

Principles of Behavioral Neuroscience

How does brain activity give rise to sleep, dreams, learning, memory, and language? Do drugs like cocaine and heroin tap into the same neurochemical systems that evolved for life's natural rewards? What exactly are the powerful new tools of molecular biology that are revolutionizing neuroscience? This undergraduate textbook explores the relation between brain, mind, and behavior. It clears away the extraneous detail that so often impedes learning, and describes critical concepts step-by-step, in straightforward language. Rich illustrations and thought-provoking review questions further illuminate the relations between biological, behavioral, and mental phenomena.

With writing that is focused and engaging, even the more challenging topics of neurotransmission and neuroplasticity become enjoyable to learn. While this textbook filters out non-critical details, it includes all key information, allowing readers to remain focused and enjoy the feeling of mastery that comes from a grounded understanding of a topic, from its fundamentals to its implications.

Jon C. Horvitz grew up in Philadelphia, and graduated from Haverford College before receiving his PhD in Psychology at the University of California, Santa Barbara. After postdoctoral work in neuroscience at Princeton University, he was a professor of psychology at Columbia University, Boston College, and now City College of New York/CUNY. A passionate teacher who enjoys finding ways to excite his students, his brain–mind courses have won many accolades. His research examines brain circuits underlying natural and drug rewards, and he has been a grant reviewer for the National Institute on Drug Abuse. He loves to play jazz piano. He and his wife regularly travel to Spain to visit her family.

Barry L. Jacobs was a professor of psychology and neuroscience at Princeton University. He taught one of the university's most popular courses, "The Brain: A User's Guide," and was a leading researcher in the areas of serotonin, sleep, and depression. He grew up in Chicago, graduated from the University of Illinois-Chicago, and received his doctorate in psychology from the University of California, Los Angeles. He was a postdoctoral fellow in the psychiatry department at Stanford University Medical School before coming to Princeton. He has taken joy in being a mentor to many young neuroscientists throughout the world.

Principles of Behavioral Neuroscience

Jon C. Horvitz

City College, City University of New York

Barry L. Jacobs

Princeton University

Rosa I. Caamaño Tubío

Scientific Art Director

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781108488525 DOI: 10.1017/9781108770774

© Jon C. Horvitz and Barry L. Jacobs 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48852-5 Hardback ISBN 978-1-108-72078-6 Paperback

Additional resources for this publication at www.cambridge.org/horvitz-jacobs.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

We held hands in the Alameda, and never let go - JH

For Suzie (Susyn), my love through thick and thin - BLJ

Brief Contents

	Preface	page xxi
	Online Resources	XXV
1	Nervous Systems	xxviii
2	How Neurons Work	44
3	Sensory Systems	84
4	Movement	144
5	Sleep-Waking and Circadian Rhythms	190
6	Hunger	230
7	Sex	272
8	Brain Development and Plasticity	306
9	Long-Term Learning and Memory	348
10	Attention and Working Memory	398
11	Reward, Reinforcement, and Addiction	438
12	Stress, Fear, and Anxiety	484
13	Neuropathology in Neurology and Psychiatry	526
14	Higher Cognitive Function	578
	Index	616

vii

Contents

	Preface pag	e xxi
	Online Resources	XXV
1	Nervous Systems	xviii
	1.1 The Cells of the Nervous System Are the Neurons and Glia	5
	1.1.1 Neurons	5
	1.1.2 Glia	6
	1.1.3 Gray versus White Matter	8
	1.2 The Nervous System Consists of Peripheral and Central	
	Divisions	11
	1.2.1 Peripheral Nervous System	12
	1.2.2 Central Nervous System	16
	1.3 An Information Highway To The Brain: The Spinal Cord	22
	1.4 Critical Functions in the Basement of the Brain:	
	The Brainstem	26
	1.4.1 Medulla	28
	1.4.2 Pons	28
	1.4.3 Cerebellum	28
	1.4.4 Midbrain	29
	1.5 A Gateway to the Cortex and a Center for Motivation:	
	The Diencephalon	30
	1.5.1 Thalamus	31
	1.5.2 Hypothalamus	32
	1.5.3 Pineal Gland	33
	1.6 Voluntary Movement, Emotion, and Memory: The Basal	
	Ganglia and the Limbic System	34
	1.6.1 Basal Ganglia	34
	1.6.2 Limbic System	35
	1.7 Sensory, Motor, and Higher Cognitive Processes:	
	The Cerebral Cortex	37
	1.8 The Big Picture	40
	1.9 Creative Thinking	41
	Key Terms	41
	References	43
2	How Neurons Work	44
	2.1 To Drop a Hot Cup, or Not	46
	2.2 Neurons Are Activated by the Entry of Sodium Ions (Na+)	51

ix

x CONTENTS

	2.2.1 Two Factors Cause Sodium to Pass through	
	Ion Channels	51
	2.2.2 Depolarization of the Neuron	54
	2.2.3 Reaching the Firing Threshold	55
	2.2.4 The Neuronal Signal (Action Potential) Sweeps	
	across the Axon	56
	2.2.5 A Close-up Look at the Action Potential	57
	2.2.6 Myelinated Axons Permit Saltatory Conduction	59
2.3	Neurotransmitters Are Released into the Synapse and	
	Bind to Receptors	62
	2.3.1 Neurotransmitters Are Released	62
	2.3.2 Neurotransmitters Bind to Receptors	63
	2.3.3 Neurotransmitters Are Cleared from the Synapse	64
2.4	Neurotransmitters Excite, Inhibit, or Modulate	
	the Activity of Neurons	65
	2.4.1 Neuronal Excitation: EPSPs	66
	2.4.2 Neuronal Inhibition: IPSPs	67
	2.4.3 Spatial and Temporal Summation	69
	2.4.4 Graded Potentials Get Smaller as They Spread	
	along the Membrane	69
2.5		72
	2.5.1 Ionotropic and Metabotropic Receptors	72
	2.5.2 Neural Communication without	
	Neurotransmitters	73
2.6	Behavior Depends upon the Activity of Neurons:	
	Revisited	74
2.7	, , ,	
• 0	Convergent Connections	76
2.8	Psychoactive Drugs Affect Neurotransmission	78
2.9	0	80
	Creative Thinking	81
•	Terms	81
Refe	erences	82
Sen	sory Systems	84
3.1	Sensory Systems in General	86
3.2	Vision	87
	3.2.1 The Eye Bends Light to Produce a Focused	
	Image on the Retina	88
	3.2.2 Photoreceptors: The Light-Sensitive Neurons	
	of the Retina	90
	3.2.3 From Light to Retinal Output	98
	3.2.4 Neurons at Early Stages of the Visual System	
	Respond to Simple Stimuli	106

3

	CONT		TENTS	
		3.2.5 The Dorsal and Ventral Streams	116	
		3.2.6 The Visual Cortex Contains Columns of		
		Neurons with Similar Receptive Fields	117	
		3.2.7 Functional Issues	119	
	3.3	Other Sensory Systems	123	
		3.3.1 Audition	123	
		3.3.2 Somatosensation	129	
		3.3.3 Smell (Olfaction) and Taste (Gustation)	132	
		The Big Picture	139	
		Creative Thinking	139	
	-	Terms	140	
	Refe	erences	141	
4	Mo	vement	144	
	4.1	From Spinal Cord to Muscle	148	
		4.1.1 Motor Neurons Communicate with Muscles	148	
		4.1.2 Muscle Contractions Move Body Parts	150	
		4.1.3 The Spinal Cord Controls Reflexes and Some		
		Repetitive Body Movements	156	
	4.2	Primary Motor Cortex	158	
		4.2.1 The Primary Motor Cortex Controls Movement		
		of the Opposite Side of the Body	160	
		4.2.2 Body Parts Are Represented in a Map within		
		the Motor Cortex	160	
		4.2.3 The Parietal Cortex Sends Tactile Feedback to		
		the Primary Motor Cortex	164	
		4.2.4 The Primary Motor Cortex Contributes to		
		Integrated Behaviors	165	
	4.3	Premotor Areas	167	
		4.3.1 The Supplementary Motor Area Is Active during		
		the Conscious Desire to Move	167	
		4.3.2 Movement Preparation Is Associated with		
		Premotor Activity	171	
		4.3.3 Visuomotor Neurons Prepare the Hand to Grasp		
		Objects	172	
		4.3.4 Mirror Neurons Are a Bridge from Observation		
		to Imitation	172	
	4.4	Prefrontal Cortex	173	
		4.4.1 The Prefrontal Cortex Keeps Movement Goals		
		in Mind	173	
		4.4.2 Behavioral Control Sometimes Requires		
		Withholding Actions until a Later Time	174	
		4.4.3 Frontal Eye Fields Locate Objects Relevant to the		
		Current Goal	175	

xii CONTENTS

	4.5	Basal	Ganglia	176
		4.5.1	The Basal Ganglia Form a Looped Circuit	177
		4.5.2	Dopamine Influences the Initiation of Behavior	177
		4.5.3	Some Areas of the Striatum Are Necessary for	
			Automatized Behavior	179
	4.6	Cerel	pellum	180
		4.6.1	The Cerebellum Predicts Movement Consequences	181
		4.6.2	Cerebellar Damage Impairs the Coordination	
			and Accuracy of Movements	182
		4.6.3	The Anatomy of the Cerebellum Allows	
			Fine-Tuning of Movements before They Occur	183
	4.7	The F	Big Picture	185
	4.8	Creat	ive Thinking	185
	Key	Terms	S	186
	Refe	erence	S	187
5	Slee	ep–Wa	aking and Circadian Rhythms	190
	5.1	Circa	dian Rhythms	192
		5.1.1	If You Lived in a Cave, Cut Off from the Outside	
			World, Would You Still Wake Up Every Morning	
			at the Same Time?	193
		5.1.2	The Suprachiasmatic Nucleus Is the Brain's	
			Master Clock	195
		5.1.3	Two Factors Influence the Sleep–Wake Cycle	196
	5.2	Stage	s of Sleep	197
	5.3	Sleep	Varies with Age and Species	202
		5.3.1	The Amount of Time Spent Sleeping Changes	
			over the Lifespan	203
		5.3.2	Sleep Patterns Vary across Species	204
	5.4	Drear	ms	207
	5.5	Brain	Mechanisms	210
		5.5.1	Activation of the Thalamus and Cerebral	
			Cortex Is Key to the Waking State	210
		5.5.2	Neurons within the Hypothalamus Trigger	
			Non-REM Sleep	212
		5.5.3	REM Sleep Depends upon Activation of Neurons	
			in the Brainstem	214
	5.6	Disea	ses and Disruptions	218
		5.6.1	Insomnia, the Most Common Sleep Disorder,	
			Is an Inability to Sleep	218
		5.6.2	Narcolepsy Involves Intense Sleepiness during	
			the Daytime	220

	C		NTENTS	xiii
		5.6.3 Sleep Apnea Deprives the Sleeper of Oxygen	222	
		5.6.4 In REM Sleep Behavior Disorder (RBD),		
		the Sleeper Can Act Out His Dreams	223	
	5.7	Benefits of Sleep	223	
	5.8	The Big Picture	225	
	5.9	Creative Thinking	226	
	Key	Terms	226	
	Refe	erences	227	
6	Hur	nger	230	
	6.1	Complex Physiological Processes Keep Neurobiological		
		Variables in Safe Ranges	232	
	6.2	Digestion of Food Provides Nutrients and Energy for		
		Use and Storage	235	
		6.2.1 Short-Term Storage	236	
		6.2.2 Long-Term Storage	237	
	6.3	Does Homeostasis Completely Determine When		
		We Eat?	240	
	6.4	Physiological, Emotional, and Cognitive Signals Tell		
		the Brain to Start or Stop Eating	241	
		6.4.1 Physiological Signals	241	
		6.4.2 Emotional and Cognitive Signals	244	
	6.5	The Hypothalamus Is a Key Brain Structure for		
		Hunger and Satiety	245	
	6.6	Various Factors Influence Body Weight	250	
	6.7	Obesity Is a Modern Epidemic with Many Causes		
		and Few Easy Cures	251	
		6.7.1 How Much Body Weight Is Too Much?	251	
		6.7.2 Industrialization and Technology Have		
		Contributed to Obesity	254	
		6.7.3 Genetic, Neurobiological, and Interpersonal		
		Factors May Contribute to Obesity	255	
		6.7.4 Treatments for Obesity	256	
	6.8	The Three Main Types of Eating Disorders Are		
		Anorexia, Bulimia, and Binge-Eating Disorder	260	
		6.8.1 Anorexia	260	
		6.8.2 Bulimia	263	
		6.8.3 Binge-Eating Disorder	265	
	6.9	The Big Picture	266	
		Creative Thinking	266	
		Terms	267	
	Refe	erences	267	

xiv CONTENTS

7	Sex			272
	7.1 I	Horm	ones Influence Sexual Development and	
	5	Sexua	l Behavior	274
	7.2 \$	Sexua	l Differentiation Begins with the SRY Gene	279
	7.3 I	Horm	ones Released by the Testes Masculinize	
	t	the Se	ex Organs	280
	7.4 A	Are M	fale and Female Brains Different?	283
	7.5 I	Horm	ones Guide the Development of Sexual Behavior	
	i	n An	imals	286
	7.6 I	Early	Hormone Exposure and Genetics Affect Gender	
	I	dent	ity and Human Sexual Behavior	288
	7	7.6.1	Gender Identity and Gender-Related Behavior	288
	7	7.6.2	Transsexual and Transgender Individuals	290
	7	7.6.3	Sexual Orientation	292
	7.7 \$	Sexua	ılly Arousing Stimuli Activate the Brain	295
	7.8 \$	Sex H	formones and Other Neurochemicals Can Strongly	
	A	Affect	t Sexual Behavior	297
	7.9	Γhe B	sig Picture	300
	7.10	Crea	tive Thinking	301
	Кеу Т	Terms		301
	Refer	ence	S	302
В	Brain	n Dev	elopment and Plasticity	306
			opment	308
	8	3.1.1	The Nervous Systems of Mammals, Birds, Reptiles,	
			and Fish All Develop According to a Similar Plan	308
	8	3.1.2	Neurons Pass through Five Developmental Phases	310
	8	3.1.3	Neurotrophic Factors Allow Neurons to Survive	
			and Grow	317
	8	3.1.4	Behavioral Abilities Advance as the Nervous	
			System Develops	318
	8	3.1.5	The Brain Produces New Neurons Even	
			in Adulthood	320
	8.2 I	Plasti	city	322
	8	3.2.1	Increased Use of a Brain Region Results in	
			Its Expansion	322
	8	3.2.2	Brain Areas Adapt to Changes in Their Inputs	325
			What Gets Plasticity Going?	332
	8	3.2.4	The Central Nervous System Is Susceptible	
			to Injury	335
	8	3.2.5	Biological Processes and Technologies Offer Hope	
			for CNS Recovery	337
	8.3	Γhe B	Sig Picture	344

			CONTENTS	XV
	Q 1	Creative Thinking	344	
		Terms	344	
	-	erences	345	
	ICI	renees	343	
9	Lon	g-Term Learning and Memory	348	
	9.1	Memory of Experiences	351	
		9.1.1 Damage to the Medial Temporal Lobes		
		Produces Amnesia	352	
		9.1.2 Old, Recent, and New Memories	354	
		9.1.3 The Hippocampus and Cortex Interact during	g	
		Memory Recall	356	
		9.1.4 Information Travels through the Hippocamp	us 360	
		9.1.5 Can the Activity of Individual Neurons Revea	ıl	
		What Someone Is Recalling?	362	
		9.1.6 Memory of Familiar Places	363	
		9.1.7 Memory of Familiar People and Things	366	
	9.2	Memories Rewire the Brain	369	
		9.2.1 Synaptic Plasticity and Learning	369	
		9.2.2 A Hypothetical Example	375	
		9.2.3 Learning and the Birth of New Neurons	377	
	9.3	Skill Learning	378	
		9.3.1 Neuronal Assemblies in the Motor Cortex		
		Grow Larger	379	
		9.3.2 Automaticity of Well-Learned Behaviors	380	
		9.3.4 The Cerebellum and Refinement of Skilled		
		Movements	381	
	9.4	Digging Deeper into the Neurobiology of Memory	383	
		9.4.1 Fear Conditioning	383	
		9.4.2 Eyeblink Conditioning	388	
		9.4.3 Learning in <i>Aplysia</i> : Eric and the Snail	390	
	9.5	The Big Picture	393	
	9.6	Creative Thinking	393	
	Key	Terms	393	
	Refe	erences	394	
10	Δtt	ention and Working Memory	398	
		Attention	400	
	10.	10.1.1 Norepinephrine Neurons Play a Key Role in		
		Alertness	400	
		10.1.2 Attention Can Be Stimulus-Driven or	100	
		Goal-Directed	403	
		10.1.3 Frontal and Parietal Damage Can Lead	100	
		to Attentional Neglect	413	
		to Attentional regicet	413	

xvi CONTENTS

		10.1.4	Frontal Lobe Executive Control Is Needed	
			to Inhibit Attention to Distractors	414
		10.1.5	What Causes the Attentional Problems in	
			Attention Deficit Hyperactivity Disorder?	417
		10.1.6	Can Attentional Ability Be Improved with	
			Neuroscience-Based Training?	418
	10.2	Workii	ng Memory	420
		10.2.1	How Much Information Can You Hold in	
			Working Memory?	421
		10.2.2	An Influential Model Described Three Key	
			Components of Working Memory	421
		10.2.3	Neurons Become Active as Monkeys Hold	
			Information in Working Memory	422
		10.2.4	Why Does Working Memory Sometimes Fail?	427
		10.2.5	How Do Neurons Stay Active during the Delay	
			Period of a Working Memory Task?	429
		10.2.6	Do Perception and Working Memory Activate	
			Common Brain Areas?	430
		10.2.7	Future Questions about Working Memory	432
	10.3	The Bi	g Picture	433
	10.4	Creativ	ve Thinking	433
	Key 7	Гerms		434
	Refer	ences		435
11	Rewa	ard, Rei	inforcement, and Addiction	438
	11.1	Reward	d-Related Learning	440
	11.2	Dopan	nine and Brain Stimulation Reward	445
		11.2.1	Electrical Brain Stimulation	445
		11.2.2	Anatomy of the Dopamine Pathways	446
		11.2.3	Is Dopamine Responsible for the Reinforcing	
			Effects of Brain Stimulation Reward?	448
	11.3	The No	eurobiology of Natural Reward	452
		11.3.1	Does Dopamine Play a Role in Food Reward?	452
		11.3.2	Dopamine Responses to Primary and Conditioned	
			Food Reward	453
		11.3.3	Brain Responses to Financial, Social, and	
			Sexual Reward	456
	11.4	Drug F	Reward and Addiction	459
		11.4.1	Cocaine and Amphetamine	460
		11.4.2	Nicotine	465
		11.4.3	Heroin, Morphine, and Oxycodone	467
		11.4.4	Alcohol	467
		11.4.5	Tolerance	468

CONTEN		NTS xv	
11 4.6 Withdrawal and Craving	469		
11.4.6 Withdrawal and Craving 11.4.7 Impulse Control	470		
11.5 Reward Learning and Plasticity	473		
11.6 The Big Picture	478		
11.7 Creative Thinking	479		
Key Terms	479		
References	480		
12 Stress, Fear, and Anxiety	484		
12.1 Stress	486		
12.1.1 Stress Activates Fight or Flight Responses of			
the Sympathetic Nervous System	487		
12.1.2 Stress Releases Hypothalamic–Pituitary–Adren			
Axis Hormones	488		
12.1.3 The Brain Responds to Threatening Situations			
and Controls Stress Responses	490		
12.1.4 Stress Affects the Immune System	493		
12.1.5 Why Do Some People Recover from Stress So			
Quickly?	496		
12.1.6 Early Life Experiences Influence How an			
Individual Responds to Stress in Adulthood	497		
12.2 Fear and Anxiety	501		
12.2.1 The Amygdala Responds to Threatening Stimu			
12.2.2 The Woman without an Amygdala	503		
12.2.3 Learning Not to Be Afraid	505		
12.2.4 The Medial Prefrontal Cortex Inhibits Fear			
Responses	506		
12.2.5 Anxiety Disorders Are Associated with Abnorn			
Activation of Fear Circuitry	509		
12.2.6 Psychological and Drug Therapies Can Reduce			
Excessive Anxiety	512		
12.2.7 Glucocorticoid Stress Hormones Elevate Anxie			
12.3 The Big Picture	519		
12.4 Creative Thinking	519		
Key Terms	520		
References	521		
13 Neuropathology in Neurology and Psychiatry	526		
13.1 Major Depressive Disorder	528		
13.1.1 Major Depression Includes Feelings of			
Hopelessness, Worthlessness, and a Risk of Sui	cide 529		
13.1.2 Stress, Genes, and Their Interaction May			
Cause Depression	530		

xviii CONTENTS

	13.1.3	Depression Is Associated with Changes in Brain	
		Structure and Function	531
	13.1.4	Drugs and Psychotherapy Help Many People with	
		Depression, and New Treatments Are Emerging	533
13.2	Schizo	phrenia	539
	13.2.1	Clinical Signs of Schizophrenia Include Positive,	
		Negative, and Cognitive Symptoms	540
	13.2.2	Genes and Environmental Influences Contribute	
		to Schizophrenia	543
	13.2.3	Schizophrenia Is Associated with Structural	
		and Functional Abnormalities of the Brain	545
	13.2.4	Nearly All Antipsychotic Drugs Block Dopamine	
		Receptors	546
	13.2.5	Is Psychological Therapy Beneficial for Individuals	
		with Schizophrenia?	549
13.3	Parkin	son's Disease	550
	13.3.1	Parkinsonian Motor Symptoms Result from the	
		Loss of Nigrostriatal Dopamine Neurons	550
	13.3.2	Clumps of Misfolded Proteins Are Often Found	
		within Dying Dopamine Neurons	553
	13.3.3	Genetic and Environmental Factors Contribute	
		to Parkinson's Disease	555
	13.3.4	L-DOPA Is the Gold Standard for Treating	
		Parkinson's Disease	556
	13.3.5	Modern Technologies Promise Better Ways	
		to Overcome Parkinsonian Motor Impairments	557
13.4	Alzhei	mer's Disease	560
	13.4.1	Alzheimer's Includes Memory Loss and Other	
		Signs of Cognitive Deterioration	560
	13.4.2	Neuronal Loss, Amyloid Plaques, and	
		Neurofibrillary Tangles Are Signs of Alzheimer's	561
	13.4.3	Genetic Factors Contribute to Alzheimer's	565
	13.4.4	It Remains Unclear Whether Environmental	
		Factors Contribute to Alzheimer's	567
	13.4.5	Current Research Is Focused on Preventing	
		Plaques and Tangles	568
13.5	The Bi	g Picture	569
13.6	Creativ	ve Thinking	569
Key 7	Γerms		570
Refer	ences		571

	CONT		ITENTS	xix
Hiał	er Coa	nitive Function	578	
_	_	vo-Sided Brain	580	
11.1		The Left and Right Hemispheres Have Distinct	000	
		Specializations	580	
	14.1.2	Split-Brain Surgery Interrupts Communication	000	
		between the Two Hemispheres	582	
14.2	Langua	age and the Brain	588	
	_	Speech Production and Comprehension Dependent		
		upon Different Brain Areas	590	
	14.2.2	Broca's Aphasia Disrupts Speech Production	590	
		What Does Broca's Area Do?	592	
	14.2.4	Wernicke's Aphasia Disrupts the Comprehensio	n	
		and Meaningful Content of Speech	594	
	14.2.5	Perceiving Words Activates Different Brain		
		Regions than Understanding Their Meanings	594	
	14.2.6	Beyond Broca's or Wernicke's Aphasia	598	
	14.2.7	Dyslexia Is Associated with Reduced Activity		
		in the Visual Word Form Area	600	
	14.2.8	Bilinguals Show Increased Density of Connection	ons	
		between Brain Areas	601	
14.3	The Th	ninking Self	602	
	14.3.1	The Default Network: The Wandering Mind	603	
	14.3.2	Metacognition: Thinking about Thinking	605	
	14.3.3	Mentalizing: Reflecting on the Thoughts of		
		Others	606	
14.4	The Bi	g Picture	609	
14.5	Creativ	ve Thinking	609	
Key '	Terms		610	
Refer	rences		610	

Index

616

Preface

The Conception

This book was conceived early one evening at an outdoor table at a restaurant near my home. Barry and I were talking about our introductory Brain–Mind courses, his at Princeton University, mine at City College of New York. He asked me which textbook I used. I told him I'd used several of the popular ones over the years. "They all have good qualities," I said. "But in my view, they all suffer from the same problem – too much extraneous detail." Barry felt the same way about the Biopsychology and Behavioral Neuroscience textbooks he'd used. "When chapters are loaded with so much detail, students can't see the forest for the trees," he said. We both agreed:

"Principles and key ideas first; details later."

Of course, the crucial details are important to include, and leaving these out can lead to cryptic textbook passages. The extraneous details were the real culprits in the textbooks we'd used. Students were spending too much time trying to figure out what was important in the chapters. I used to tell students to try to understand entire chapters – until I read the chapters myself. Barry and I wished we could find a more manageable textbook.

By the end of the conversation, we were convinced of three points: A behavioral neuroscience textbook should filter out the non-essential, describe the key points (and *crucial* details) in a clear, conversational manner, and complement the text with compelling illustrations. By the end of this long dinner, we'd tested the waiter's patience, and we'd decided to write a textbook.

What Could Be More Interesting?

People are naturally fascinated by the relation between brain, mind, and behavior. We're all drawn to the shocking fact that a 3-pound hunk of biological tissue inside the skull gives rise to thought, memories, and other intangible mental phenomena. Our students all come to the course with first-hand knowledge of emotional and cognitive *products* of brain activity. We're all experts on the subjective aspects of brain functioning.

xxi

xxii PREFACE

However, readers new to the topic may be surprised to find that understanding mental processes requires some background in neurotransmission. To understand how the brain stores memories, one needs to know something about the neural plasticity that allows experiences to alter the strength of connections between neurons. No matter how much one introspects about one's own learning and memory, nothing about neural plasticity becomes apparent. There are events going on behind the scenes, outside of awareness, that influence the contents of mind and behavior.

Of course, what we learn about the brain mechanisms occurring "behind the scenes" sometimes *fits* with our inner experience in an intuitive and satisfying manner. For instance, we've all experienced dreams containing visual scenes and strong emotional content, but lacking a logical connection between the dream events. On the basis of our own introspection, we may not be surprised to learn that during REM sleep, when dreams occur, visual cortical areas associated with mental imagery are highly active; areas associated with emotional tone, such as the sympathetic nervous system, are often in high gear as well. Yet the frontal cortex, which normally tracks the sequence in which events occur, and notes violations in their logical order – this is one of the few cortical regions that goes "off-line" during REM. Here, the behind-the-scenes brain events are as one might expect on the basis of our *experience* of dreams.

A Note to Students

While most brain—mind topics have obvious relevance to the reader, some may feel intimidated when it comes to learning about neurotransmission. Learning how neurons communicate with one another requires familiarizing yourself with some concepts that are new and unfamiliar. Terms like "depolarization" and "excitatory postsynaptic potential" can be offputting at first. This is a brief word of advice to anyone who may say to themselves that technical material is "not for me": *Don't be so sure*. We all find some kinds of material difficult at first. I recently had the experience of reading online accounting columns that described the grant money I'd spent and the amount I had left for my lab. Faced with these confusing columns, I thought "Accounting is not my thing." (I think I literally said that to myself.) My initial solution was to simply cross my fingers and hope I don't run out of money.

Then I asked myself how much time I'd actually spent on those accounting columns. About 25 minutes total, compared to the thousands of hours I'd spent on what I considered "my kind of things," like reading about the brain, or playing the piano. So, I set the goal of spending just 20 minutes each day on those budget pages. Within a few days (a

PREFACE xxiii

few hours at most), I'd discovered that they weren't difficult. My concern went away once I'd applied some time to the task. It was a good feeling.

There are some topics in this textbook that involve technical details: like neural communication or learning-related synaptic plasticity. If this doesn't seem like "your kind of thing," we hope you will put your doubts on hold. When it comes to the chapter on "How Neurons Work," relax and take the concepts one step at a time. Don't be surprised if you discover that this kind of material is *your thing* after all.

If you understand the basics of how neurons work, you will also have a deeper appreciation for the relations between brain, mind, and behavior discussed in the later chapters. We've worked hard to present the material in a clear, straightforward manner. But if you find passages that are not clear enough, please email us, and we'll see if we can make them clearer. You'll be doing a real service to other students.

What's in This Book?

Principles of Behavioral Neuroscience is for a first course in behavioral neuroscience for undergraduates. It examines key concepts and findings related to brain, mind, and behavior that motivate neuroscience researchers to dig deeper. How do we perceive, move our bodies, and carry out goals? What makes us hungry – that is, from the point of view of the brain? How does the activity of the sleeping brain change as we go from deep, "slow-wave" sleep, where the conscious mind finally quiets down, to the mentally intense stage of REM sleep, and then back again to slow-wave sleep? How does the brain give rise to learning, memory, and language?

We'll examine the effects of brain damage on language, memory, and emotion. For instance, we'll learn of the woman who lacked the amygdala (on both sides of her brain) and lost nearly all aspects of fear. To understand more precisely how brain activity contributes to cognition, motivation, and behavior, we will examine the activity of individual neurons as animals sleep, learn, attend, and seek out food and other rewards in the environment. Modern optogenetic techniques allow researchers to record the activity of specific *types* of neurons in particular brain areas, or to experimentally change the activity of these neurons while animal subjects are learning, behaving, or both. Recent work in epigenetics shows us what it means for our environment and genes to interact by revealing the ways in which certain life experiences alter the molecules surrounding our genes. Such studies pull back the curtain on the mental, emotional, and behavioral processes that make up our inner and outer worlds.

xxiv PREFACE

How to Use This Book

The first two chapters of this textbook concern the structure of the nervous system and neurotransmission. It is useful to begin with these chapters, or at least to present them early in the course, because the concepts introduced in these chapters appear in later chapters as well. While the subsequent chapters work well in their order within the textbook, they can be covered in the order the professor chooses. Some courses will cover all fourteen chapters; others will choose to spend more time on a smaller number of chapters.

Many professors will already have a set of topics they wish to cover, and a preferred order for covering them. We believe that readings for existing course syllabi are easily adapted to the chapters included here. Material within each chapter is broken into digestible subsections with numbered headings. This allows an instructor either to assign entire chapters or to assign subsections of chapters. Because we've worked hard to present material in a clear, conversational tone, and to avoid extraneous details, the instructor will be able to confidently assign chapters and test textbook material regardless of whether the material has been covered in class.

Pedagogical Features

In each chapter, students will find three tools that help consolidate what they've learned.

- Key Concepts are summarized at several points in each chapter. This
 list of concepts serves to reinforce the key points that the student has
 just read. In addition, because each concept is boiled down to just a
 sentence or two, the student can use the list to go back through the
 chapter section and outline the details relevant to each concept.
- Review Questions allow students to test themselves on the just-presented material. Some of the questions simply allow the student to check their retention of key information in the section. Others motivate the student to review and organize their knowledge of a topic.
- Creative Thinking questions at the end of each chapter are designed to stimulate creative thinking about the chapter material. Many of these questions will be useful for group discussions.

A Final Word to Our Fellow Instructors

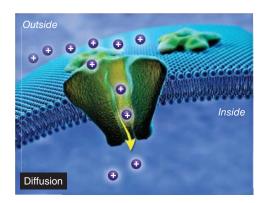
While some of our students will pursue careers in science, those who do not will nevertheless have the opportunity to read about new findings on brain function long into the future. Some of our former students will have the joy of reading about discoveries that come to light many years after we instructors are gone. In this course, we give them the background that allows them to do so.

Online Resources

Instructor's Resources

This text is accompanied by teaching tools that can only be accessed by instructors. These tools are designed to support lectures and classroom activities, assessments, and course planning. All resources are freely available with registration. Instructors can register at: www.cambridge.org/highereducation.

Instructor resources include:


Chapter summaries

- Streamlined outline of each chapter containing the essential information and pointing to key figures, with:
 - highlighted "Useful Examples and Analogies" to illuminate key concepts
 - links to video clips and animations directly pertinent to the material at hand

Individual and group activities

 In-class activities designed for students to work creatively with chapter concepts, and to provide a sense of agency and ownership of the material

Annotated lecture slides

- Ready made lecture slides providing key concepts and select figures from each chapter
- Length is kept appropriate for coverage in one or two standard lecture periods

xxv

xxvi ONLINE RESOURCES

In addition, a full set of figures in JPG and PDF format allows instructors to create their own sets of lecture slides, or to add to the annotated set provided by the authors

Testbanks

- Over 85 test questions for each chapter, allowing the instructor to use different sets of questions each semester
- Each question has been edited and approved for clarity by the textbook authors


Student Resources

The companion website hosts additional content that will help you to master the material from each chapter and spur further exploration of topics covered in the text.

Organized chapter-by-chapter, this material includes various study aids, video links, and readings. This is also where you can find answers to the Test Yourself questions interspersed throughout each chapter.

Student resources include:

- Flashcards with key terms from each chapter on one side and definitions on the other.
- Figures with select labels removed so that you can test your knowledge as you review key figures, rather than simply reviewing figures in a passive manner.

Motor neuron

- Videos and animations relevant to specific chapter material
- Additional readings to probe deeper into select chapter topics
- Answers to chapter Test Yourself questions

ONLINE RESOURCES

xxvii

Blog

• Highlights the relevance of Behavioral Neuroscience course material in everyday life events, including brain underpinnings of addiction, conscious awareness, and other relevant topics.

Finally, the author would be happy to hear from you. Please send any comments, thoughts, corrections, or requests to: HorvitzNeuroscience@gmail.com.

1 Nervous Systems

Science Photo Library - SCIEPRO / BrandXPictures / Getty Images

