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1 Light Waves

1.1 Maxwell’s Equations

The field of optics describes the behavior of light as it propagates through space and mate-

rials. To understand the behavior of light, we start with the fundamental classical physics

model describing it: Maxwell’s equations of electrodynamics. Maxwell’s equations show

that the electric and magnetic fields can travel as waves. In a source-free region, Maxwell’s

equations in linear media are1

�∇ · �E = 0, (1.1)

�∇ · �B = 0, (1.2)

�∇ × �E = −
∂�B

∂t
, (1.3)

�∇ × �B = µǫ
∂ �E

∂t
, (1.4)

where �E is the electric field, �B is the magnetic field, µ is the permeability of the medium,

and ǫ is the permittivity of the medium. If we take the curl of both sides of Eq. (1.3), apply

the vector identity �∇× �∇× �E = �∇(�∇ · �E)−∇2 �E to the left-hand side and exchange the order

of the time derivative and the curl on the right-hand side, we get

�∇(�∇ · �E) − ∇2 �E = −
∂(�∇ × �B)

∂t
. (1.5)

Then substitute from Eqs. (1.1) and (1.4) to get

∇2 �E = µǫ
∂2 �E

∂t2
. (1.6)

This is the wave equation in three dimensions where the wave speed is v = 1/
√

µǫ. Taking

the curl of Eq. (1.4) and performing similar algebra shows that the magnetic field also

satisfies the wave equation with the same wave speed. Thus Maxwell’s equations allow for

electromagnetic waves. In vacuum, the speed is v = 1/
√

µ0ǫ0 ≡ c, the speed of light in

vacuum. Light is indeed an electromagnetic wave.

We now look for solutions to Eq. (1.6) and its magnetic field counterpart. We actually

only need to solve for the electric field because the magnetic field can always be found

from �B = 1
c
k̂ × �E, where k̂ is the direction of travel. (See Exercise 8.1.) We’ll assume

1 A source-free region has no net free charge and no net free current. Linear media include vacuum and di-

electrics: air, glass, and so on. For an excellent introduction to electrodynamics, see Griffiths (2017).
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2 Light Waves

a single linear polarization and single-frequency (monochromatic) electromagnetic wave.

The electric field should then be in the form

�E(�r, t) = n̂ E(�r) cos
[

ωt + φ(�r)
]

= Re
{

n̂ Ẽ(�r)ei(ωt)
}

, (1.7)

where Ẽ(�r) = E(�r)eiφ. Generalizing to the complex plane, we look for solutions to Eq. (1.6)

of the form

�E(�r, t) = n̂ Ẽ(�r)eiωt, (1.8)

with the anticipation that at the end we will take the real part to get the actual physical

field. Substituting Eq. (1.8) into Eq. (1.6) allows us to eliminate n̂, reducing it to a scalar

equation. Also, the time derivatives can be performed explicitly bringing down an ω2 from

the eiωt. This results in a second-order partial differential equation known as the Helmholtz

equation

(∇2
+ k2) Ẽ(�r) = 0, (1.9)

where k = ω/v is the wave number. If we can solve Eq. (1.9) for the complex scalar

field Ẽ(�r), then we can get the actual physical electric field by multiplying our solution by

n̂eiωt and taking the real part. Since Eq. (1.9) is a second-order partial differential equation

in three spatial coordinates (e.g. x, y, z), we will need to specify appropriate boundary

conditions for the field on some surface in order to obtain explicit solutions.

1.2 Huygens’ Principle

In many cases of interest in optics, Eq. (1.9) is solved to a good approximation by Huygens’

integral. The field is assumed to be known on a “source plane” S 1 perpendicular to the

z-axis and is only nonzero in some finite region of that plane. The values of the field on

S 1 serve as a boundary condition for solving Eq. (1.9). The solution is given by Huygens’

integral for the complex scalar field at any desired point x, y, z.

Ẽ(x, y, z) =
i

λ

�

S 1

Ẽ(x′, y′, z′) cos φ
e−ikr

r
dS ′. (1.10)

The integration over the source plane S 1 is performed using the integration variables x′,

y′, z′. The vector �r joins points in the source plane S 1 with the point (x, y, z) at which we

are calculating the field. The angle between �r and the z-axis is φ (see Figure 1.1). The

solution represented by Huygens’ integral is satisfying because it encapsulates an intu-

itive understanding of how light waves behave that was understood long before the formal

mathematics was fully worked out.

The intuitive description of Eq. (1.10) is known as Huygens’ principle, due to Christiaan

Huygens (1629–1695), a Dutch mathematician and scientist. Under Huygens’ principle,

every point in the source is considered to be emitting light with spherical wavefronts prop-

agating outward – the so-called Huygens’ wavelets. These wavefronts are represented by
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3 1.2 Huygens’ Principle

�Figure 1.1 The electric field in the source plane S1 is propagated to the field point in plane S. The

source plane is located at z = z1 and the field plane is at z. The circle on the source

plane indicates a typical source point involved in the integral. The complex scalar field

at this point is Ẽ(x, y, z1). Similarly, the circle on the field plane indicates a typical field

point with complex scalar field Ẽ(x, y, z).

the factor cos φ e−ikr

r
. They are emitted preferentially in the direction perpendicular to the

source plane due to the presence of cos φ. The constant i
λ

out-front contributes 90◦ of phase

and the λ in the denominator serves to keep the units the same on both sides of the equa-

tion. The complex scalar field in the source plane Ẽ(x, y, z1) sets the relative amplitudes

and phases of these tiny spherical emitters. The field Ẽ(x, y, z) is then simply the linear

superposition of all the spherical wavefronts emitted from the source.

Example 1.1 Single-Slit Diffraction A typical use of the Huygens’ integral solu-

tion 1.10 is to find the diffraction pattern from a small aperture of some specific shape.

Consider the diffraction of a plane wave from a rectangular aperture of width 2b and

height 2d viewed on a screen at a distance L downstream from the slit. The screen dis-

tance is much larger than either dimension of the aperture b, d << L. We choose our

optic axis z to be perpendicular to the plane of the aperture and centered on the aperture

and choose the x and y axes of the source plane and field plane to be parallel to the width

and height of the slit, respectively. The slit is located at z = 0 and the screen at z = L.

The complex scalar field in the slit is assumed to be from a monochromatic plane wave

impinging on the slit from the left. See the following diagram. So Ẽ(x, y, 0) = u0 for

−b < x ≤ b, −d < y ≤ d and zero otherwise. We want to calculate the complex scalar

field on the screen along the x-axis. Taking the squared magnitude of the complex scalar

field gives the irradiance.
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4 Light Waves

Huygens’ principle for this case is then

Ẽ(x, 0, L) =
i

λ

b
∫

x′=−b

d
∫

y′=−d

u0 cos φ
e−ikr

r
dx′ dy′. (1.11)

For the r in the denominator, it’s enough to use the approximation r ≈ L. Since

b, d << L, we also have cos φ ≈ 1. For the r in the exponent, where it’s multiplied by

k = 2π
λ

and therefore causes the integrand to vary rapidly, we need the first-order bino-

mial approximation. Since we’re going to start by integrating over y′, we approximate

r in terms of
y′

L
as

r ≈
√

L2 + (x − x′)2 +
y′2

2L
+ . . . . (1.12)

The integrand becomes separable and Eq. (1.11) is then

Ẽ(x, 0, L) ≈
iu0

λL

b
∫

x′=−b

e−ik
√

L2+(x−x′)2

dx′
d
∫

y′=−d

e−ik
y′2
2L dy′. (1.13)

The y′ integral can be done with the help of tables, computer programs, and so on, but

since the integrand depends only on y′, the result is just an overall constant, which we

shall call A. Then

Ẽ(x, 0, L) ≈
iA

λL

∫ b

−b

e−ik
√

L2+(x−x′)2

dx′. (1.14)

We can now redraw the previous figure from the viewpoint of a person looking down

onto the arrangement from above. The x′ integral is now a sum over ribbons of width

dx′ and having the full height of the slit. This is the way the problem is sometimes

represented in introductory physics texts and the issue of why it works (i.e. separability

of the integrand) is not explained.
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5 1.2 Huygens’ Principle

θ

x′ sinθ

θ

dx′

x′

x

L

Slit of width 2b
(in source plane)

Plane wave Viewing screen

Field point

(x x' )+L
2 2

–

x+L
2 2

This figure should convince you that
√

L2 + (x − x′)2 =

√
L2 + x2 − x′ sin θ, where θ is

the diffraction angle measured from the center of the slit. Making this substitution in

Eq. (1.14) and carrying out the integral, we get

Ẽ(x, 0, L) ≈
2iAbu0

λL

sin (kb sin θ)

kb sin θ
e−ik

√
L2+x2

. (1.15)

The irradiance I is proportional to the magnitude of the complex scalar field squared:

I ∝ Ẽ(x, 0, L)∗Ẽ(x, 0, L) (1.16)

∝
sin2 (kb sin θ)

(kb sin θ)2
. (1.17)

The maximum irradiance occurs when θ = 0. If the maximum irradiance is I0 , then

I(θ) = I0

sin2 (kb sin θ)

(kb sin θ)2
. (1.18)

Note that this expression has minima whenever kb sin θ = ±nπ, where n = ±1,±2, . . . .

Generally, this condition is written in terms of the full width a ≡ 2b of the slit as

a sin θn = nλ. (1.19)

This equation is familiar to students of introductory optics. If we then plug in sin θ =

x/
√

x2 + L2, we get the irradiance in terms of the screen position x. This is the form we

would want for comparing to actual measurements on a flat screen like a digital camera

image chip, and so on.

I(x, 0, L) = I0

(

λ

πa

)2 x2
+ L2

x2
sin2

(

πa

λ

x
√

x2 + L2

)

. (1.20)

The corresponding minima locations are

xn = ±
nλL

√
a2 − n2λ2

, n = 1, 2, . . . (1.21)
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6 Light Waves

The figure here shows the irradiance distribution from Eq. (1.20) and minima locations

from Eq. (1.21) for the diffraction of a HeNe laser, λ = 632.8 nm at a slit seven wave-

lengths wide. The screen (field plane) is 1 m from the slit, so you can see from the

x-axis that the diffraction pattern isn’t very wide. It falls off quickly away from the

central maximum.

Huygens’ principle in the form of Eq. (1.10) can also be used to get a numerical solution

using a finite number of discrete emitters. The integral is thus converted to a sum over

the fields emanating from these discrete emitters. As an example, Figure 1.2 shows the

result of adding the fields propagating from 100,000 identical spherical emitters in a slit 10

wavelengths wide and 100 wavelengths tall. Although the field near the aperture changes

quite rapidly, at large distances from the aperture the diffracted field settles into the uniform

pattern characteristic of single-slit diffraction.

It is worth re-emphasizing that the value of Huygens’ principle lies not only in the fact

that we can evaluate the right-hand side analytically or on a computer. It gives us an intu-

ition for the nature of electromagnetic radiation beyond simple plane waves.

1.3 The Paraxial Approximation

We’re going to be most interested in the propagation of “beams” of light.2 Beams of light

propagate mostly in one direction and we choose our axes so that the z-axis lies in the

direction of propagation. The paraxial approximation is the assumption that all wavefront

normals make small angles with the z-axis. It is appropriate for beams and any situation

where light travels mostly in one direction. We consider the propagation between two

planes perpendicular to the z-axis as shown in Figure 1.1: a source plane S1 at z = z1

2 Lasers are the main source of light beams nowadays. For consistency, the approach in this section corresponds

closely to that of classic laser textbooks, which should be consulted for extra details. I recommend Svelto

(2010) for a more introductory approach and Siegman (1986) for those who want to fill in all the gaps.
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7 1.3 The Paraxial Approximation

�Figure 1.2 Simulation of a plane wave incident from the left, diffracting through an aperture 10

wavelengths across and 100 wavelengths high. The wavelength is 1 µm. The aperture

is at the left edge of the image (between −5 and +5µm). The irradiance was

estimated by Huygens’ principle using approximately 100,000 spherical Huygens’

wavelet emitters in a rectangular grid 10 wavelengths wide and 100 wavelengths high

(out of page). The far-field pattern has essentially established itself by the time the

light reaches the right-hand edge of the image, 40µm downstream. A screen placed

at the far right of the image, perpendicular to the page, would register the classic

single-slit diffraction pattern with the bright central maximum. (The dark and bright

bands running mostly vertically are due to the fact that this is a snapshot of the

irradiance at a single time. They are the crests, troughs, and zeros of the

electromagnetic wave.) To illustrate the fainter features of the diffracted beam, I’ve

plotted the field magnitude (square root of irradiance) rather than the irradiance. This

is also closer to the way our eye perceives the irradiance pattern.

and a “downstream” field plane S at some unspecified z. As before, we assume that in the

source plane, the complex scalar field Ẽ(x, y, z1) is known.

The Helmholtz equation simplifies in the paraxial approximation. Since the light is prop-

agating primarily in the z-direction, it’s useful to separate out the rapid phase accumulation

in z due to the wave nature of the light by writing

Ẽ(x, y, z) = u(x, y, z)e−ikz. (1.22)

The idea is that as long as the light is traveling largely in the z-direction, the u(x, y, z) will

vary very little over distances on the order of a wavelength. In other words, our wave can

be treated as something close to a plane wave but with a complex amplitude u(x, y, z) that
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8 Light Waves

varies slowly with position. u(x, y, z) is sometimes known as the complex field amplitude

or just the field amplitude. Substituting Eq. (1.22) into Eq. (1.9), we get

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2ik

∂u

∂z
= 0. (1.23)

In the common case where the wave occupies only a small region in the source plane and

the phasefronts are fairly flat – typical characteristics of what we might call “beams” –

then u will vary more slowly in the z-direction than in any other direction, namely
∣

∣

∣

∣

∣

∣

∂2u

∂z2

∣

∣

∣

∣

∣

∣

≪
∣

∣

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

∣

∣

(1.24)

∣

∣

∣

∣

∣

∣

∂2u

∂z2

∣

∣

∣

∣

∣

∣

≪
∣

∣

∣

∣

∣

∣

∂2u

∂y2

∣

∣

∣

∣

∣

∣

. (1.25)

Also, the fractional change in the slope ∂u
∂z

should be small over a wavelength λ. That is

∣

∣

∣

∣

∣

∣

∣

∣

∆

(

∂u
∂z

)

∂u
∂z

∣

∣

∣

∣

∣

∣

∣

∣

≈

∣

∣

∣

∣

∣

∣

∣

∂2u
∂z2 λ

∂u
∂z

∣

∣

∣

∣

∣

∣

∣

≪ 1. (1.26)

Since k = 2π
λ

this implies

∣

∣

∣

∣

∣

∣

∂2u

∂z2

∣

∣

∣

∣

∣

∣

≪
∣

∣

∣

∣

∣

2k
∂u

∂z

∣

∣

∣

∣

∣

. (1.27)

So, we can drop ∂
2u
∂z2 from Eq. (1.23), leaving

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0. (1.28)

This equation is generally known as the paraxial wave equation.

A solution to the paraxial wave equation can be obtained from Huygens’ integral. In the

paraxial approximation, where all propagation is close to the optic axis, the pathlength r

in Figure 1.1 can be approximated as

r =

√

(x − x′)2 + (y − y′)2 + (z − z1)2 (1.29)

≈ L +
(x − x′)2

+ (y − y′)2

2L
+ · · · , (1.30)

where, in the second line, L is the propagation distance (L ≡ z−z1). With this, and cos θ ≈ 1,

we can rewrite Huygens’ integral Eq. (1.10) as

u(x, y, z) =
i

λL

�

�2

u(x′, y′, z1)e−ik
(x−x′)2+(y−y′)2

2L dx′ dy′ . (1.31)

This integral solution to Eq. (1.28) allows us to handle most systems involving beams and

is the easiest way to propagate the complex scalar field between two planes. The parax-

ial approximation made here amounts to what is also called the “Fresnel approximation.”

Equation (1.31) is therefore referred to as Huygens’ integral in the Fresnel approximation.
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9 1.4 Coherence

1.4 Coherence

Huygens’ principle also allows us to discuss one of the ways in which we classify the

statistical properties of light. Light sources are often discussed in terms of their coherence,

which comes in two types: temporal coherence and spatial coherence. In a temporally

coherent emitter, all of the Huygens’ wavelets are emitting at the same frequency and the

phase of each individual emitter remains fixed for a long time (e.g. many nanoseconds for

a HeNe laser). This is known as the coherence time. Lasers have high temporal coherence

compared to other sources of light. As a result, lasers tend to be very narrow-band emitters,

emitting in only a very narrow band of wavelengths around some nominal wavelength. In

lasers, the bandwidth of the output light is referred to as the “linewidth.” For example,

HeNe lasers, which have fairly narrow linewidths, may emit wavelengths in the band λ =

632.816 ± 0.001 nm. The coherence length of a HeNe is the distance traveled by the beam

in the coherence time. For a HeNe, it’s typically a few tens of centimeters but can be tens

of meters for carefully designed units.

High temporal coherence does not in itself require that all the Huygens’ emitters have

the same phase, only that the phase of each individual emitter should vary slowly. Spatial

coherence describes the phase relationship between the different Huygens’ emitters. In

a source with high spatial coherence, all the emitters are in phase with one another, or

nearly so. For example, Young’s double-slit experiment only yields the expected diffraction

pattern when the spatial coherence of the incident light is sufficient that parts of the beam

separated by the slit distance have similar phase. Sources with high spatial coherence can

be focused to very small spot sizes and can be collimated so that they approximate plane

waves. Note that high spatial coherence does not require high temporal coherence even

though they usually occur together. As long as the phases of all the emitters stay the same,

spatial coherence is preserved whether the overall phase changes are fast or slow, random

or not. In Chapter 6, we discuss the properties of etendue and radiance, which are closely

related to spatial coherence. Sources with high spatial coherence will have high radiance

and low etendue. As a rule, both the temporal and spatial coherence of lasers are the highest

of all light sources, which is the main reason they’re so useful.

Example 1.2 Partial Spatial Coherence Consider a light source like certain

LEDs with very small emission regions that possesses partial spatial coherence over its

beam. If we consider a transverse cross section of such a beam, then adjacent photons

in the cross section will usually be in phase with one another but the greater the trans-

verse distance between the photons, the higher the probability they will have random

phase with respect to one another. Imagine taking such a light source, covering its aper-

ture with aluminum foil and poking two small pinholes in the foil. Then you’ve made

a version of Young’s double-slit experiment. An interference pattern will be formed

wherever the two beams emerging from the holes overlap. The following figure shows

how partial spatial coherence reduces the fringe contrast. Both panels show a simula-

tion of the interference pattern formed by illuminating two pinholes ten wavelengths

apart and viewed on a flat screen 10 cm away. The panel on the left assumes the source
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10 Light Waves

has perfect spatial coherence. The fringes have high contrast. The panel on the right

assumes that the fields emanating from the two pinholes are only partially coherent due

to an imperfect spatial coherence of the source. The fringe contrast is much lower. The

fringe contrast can be characterized by a quantity called the “visibility” which is just the

difference between the maximum fringe irradiance and the minimum fringe irradiance,

divided by the sum. The visibility of the fringes on the left is clearly higher.

Exercises

1.1 Electromagnetic waves are transverse waves. In what sense are they transverse? Does

something actually move up and down in space?

1.2 In Section 1.1, we took the curl of Faraday’s law, Eq. (1.3), to show that the electric

field has wavelike solutions in regions free of charge and current (source-free). Now

do the same for the magnetic field by taking the curl of Ampere’s law with Maxwell’s

correction, Eq. (1.4).

1.3 Use the source-free version of Gauss’ law, Eq. (1.1), and “Gauss’ Law for Magnetic

Fields,” Eq. (1.2), to show that for a monochromatic plane wave, both the electric

and magnetic fields are perpendicular to the direction of propagation. Hint: Choose

the z-axes so that it lies in the direction of propagation, writing �E = �E0 cos (kz − ωt)

and �B = �B0 cos (kz − ωt).

1.4 Apply Faraday’s law to a monochromatic plane wave in a linear medium traveling

in the ẑ direction to show that �B0 =
1
v
ẑ × �E0, where v is the speed of light in the

medium. �E0 and �B0 are the vector-amplitudes of the electric and magnetic fields, re-

spectively. Explain why this relationship implies that the electric and magnetic fields
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