
Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Semantics of Probabilistic Programming:

A Gentle Introduction

Fredrik Dahlqvist and Alexandra Silva

University College London

Dexter Kozen

Cornell University

Abstract: Reasoning about probabilistic programs is hard because it compounds

the difficulty of classic program analysis with sometimes subtle questions of prob-

ability theory. Having precise mathematical models, or semantics, describing their

behaviour is therefore particularly important. In this chapter, we review two prob-

abilistic semantics. First an operational semantics which models the local, step-

by-step, behaviour of programs, then a denotational semantics describing global

behaviour as an operator transforming probability distributions over memory states.

1.1 Introduction

A probabilistic program is any program whose execution is probabilistic. This

usually means that there is a source of randomness that allows weighted choices

to be made during execution. Given an initial machine-state, in the event that the

program halts, there will be a distribution describing the probability of output

events. Any deterministic program is trivially a probabilistic program that does

not make any random choices. The source of randomness is typically a random

number generator, which is assumed to provide independent samples from a known

distribution. In practice, these are often pseudo-random number generators, which

do not provide true randomness, but only an approximation; however, it is possible

to construct hardware random number generators that provide true randomness, for

example by measuring a noisy electromagnetic process.

Reasoning about deterministic programs usually involves answering binary yes/no

questions: Is the postcondition always satisfied? Does this program halt on all in-

puts? Does it always halt in polynomial time? On the other hand, reasoning about

probabilistic programming usually involves more quantitative questions: What is

the probability that the postcondition is satisfied? What is the probability that this

a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.

1

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

program halts? Is its expected halting time polynomial? In order to answer questions

like these, the first step should be to develop a formal mathematical semantics for

probabilistic programs, which will allow us to formalise such questions precisely.

This is the main purpose of this chapter.

Reasoning about probabilistic programs is in general difficult because it com-

pounds the difficulty of deterministic program analysis with questions of probability

theory, which can sometimes be counterintuitive. We will use examples to illustrate

all the main ideas presented in this chapter. We introduce these examples here and

will return to them as we develop the semantics of probabilistic programs. We

start with two examples involving discrete probabilities for which naive probability

theory provides a sufficient framework for reasoning. We will then present two

programs that involve continuous distributions for which a more general theory

known as measure theory is needed. The requisite background for understanding

these concepts is presented in Section 1.2.

x:=0;

while x==0 do

x:=coin()

start [x �→ ?] [x �→ 0] [x �→ 1]x := 0 1/2 : x := 1

1/2 : x := 0

Figure 1.1 A simple coin-toss program

We start with the simple program of Fig. 1.1 displayed next to the small proba-

bilistic automaton it implements. Here the construct coin() is our random number

generator; each successive call returns 0 or 1, each with probability 1/2, and succes-

sive calls are independent, which means that n successive calls will yield one of the

2n possible sequences of n binary digits, each with probability 2−n. A distribution

on {0,1} that takes value 1 with probability p and 0 with probability 1− p is called

a Bernoulli distribution with (success) parameter p. Thus coin() is a Bernoulli

distribution with success parameter 1/2.

It is intuitively clear that this program eventually halts with probability 1. Looking

at the automaton of Fig. 1.1, one can see that the probability of the program going

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Introduction 3

through n iterations of the body of the loop is 2−n. Moreover, the expected number

of iterations of the body of the loop is given by

∞
∑

n=1

n2−n = 2.

This type of simple probabilistic process involving repeated independent trials until

some fixed “success” event occurs is called a Bernoulli process. If the probability

of success in each trial is p, then the expected time until success is 1/p. In this

example, p = 1/2. We will show in Section 1.3 how the mathematical interpretation

of this program (its semantics) can be constructed compositionally, that is to say

line-by-line, and how it agrees with these simple observations.

Our second example is also discrete, but intuitively less obvious. The program

of Fig. 1.2 implements a random walk on the two-dimensional grid Z × Z. In each

iteration of the body of the loop, the function step updates the current coordinates

by moving left, right, down, or up, each with equal probability 1/4.

main{

u:=0;

v:=0;

step(u,v);

while u!=0 || v!=0 do

step(u,v)

}

step(u,v){

x:=coin();

y:=coin();

u:=u+(x-y);

v:=v+(x+y-1)

}

Figure 1.2 A random walk on a two-dimensional grid

The loop continues until the random walk returns to the origin. The first call to

step outside the loop ensures that the program takes at least one step, so it does not

halt immediately. The question of the halting probability is now much less obvious.

The state space is infinite, and there is no constraint on how far the random walk can

travel from the origin. Indeed, for any distance, there is a nonzero probability that

it goes at least that far. However, it turns out that the probability that the program

halts is 1. In the terminology of probability theory, we would say that the two-

dimensional random walk is recurrent at every point. This example illustrates how

the analysis of probabilistic programs can rely on results from probability theory

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

that are far from obvious. Indeed, the three-dimensional version is not recurrent;

the probability that a random walk on Z3 eventually returns to the origin is strictly

less than 1.

We now consider two programs that require continuous distributions. The se-

mantics of such programs cannot be defined without the full power of measure

theory, the mathematical foundation of probabilities and integration. The program

of Fig. 1.3 approximates the constant π using Monte Carlo integration, a probabilis-

tic integration method. The program works by taking a large number of independent,

uniformly distributed random samples from the square [0,1] × [0,1] and counting

the number that fall inside the unit circle. As the area of the square is 1 and the area

of the part of the unit circle inside that square is π/4, by the law of large numbers

we expect to see a π/4 fraction of sample points lying inside the circle.

i:=0;

n:=0;

while i<1e9 do

x:=rand();

y:=rand();

if (x*x+y*y) < 1 then n:=n+1;

i:=i+1

i:=4*n/1e9;

Figure 1.3 Probabilistic computation of π.

In this example, the random number generator rand() samples from the uniform

distribution on the interval [0,1]. This distribution is often called Lebesgue mea-

sure. Here the state space [0,1] is uncountable and the probability of drawing any

particular x ∈ [0,1] is zero. Such probability distributions are called continuous.

The natural question to ask about this program is not whether it terminates (it clearly

does) but whether it returns a good approximation of π with high probability. We

will answer this question in Section 1.3.

Finally, the program in Fig. 1.4 generates a real number between [0,1] whose

expansion in base 3 does not contain any 1’s. This program is not like the others

in that it does not halt (nor is it meant to). The program generates a sample from

a curious and in many respects counterintuitive distribution called the Cantor

distribution. It cannot be described using discrete probability distributions (i.e.

finite or countable weighted sums of point masses), although the program only

uses a discrete fair coin as a source. The Cantor distribution is also an example of

continuous probability distribution, which assigns probability zero to every element

of the state space. It is also an example of a so-called singular distribution, since

it can be shown that the set of all its possible outcomes—that is to say the set of

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Measure theory: What you need to know 5

all real numbers whose base-3 expansion contains no 1’s—has measure 0 in the

Lebesgue measure on [0,1].

x:=0;

d:=1;

while true do

d:=d/3;

x:=x+2*coin()*d

Figure 1.4 Cantor distribution program.

1.2 Measure theory: What you need to know

Measures are a generalization of the concepts of length, area, or volume of Euclidean

geometry to other spaces. They form the basis of probability and integration theory.

In this section, we explain what it means for a space to be a measurable space, we

define measures on these spaces, and we examine the rich structure of spaces of

measures, which will be essential to the semantics of probabilistic programs defined

in Section 1.3.5. When not specified otherwise we use the word measure to refer to

finite measures.

1.2.1 Some intuition

The concepts of length, area, and volume on Euclidean spaces are examples of

(positive) measures. These are sufficient to illustrate most of the desired properties

of measures and some pitfalls to avoid. For the sake of simplicity, let us examine

the concept of length. Given an interval [a, b] ⊆ R, its length is of course ℓ([a, b]) =
b−a. But the length function ℓ makes sense for other subsets of R besides intervals.

So we will begin with two related questions:

(a) Which subsets of R can meaningfully be assigned a “length” consistent with

the length of intervals? I.e., what should the domain of ℓ be?

(b) Which properties should the length function ℓ satisfy?

The answer to question (a) will give rise to the notion of measurable space, and the

answer to question (b) will give rise to the notion of measure, both defined formally

in Section 1.2.2.

Note that larger intervals have larger lengths: if [a, b] ⊆ [c, d], then we have that

ℓ([a, b]) = b − a ≤ d − c = ℓ([c, d]). This intuitively obvious property is a general

feature of all positive measures: they associate nonnegative real numbers to subsets

monotonically with respect to set inclusion. Let us now take two disjoint intervals

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

[a1, b1] and [a2, b2]with b1 < a2. It is natural to define the length of [a1, b1]∪[a2, b2]
as the sum of the length of the respective intervals, i.e.

ℓ([a1, b1] ∪ [a2, b2]) = ℓ([a1, b1]) + ℓ([a2, b2]) = (b1 − a1) + (b2 − a2).

We can draw two conclusions from this natural definition. First, if A,B are two

disjoint subsets of R in the domain of ℓ, then their union should also belong to the

domain of ℓ, and the measure of the union should be the sum of the measures. More

generally, if Ai, 1 ≤ i ≤ n, is any finite collection of pairwise disjoint sets in the

domain of ℓ, then
⋃

n

i=1 Ai should also be in the domain of ℓ, and the measure of

the union should be the sum of the measures of the Ai; that is,

ℓ

(

n
⋃

i=1

Ai

)

=

n
∑

i=1

ℓ(Ai). (1.1)

A real-valued function on subsets satisfying (1.1) is called (finitely) additive. All

measures will be finitely additive, and in fact more. Consider the countable col-

lection of pairwise disjoint intervals [n,n + 2−n) ,n ∈ N. Generalising (1.1), it is

natural to define ℓ on the union of these intervals as

ℓ

(∞
⋃

n=0

[n,n + 2−n)
)

=

∞
∑

n=0

2−n = 2.

Again, we can draw two conclusions from this natural definition. First, if Ai for

i ∈ N is a countable collection of pairwise disjoint sets in the domain of ℓ, then
⋃

i∈N Ai should be in the domain of ℓ; second, that (1.1) should be extended to such

countable collections, so that

ℓ

(∞
⋃

i=0

Ai

)

=

∞
∑

i=0

ℓ(Ai). (1.2)

A function ℓ satisfying (1.2) is called countably additive or σ-additive. Every

measure will be countably additive. The reader will now legitimately ask: what

happens if the sum in (1.2) diverges? To deal with this behaviour, one simply allows

∞ as a possible length, that is to say the codomain of ℓ can be the extended real line

R
+ ∪ {∞}. In particular, this allows us to define the length of R via (1.2) as:

ℓ(R) = ℓ
(

⋃

n∈Z
[n,n + 1)

)

= ∞.

However, for the purpose of semantics of probabilistic programs, we will not need

measures taking the value ∞. A measure is called finite if it only assigns finite

values in R to any set in its domain. For the remainder of this chapter, the term

“measure”, otherwise unqualified, will refer to finite measures.

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Measure theory: What you need to know 7

Consider now subsets A ⊆ B of R in the domain of ℓ such that ℓ(A) ≤ ℓ(B) < ∞.

From finite additivity, it would make sense to define ℓ(B \ A) = ℓ(B) − ℓ(A), since

B = A ∪ (B \ A) is a partition of B. In other words, it would also be natural to

require that if A ⊆ B and A and B are in the domain of ℓ, then so should be

B \ A, and ℓ(B \ A) = ℓ(B) − ℓ(A). Thus the domain of ℓ should be closed under

complementation.

The reader may now be wondering: If the domain of ℓ contains all intervals and

is closed under countable pairwise disjoint unions and complementation, that is

already a very large set of subsets of R. Is it possible that a length can be sensibly

assigned to all subsets of R? In other words, can we extend ℓ to domain P(R)?
Alas, it turns out that this is not possible. An important and desirable property of

the length function ℓ is that it is translation invariant: given a set A with length

ℓ(A) (for example an interval), if the entire set A is translated a fixed distance, say

d, then its length should be unchanged; that is, ℓ(A) = ℓ({x + d | x ∈ A}). Vitali

(1905) constructed a countable set of subsets of the interval [0,1), called Vitali sets,

which are pairwise disjoint, translates of each other (modulo 1), and whose union

is [0,1). They would all have to have the same measure, which would break the

countable additivity axiom (1.2). Vitali sets are examples of non-measurable sets.

They provide an example of subsets of R which are incompatible with the basic

assumptions of how the length function should behave. Thus the domain of the

length function cannot be P(R), because it cannot contain the Vitali sets.

The length function ℓ described in the preceding paragraphs is called the Lebesgue

measure on R. We now turn our attention to axiomatizing the intuitive ideas pre-

sented thus far.

1.2.2 Measurable spaces and measures

We start by axiomatizing the closure properties of the domain of a measure (such

as the length function) which we have described informally in the previous section.

A σ-algebra B on a set S is a collection of subsets of S containing the empty set

∅ and closed under complementation in S and countable union (hence also under

countable intersection). A pair (S,B), where S is a set and B is a σ-algebra on S,

is called a measurable space. The elements of B are called the measurable sets of

the space. In a probabilistic setting, elements of S and B are often called outcomes

and events, respectively. The domain of a measure, for example the length function,

will always be a σ-algebra. If the σ-algebra is obvious from the context, we simply

say that S is a measurable space. The set of all subsets P(S) is a σ-algebra called

the discrete σ-algebra, but as noted above, it may not be an appropriate choice

since it may not allow the definition of certain measures. However, it is always an

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

acceptable choice for finite or countable sets, and we will always assume that finite

and countable sets are equipped with the discrete σ-algebra.

If F is a collection of subsets of a set S, we define σ(F), the σ-algebra generated

by F , to be the smallest σ-algebra containing F . That is, σ(F) is the smallest

collection of subsets of S containing F and ∅ and closed under countable union

and complement. Equivalently,

σ(F) � ⋂{A | F ⊆ A and A is a σ-algebra}.

Note that σ(F) is well-defined, since the intersection is nonempty, as F ⊆ P(S)
and P(S) is a σ-algebra. If (S,B) is a measurable space and B = σ(F), we say that

the space is generated by F .

Measurable functions. Let (S,BS) and (T,BT) be measurable spaces. A function

f : S → T is measurable if the inverse image f −1(B) = {x ∈ S | f (x) ∈ B} of

every measurable subset B ∈ BT is a measurable subset of S. When BT is generated

by F , then f is measurable if and only if f −1(B) is measurable for every B ∈ F .

An example of a measurable function is χB : S → {0,1}, the characteristic

function of a measurable set B:

χB(s) =
{

1, s ∈ B,

0, s � B.

Here, (S,B) is a measurable space, B ∈ B, and {0,1} is the discrete space.

Measures. A signed (finite) measure on (S,B) is a countably additive map μ : B →
R such that μ(∅) = 0. Recall that countably additive means that if A is a count-

able set of pairwise disjoint events, then μ(⋃A) = ∑

A∈A μ(A). Equivalently, if

A0, A1, A2, . . . is a countable chain of events (a countable collection of measurable

sets such that An ⊆ An+1 for all n ≥ 0), then limn μ(An) exists and is equal to

μ(⋃n An).
A signed measure on (S,B) is called positive if μ(A) ≥ 0 for all A ∈ B. A positive

measure on (S,B) is called a probability measure if μ(S) = 1 and a subprobability

measure if μ(S) ≤ 1. A measurable set B such that μ(B) = 0 is called a μ-nullset,

or simply a nullset if there is no ambiguity. A property is said to hold μ-almost

surely (μ-a.s.) or μ-almost everywhere (μ-a.e.) if the set of points on which it does

not hold is contained in a nullset.

In probability theory, measures are sometimes called distributions. We will use

the terms measure and distribution synonymously.

For s ∈ S, the Dirac measure, or Dirac delta, or point mass on s is the probability

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Measure theory: What you need to know 9

measure

δs(B) =
{

1, s ∈ B,

0, s � B.

A measure is discrete if it is a countable weighted sum of Dirac measures. In par-

ticular a convex sum of Dirac measures is a discrete probability measure. These are

finite or countable sums of the form
∑

s∈C asδs, where all as ≥ 0 and
∑

s∈C as = 1.

A measure μ on a measurable set (S,B) is called continuous if μ ({s}) = 0 for

all singleton sets {s} in B. The Lebesgue measures on Rn for n ∈ N, that is, the

lengths, areas, volumes, etc., are the best known examples of continuous measures.

Pushforward measure. Given f : (S,BS) → (T,BT) measurable and a measure μ

on BS , one defines the pushforward measure f∗(μ) on BT by

f∗(μ)(B) = μ(f −1(B)), B ∈ BT . (1.3)

This measure is well defined: since f is measurable, f −1 maps measurable sets of

BT to measurable sets of BS .

Lebesgue integration. An important operation on measures and measurable func-

tions is Lebesgue integration. Let (S,B) be a measurable space. Given a measure

μ : B → R and bounded measurable function f : S → R, say bounded above by M

and below by m, the Lebesgue integral of f with respect to μ, denoted
∫

f dμ, is a

real number obtained as the limit of finite weighted sums of the form

n
∑

i=0

f (si)μ(Bi), (1.4)

where B0, . . . ,Bn is a measurable partition of S, the value of f does not vary more

than (M−m)/n in any Bi, and si ∈ Bi, 1 ≤ i ≤ n. The limit is taken over increasingly

finer measurable partitions of the space. For the details of this construction, see for

example (Dudley, 2002, Ch. 4) or (Aliprantis and Border, 1999, Ch. 11).

For a finite discrete space n = {1,2, . . . ,n}, the integral reduces simply to a

weighted sum:
∫

f dμ =
∑

n

i=1 f (i)μ(i).
The bounded integral

∫

B
f dμ, where B ∈ B, is obtained by integrating over the

set B instead of all of S; equivalently,
∫

B

f dμ �

∫

χB · f dμ, (1.5)

where χB is the characteristic function of B and χB · f is the pointwise product of

real-valued functions.

www.cambridge.org/9781108488518
www.cambridge.org

Cambridge University Press
978-1-108-48851-8 — Foundations of Probabilistic Programming
Edited by Gilles Barthe , Joost-Pieter Katoen , Alexandra Silva
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

Absolute continuity. Given two measures μ, ν, we say that μ is absolutely contin-

uous with respect to ν and write μ ≪ ν if for all measurable sets B, if ν(B) = 0,

then μ(B) = 0. Informally, if ν assigns no mass to B, then neither does μ. Although

we will not need it, we cannot fail to mention the following theorem, which is one

the pillars of probability theory.

Theorem 1.1 (Radon–Nikodym) Let μ, ν be two finite measures on a measurable

space (S,B) and assume that μ is absolutely continuous with respect to ν. Then

there exists a measurable function f : S → R defined uniquely up to a μ-nullset

such that

μ(B) =
∫

B

f dν.

The function f is called the Radon–Nikodym derivative of μ with respect to ν.

Radon–Nikodym derivatives are known in probability theory as probability den-

sity functions. For example, the standard Gaussian probability measure is abso-

lutely continuous with respect to Lebesgue measure (the length function) on R.

Its Radon–Nikodym derivative with respect to Lebesgue measure is the Gaussian

density function f (t) = 1√
2π

e−t
2/2.

Products. Given two measurable spaces (S1,B1) and (S2,B2), one can construct

the product space (S1 × S2,B1 ⊗ B2), where S1 × S2 is the cartesian product and

B1 ⊗B2 is the σ-algebra on S1 × S2 generated by all measurable rectangles B1 × B2

for B1 ∈ B1 and B2 ∈ B2. In other words,

B1 ⊗ B2 � σ ({B1 × B2 | B1 ∈ B1,B2 ∈ B2}) . (1.6)

The measurable rectangles B1 × B2 are a generalisation of the case where S1 =

S2 = R and B1,B2 are intervals. The product of two measurable spaces is thus the

measurable space generated by the corresponding measurable rectangles.

A measure on the product space (S1 × S2,B1 ⊗ B2) is sometimes called a joint

distribution. Due to the inductive construction (1.6) of B1 ⊗ B2 from measurable

rectangles B1 × B2, joint distributions are uniquely determined by their values on

measurable rectangles. For details of this extension, see (Dudley, 2002, §4.4).

A special class of joint distributions are the product measures μ1 ⊗ μ2 formed

from a measure μ1 on (S1,B1) and a measure μ2 on (S2,B2), defined on measurable

rectangles by

(μ1 ⊗ μ2)(B1 × B2) � μ1(B1)μ2(B2).

As mentioned, this extends uniquely to a joint distribution μ1 ⊗ μ2 : B1 ⊗ B2 → R.

Product measures capture the idea of independence: sampling μ1 ⊗ μ2 to obtain an

element of S1 × S2 is equivalent to independently sampling μ1 on S1 and μ2 on S2.

www.cambridge.org/9781108488518
www.cambridge.org

