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max-weight and back-pressure control, proportionally fair resource allocation,

data center operations, and low management in packet networks. Geared toward

researchers and graduate students in engineering and applied mathematics,

especially in electrical engineering and computer science, this compact text gives

readers full command of the methods.

J. G. DAI received his PhD in mathematics from Stanford University. He is

currently Presidential Chair Professor in the School of Data Science at the Chinese

University of Hong Kong, Shenzhen. He is also the Leon C. Welch Professor of

Engineering in the School of Operations Research and Information Engineering

at Cornell University. He was honored by the Applied Probability Society of the

Institute for Operations Research and the Management Sciences (INFORMS)

with its Erlang Prize (1998) and with two Best Publication Awards (1997 and

2017). In 2018, he received the Achievement Award from the Association for

Computing Machinery (ACM) SIGMETRICS. Professor Dai served as

editor-in-chief of Mathematics of Operations Research from 2012 to 2018.

J. MICHAEL HARRISON earned degrees in industrial engineering and

operations research before joining the faculty of Stanford University’s Graduate

School of Business, where he served for 43 years. His research concerns stochastic

models in business and engineering, including mathematical inance and

processing network theory. His previous books include Brownian Models of

Performance and Control (2013). Professor Harrison has been honored by

INFORMS with its Expository Writing Award (1998), the Lanchester Prize for

best research publication (2001), and the John von Neumann Theory Prize (2004);

he was elected to the U.S. National Academy of Engineering in 2008.

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Processing Networks

Fluid Models and Stability

J. G. DAI

The Chinese University of Hong Kong, Shenzhen

and Cornell University

J. MICHAEL HARRISON

Stanford University

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108488891

DOI: 10.1017/9781108772662

© J. G. Dai & J. Michael Harrison 2020

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Dai, J. G. (Jiangang), 1962– author. | Harrison, J. Michael, 1944– author.

Title: Processing networks : luid models and stability / Jim Dai,

J. Michael Harrison.

Description: Cambridge ; New York, NY : Cambridge University Press, 2020. |

Includes bibliographical references and index.

Identiiers: LCCN 2020012552 | ISBN 9781108488891 (hardback) |

ISBN 9781108772662 (epub)

Subjects: LCSH: Stochastic processes. | Linear programming. | Queuing

networks (Data transmission) | Fluid dynamics. | Stability.

Classiication: LCC QA274.A1 D35 2017 | DDC 519.2/3–dc23

LC record available at https://lccn.loc.gov/2020012552

ISBN 978-1-108-48889-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

To Liqin and Kevin, Elena and Sasha

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Website page xi

Preface xiii

Guide to Notation and Terminology xix

1 Introduction 1

1.1 About the Title of This Book 1

1.2 Activity Analysis 2

1.3 Two Examples of Queueing Networks 4

1.4 SPN Examples with Additional Features 7

1.5 Stability 13

1.6 Illuminating Examples of Instability 17

1.7 Structure of the Book and Intended Audience 26

1.8 Sources and Literature 27

2 Stochastic Processing Networks 29

2.1 Common Elements of the Two Model Formulations 29

2.2 Baseline Stochastic Assumptions 36

2.3 Basic SPN Model 37

2.4 Relaxed SPN Model 41

2.5 Recap of Essential System Relationships 44

2.6 Unitary Networks and Queueing Networks 46

2.7 More on the Concept of Class 50

2.8 Sources and Literature 53

3 Markov Representations 54

3.1 General Framework and Deinition of Stability 55

3.2 Suficient Condition for SPN Stability 57

3.3 First Examples of Markov Representations 58

3.4 Examples with Phase-Type Distributions 63

vii

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

3.5 Canonical Representation with a Simply Structured Policy 67

3.6 A Mild Added Restriction on the CTMC Representation 71

3.7 Suficient Condition for Irreducibility 73

3.8 Markov Representations with General State Space 75

3.9 Sources and Literature 77

4 Extensions and Complements 79

4.1 Markovian Arrival Processes 79

4.2 Alternate Routing with Immediate Commitment 81

4.3 PS Networks 87

4.4 Equivalent Head-of-Line Model for a PS Network 90

4.5 Bandwidth Sharing Networks 95

4.6 Queueing Networks with HLSPS and HLPPS Control 98

4.7 Parallel-Server Systems 99

4.8 Example Involving Fork-and-Join Jobs 100

4.9 Sources and Literature 106

5 Is Stability Achievable? 107

5.1 Standard Load Condition for a Unitary Network 108

5.2 Deining Criticality via the Static Planning Problem 108

5.3 The Subcritical Region 111

5.4 Only Subcritical Networks Can Be Stable 114

5.5 Instability with Multiresource Activities 118

5.6 Instability with Multiinput Activities 119

5.7 Stability Region and Maximally Stable Policies 121

5.8 Sources and Literature 123

6 Fluid Limits, Fluid Equations, and Positive Recurrence 124

6.1 Overview 124

6.2 Fluid Models 127

6.3 Standard Setup for Study of Fluid Limits 134

6.4 Deinition and Properties of Fluid Limits 136

6.5 Fluid Model Stability Implies SPN Stability 144

6.6 Sources and Literature 145

7 Fluid Equations That Characterize Speciic Policies 148

7.1 Queueing Network with a Nonidling Policy 149

7.2 Queueing Network with Nonpreemptive Static

Buffer Priorities 150

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents ix

7.3 Queueing Network with FCFS Control 154

7.4 Unitary Network with Specially Structured Control 156

7.5 Sources and Literature 159

8 Proving Fluid Model Stability Using Lyapunov Functions 160

8.1 Fluid Model Calculus and Lyapunov Functions 160

8.2 Advantage of Fluid Models over Markov Chains 167

8.3 Feedforward Queueing Network (Piecewise Linear

Lyapunov Function) 171

8.4 Queueing Network with HLSPS Control (Linear

Lyapunov Function) 175

8.5 Assembly Operation with Complementary

Side Business 178

8.6 Global Stability of Ring Networks 179

8.7 Global Stability of Reentrant Lines 183

8.8 Sources and Literature 192

9 Max-Weight and Back-Pressure Control 194

9.1 Leontief Networks 195

9.2 Basic Back-Pressure Policy 199

9.3 Relaxed Back-Pressure Policy 202

9.4 More about Max-Weight and Back-Pressure Policies 204

9.5 The Characteristic Fluid Equation 206

9.6 Maximal Stability of Relaxed BP (Quadratic

Lyapunov Function) 211

9.7 Maximal Stability of Basic BP with

Single-Server Activities 212

9.8 Sources and Literature 217

10 Proportionally Fair Resource Allocation 219

10.1 A Concave Optimization Problem 219

10.2 Proportional Fairness in a Static Setting 224

10.3 Aggregation Property of the PF Allocation Function 229

10.4 Unitary Network with PF Control 231

10.5 Proof of Fluid Model Stability Using Entropy

Lyapunov Function 235

10.6 Maximal Stability of the PF Control Policy 247

10.7 Sources and Literature 250

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

x Contents

11 Task Allocation in Server Farms 252

11.1 Data Locality 252

11.2 A Map-Only Model with Three Levels of Proximity 253

11.3 Augmented SPN Formulation 255

11.4 Markov Representation 258

11.5 Simpliied Criterion for Subcriticality 259

11.6 Workload-Weighted Task Allocation (WWTA) 260

11.7 Fluid Model 261

11.8 Maximal Stability of WWTA (Quadratic

Lyapunov Function) 264

11.9 Sources and Literature 267

12 Multihop Packet Networks 268

12.1 General Slotted-Time Model 269

12.2 Additional Structure of Links and Link Conigurations 274

12.3 Fluid-Based Criterion for Positive Recurrence 282

12.4 Max-Weight and Back-Pressure Control 286

12.5 Maximal Stability of Back-Pressure Control 289

12.6 Proportional Scheduling with Fixed Routes 293

12.7 Fluid Limits and Fluid Model under Random

Proportional Scheduling 301

12.8 Maximal Stability of Random Proportional Scheduling 308

12.9 Sources and Literature 309

Appendix A Selected Topics in Real Analysis 311

Appendix B Selected Topics in Probability 319

Appendix C Discrete-Time Markov Chains 331

Appendix D Continuous-Time Markov Chains and Phase-Type

Distributions 344

Appendix E Markovian Arrival Processes 362

Appendix F Convergent Square Matrices 369

References 371

Index 379

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Website

http://www.spnbook.org

This book is accompanied by the above website. The website provides

corrections of mistakes and other resources that should be useful to

both readers and instructors.

xi

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108488891
www.cambridge.org


Cambridge University Press
978-1-108-48889-1 — Processing Networks
J. G. Dai , J. Michael Harrison 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

This book has two purposes. First, it describes a broad class of mathe-

matical system models, called stochastic processing networks (SPNs),

that are useful as representations of service systems, industrial pro-

cesses, and digital systems for computing and communication. The SPN

models to be considered include such features as simultaneous resource

possession, multi-input operations, and alternative processing modes.

No comparably general treatment of network models has appeared

previously in book format.

Second, it develops a luid model methodology for proving SPN

stability, by which we mean proving positive recurrence of the Markov

chain describing the SPN. Speciically, we develop a theorem that can

be informally paraphrased as follows: if the luid model derived from

an SPN is stable (as that phrase is deined later in this preface), then

the SPN itself is stable. The signiicance of that result lies in the relative

tractability of luid models: proving luid model stability is invariably

easier than proving positive recurrence of the Markov chain for which

it serves as a surrogate.

As multiple examples will show, proving luid model stability for a

complex SPN can still be challenging, requiring the construction of

a suitable Lyapunov function. A large part of the book is aimed at

demonstrating how the theorem has been used and can be used to

analyze systems of contemporary interest, especially computing and

communication networks.

S1B1 B2 S2 DeparturesArrivals

Figure 1 Tandem processing system.

xiii
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xiv Preface

Tandem example. To understand the content of the theorem para-

phrased above, it is useful to consider a concrete example. Figure 1

depicts a tandem processing system with two servers, labeled S1 and

S2. Jobs arrive from the outside world one at a time. Each job is

processed irst by S1, then by S2, and then exits. If a job arriving

at either server inds that server idle, then the processing of that job

begins immediately. On the other hand, if a job arriving at either server

inds that server busy, then the job waits in a corresponding buffer

(B1 or B2). Each server processes jobs from its associated buffer on a

irst-in-irst-out (FIFO) basis, and continues working at full capacity

so long as there is any job available for it to process. As a matter of

convention, when reference is made later to “jobs currently occupying

B1,” that is understood to include not only waiting jobs but also the

job being processed by S1, if there is one, and similarly for B2. For

concreteness, let us assume that the external arrival process is Poisson

with arrival rate λ1; that S1 processing times, also called service times,

are independent and identically distributed (i.i.d.) with some phase-

type distribution (see Appendix D, Section D.8, for the meaning of

that term) having mean m1; and that S2 service times are i.i.d. and

exponentially distributed with mean m2.

Tandem luid model. Associated with this discrete-low network is a

continuous-low model, or luid model, that consists of the following

equations: for t≥ 0,

Z1(t) = Z1(0)+λ1t−µ1T1(t) ≥ 0,(1)

Z2(t) = Z2(0)+µ1T1(t)−µ2T2(t) ≥ 0,(2)

Ti(0) = 0, 0 ≤ Ti(t)−Ti(s) ≤ t− s for 0 ≤ s≤ t, i = 1,2,(3)

Zi(u) > 0 for all u ∈ [s, t] implies that Ti(t)−Ti(s) = t− s(4)

for 0 ≤ s≤ t and i = 1,2.

Here Zi(t) is interpreted as the luid content in buffer i at time t, and

Ti(t) is the cumulative amount of time that server i is busy up to time t

(i = 1,2). The parameter λ1 is the arrival rate of luid from the outside,

and µi := m−1
i is the processing speed of server i (i = 1,2). Equations

(1) and (2) are the low balance equations, while (3) expresses service

capacity constraints, and (4) dictates that each server operate at full

capacity whenever its buffer is nonempty.

The luidmodel is said to be stable if, for each solutionZ of equations

(1) through (4), there exists a time δ > 0 such that Z1(t) =Z2(t) = 0 for
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Preface xv

t ≥ δ. One can prove that the luid model is stable if and only if the

following conditions are satisied:

λ1m1 < 1 and λ1m2 < 1.(5)

Sequential decomposition of the tandem luid model. There are many

ways to prove that statement. Perhaps the simplest is to analyze the

tandem luid model sequentially, irst for luid in buffer 1, then for luid

in buffer 2. Given that λ1 < µ1, it is easy to show that there exists a time

δ1 ≥ 0 such thatZ1(t) = 0 for t≥ δ1. After time δ1, the luid lowing into

B1 instantaneously passes into B2, and thus the arrival rate to B2 is λ1.

One can again analyze buffer 2 in isolation, showing there exists δ2 ≥ δ1
such that Z2(t) = 0 for t≥ δ2.

Direct analysis of the discrete-low model. Under the distributional

assumptions stated earlier, we can model the tandem processing system

as a continuous-time Markov chain {X(t) = (Z1(t),η(t),Z2(t)), t ≥ 0},

where Zi(t) is the number of jobs occupying buffer i at time t, and η(t)

is a inite-valued phase indicator (see Section D.8) for the S1 service

currently under way, if any. (When B1 is empty, η(t) = 0.) How does one

prove that theMarkov chainX is positive recurrent under condition (5)?

The irst thing to say is that there exists no analog of the sequential

decomposition approach we have described. That is, in the discrete-low

setting, stability analysis is not decomposable, despite the feedforward

structure (that is, unidirectional low) that is the salient feature of

our example. Rather, with rare exceptions, the approach adopted by

researchers is to apply the Foster–Lyapunov criterion described in

Appendix D, Section D.7. In this approach, the analyst must identify

a test function V , hereafter called a Lyapunov function, that satisies

the Foster–Lyapunov drift condition (D.36). For our tandemprocessing

example, one can construct a Lyapunov function of the quadratic form

V(Z1,η,Z2) = Z2
1 +a(Z1 +Z2)

2,

where a is any constant satisfying 0 < a < µ1/λ1 − 1. An analysis

undertaken in Section 8.2, culminating in the inequality (8.19), will

show that this functionV satisies the Foster–Lyapunov drift condition,

thus proving the positive recurrence of X .

Lyapunov functions for luid models. The sequential decomposition

described earlier to prove stability for our tandemluidmodel extends in
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xvi Preface

a direct way to any feedforward luid model. For a general luid model,

however, one proves stability in very much the same way as for a general

Markov chain, namely, by identifying a Lyapunov function that satisies

an appropriate drift condition. That general theory will be developed in

Chapter 8.

As an example, the simple linear function V(Z) = Z1 +Z2 satisies

the drift condition for our tandem luid model, given that (5) holds.

However, for reasons explained in Section 8.2, it does not satisfy the drift

condition for the discrete-low tandemmodel. Thus the simplest known

Lyapunov function for the discrete-low tandem model is quadratic,

while that for its luid analog is linear. This illustrates a phenomenon

that has often been observed in the analysis of particular model struc-

tures: in cases where a Lyapunov function is known both for a discrete-

low SPN model and for the luid model derived from it, the latter

function is substantially simpler.

Control policies and stability conditions. In the preceding paragraphs,

we have discussed the stability problem for processing networks as if

it were simply one of analysis, that is, as if the central problem were

to rigorously prove stability under a given control policy. In general,

however, a system designer or systemmanager irst confronts a problem

of synthesis, namely, he or she must irst devise a dynamic control

policy, which may be called a network protocol or network algorithm in

a digital system context.

In our tandem example, we have speciied FIFO processing by both

servers, but the same luid equations are valid for other nonidling

policies as well. (Here the term “nonidling” means that each server

works at full capacity whenever there is accessible work for that server

to do.) Speciically, the luid model equations (1) and (2) remain valid

under any policy such that the number of partially completed jobs at

any given time is bounded by some constant L, (3) is valid under any

policy, and (4) is valid under any nonidling policy, as will be shown in

Section 7.1.

In this book, virtually all effort and attention is directed to the

analytical problem of proving stability for a given policy. As a prelim-

inary, we develop in Chapter 5 a general stability condition analogous

to (5), based on what is called a static planning problem. That condition

involves only irst-order system data (average arrival rates, average pro-

cessing times, and routing probabilities or average output quantities),

and it is shown to be necessary for stability under any control policy.
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One tends to feel intuitively that the condition is also suficient for

existence of a policy that achieves stability, but examples will show that

expectation is not always correct.

Dominance of the luid approach. Over the last 25 years, luid model

methodology has come to dominate in studies of network stability,

allowing successful treatment of model families that have deied direct

analysis. Notable in this regard are the feedforward networks referred

to earlier. The method of sequential decomposition makes luid model

stability proofs almost trivial for such networks (see Section 8.3 for

elaboration), whereas the feedforward structure may be of little or no

help in direct analysis. This contrast is illustratedwell by the recent work

of Massoulié and Xu (2018) on information processing systems.

There are also important families of non-feedforward networks for

which luid models have been analyzed successfully to prove stability,

but no method is known for direct analysis. Another way of saying

this is that, for some important families of non-feedforward networks,

Lyapunov functions have been successfully devised for their luid model

analogs, but not for the discrete-lowmodels themselves. This is true, for

example, of the FIFO Kelly networks analyzed by Bramson (1996a),

also treated in section 5.3 of the monograph by Bramson (2008).

Another example is a packet switched communication network with

whatWalton (2015) called random proportional scheduling, to be treated

in Chapter 12 of this book. In both those cases, an entropy-type

Lyapunov function (see Section 10.5) provides the key to luid analysis,

and there is no known analog for the discrete-low model itself.
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Guide to Notation and Terminology

We use R to denote the set of real numbers, R+ the set of nonnegative

real numbers, Z+ the set of nonnegative integers, and N the positive

integers. A prime is used to denote the transpose of a vector or matrix,

and vectors should be envisioned as column vectors unless something is

said to the contrary. For an integer d > 0 and a vector x= (x1, . . . ,xd) ∈

R
d , we deine the norm |x| =

∑d
i=1|xi|, and for two vectors x,y ∈R

d , we

deine the inner product x · y =
∑d

i=1xiyi. For two vectors x ∈ R
d and

y ∈ R
d , we write x≤ y to mean that xi ≤ yi for each i = 1, . . . ,d.

The relationship A := B means that A equals B by deinition. The

letter e is occasionally used to denote the vector (1, . . . ,1), andwe denote

by e j a vector with a 1 as its jth component and all other components

equal to zero; in each case, the dimension of the vector should be clear

from context. For x,y ∈ R, we use x∨ y to denote max(x,y), and x∧ y

to denote min(x,y).

A square, nonnegative matrix is said to be substochastic if each of its

row sums is ≤ 1, and to be stochastic if each of its row sums is = 1. The

spectral radius of a d×d substochastic matrix P is max1≤i≤d |λi|, where

λ1, . . ., λd are the eigenvalues of P. A substochastic matrix P is said to

be transient if its spectral radius is < 1, or equivalently, if Pn → 0 as

n→ ∞.

Throughout the book, we denote by P(·) the probability measure

underlying a model, and by E(·) the corresponding expectation

operator. That is, P(A) denotes the probability of an event A, and

E(X) is the expected value of a random variable X . For an event A and

random variableX , we deine the partial expectationE(X ;A) =
∫
AXdP.

Phase-type distributions are deined and discussed in Appendix D,

SectionD.8, where we introduce the following notation for three speciic

families of nonnegative, univariate distributions: exp(r) denotes an

exponential distribution with rate parameter r> 0; Erlang(2,r) denotes

xix
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xx Guide to Notation and Terminology

anErlang distribution with shape parameter 2 and rate parameter r> 0;

and Hd(p,γ ) denotes a hyperexponential distribution (see Section D.8

for details).

Stochastic processing networks, also referred to frequently as SPN

models, are formally deined in Chapter 2, Sections 2.1 through 2.4,

where we introduce notation for model data and model-related pro-

cesses that continues throughout the entire book. In particular, the

uppercase Roman lettersA,B,D,E, F , I , J,K,N, S,T , andZ are given

more or less permanent meanings in those sections, but such symbols

may be reused with newmeanings in the appendices. Sets are most often

denoted by uppercase script letters; three that appear frequently are

I = {1, . . . ,I}, J = {1, . . . ,J}, and K = {1, . . . ,K}.

For a function f : R+ →R
d , we use

.
f (t) to denote the derivative of f

at t. A point t> 0 is said to be a regular point for f if f is differentiable at

t. When the function f is clear from the context, we sometimes call t> 0

a regular point without further qualiication.Whenever the symbol
.
f (t)

is used, it is assumed that t is a regular point of f . Occasionally we also

use d
dt
f (t) to denote

.
f (t).
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