y. In other words, γ/2 is the

rate of change of sdµ with respect to µ; this plays a role in the theory of

bootstrap confidence intervals (Part 5).

Homework 1.4 Show that

(a) δ = V ′′ + γ2 and (b) γ′ =
δ − 3/2γ2

sd
.

Note The classical exponential families – binomial, Poisson, normal, etc.

– are those with closed-form CGFs ψ, yielding neat expressions for means,

variances, skewnesses, and kurtoses.

Modern computing power lets us work with general exponential families

where results like (1.17) can be exploited numerically, no matter what the

form of ψ(η).

Unbiased Estimate of η

By definition y is an unbiased estimate of µ (and, in fact, by completeness

the only unbiased estimate of form t(y)). What about η?

• Let l0(y) = log g0(y) and l′
0
(y) =

dl0(y)/dy.

• Suppose Y = [y0, y1] (a possibly

infinite interval) and that m(y) =

1 for all y ∈ Y.

Lemma 1.1

Eη
{−l′0(y)

}

= η −
(

gη(y1) − gη(y0)
)

.

Homework 1.5 Prove Lemma 1.1. (Hint: Integration by parts.)

So, if gη(y) = 0 (or→ 0) at the extremes of Y, then −l′
0
(y) is a unbiased

estimate of η.

Homework 1.6 Numerically calculate values of−l′
0
(y) to estimate η using

Lemma 1.1 for y ∼ Poi(µ). Does it work?
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1.3 Repeated Sampling 9

1.3 Repeated Sampling

One-parameter exponential families have a crucial property that makes

them simple to deal with, both in theory and practice: in repeated sampling

situations, they retain one-parameter exponential family structure.3

Suppose y1, . . . , yn is an independent and identically distributed (i.i.d.)

sample from an exponential family G:

y1, . . . , yn
iid∼ gη(·), (1.21)

for an unknown value of the parameter η ∈ A. The density of y = (y1, . . . ,

yn) is

n
∏

i=1

gη(yi) = e
∑n

1(ηyi−ψ)

n
∏

i=1

g0(yi)

= en(ηȳ−ψ)

n
∏

i=1

g0(yi),

where ȳ =
∑n

i=1 yi/n. Letting g
(n)
η (y) indicate the density of y with respect

to
∏n

i=1 m(dyi),

g(n)
η (y) = en(ηȳ−ψ(η))

n
∏

i=1

g0(yi). (1.22)

This is a one-parameter exponential family, with:

• natural parameter η(n)
= nη (so η = η(n)/n);

• sufficient statistic ȳ =
∑n

1 yi/n (µ̄ = Eη(n){ȳ} = µ);
• normalizing function ψ(n)(η(n)) = nψ(η(n)/n);

• carrier density
∏n

i=1 g0(yi) (with respect to
∏

m(dyi)).

Homework 1.7 Show that, in the bracket notation of (1.17),

ȳ ∼
⎡

⎢

⎢

⎢

⎢

⎢

⎣

µ,

√

V

n
,
γ
√

n
,
δ

n

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Note In the following, we usually index the parameter space by η rather

than η(n).

3 The older name, “Koopman–Darmois–Pitman” families, came from the separate efforts

of the three authors to show that, under mild conditions, only definition (1.2) allowed

this kind of sufficiency property.
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10 One-parameter Exponential Families

Notice that y is now a vector, and that the tilting factor eη
(n) ȳ is tilt-

ing the multivariate carrier density
∏n

1 g0(yi). This is still a one-parameter

exponential family because the tilting is in a single direction, along 1 =

(1, . . . , 1).

The sufficient statistic ȳ also has a one-parameter exponential family of

densities,

g(n)
η (ȳ) = en(ηȳ−ψ)g

(n)

0
(ȳ),

where g
(n)

0
(ȳ) is the g0 density of ȳ with respect to m(n)(dȳ), the induced

carrying measure.

The density (1.22) can also be written (ignoring the carrier) as

eηS−nψ, where S =

n
∑

i=1

yi.

This moves a factor of n from the definition of the natural parameter to the

definition of the sufficient statistic. For any constant c we can re-express an

exponential family {gη(y) = exp(ηy−ψ)g0(y)} by mapping η to η/c and y to

cy. This tactic will be useful when we consider multiparameter exponential

families.

Homework 1.8 y1, . . . , yn
iid∼ Poi(µ). Describe the distributions of ȳ and

S , and say what are the exponential family quantities (η, y, ψ, g0,m, µ,V)

in both cases.

1.4 Maximum Likelihood Estimation in Exponential Familes

This section briefly reviews some basic results on maximum likelihood

estimation (also with a few words about testing). The methodology is par-

ticularly simple in exponential families, as we will see. A good reference

is Lehmann and Casella (1998), Theory of Point Estimation.

Suppose we observe a random sample y = (y1, . . . , yn) from a member

gη(y) of an exponential family G,

yi
iid∼ gη(y), i = 1, . . . , n,

and wish to estimate η. According to (1.22) in Section 1.3, the density of y

is

g(n)
η (y) = en[ηȳ−ψ(η)]

n
∏

i=1

g0(yi), (1.23)
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